超空泡航行体通气空泡流仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空泡减阻通过改变水下航行体表面介质属性和流场结构,可实现航行体减阻90%以上,是满足水下航行体高航速和远航程要求的革命性减阻技术。本文以超空泡航行体通气空泡流为研究对象,建立了大尺度和多尺度空泡流数值仿真模型,对通气空泡生长过程和多尺度空泡流与航行体间相互作用展开了系统深入的研究,揭示了多尺度空泡流减阻机理,为超空泡航行体设计提供了理论基础。
     分析了通气空泡形成过程中液体、连续气体及离散气泡间相互作用的物理过程,基于均质多相流模型,耦合自然空化模型和表面张力模型,建立了大尺度空化流仿真模型;分析了通气空泡尾部自由面掺气机理,建立了回射流掺气模型;基于欧拉-欧拉双流体模型,耦合两种群体平衡方法和回射流掺气模型,建立了多尺度空泡流仿真模型,为开展通气空泡流仿真研究提供了重要基础。
     应用多尺度空泡流仿真模型,开展了垂直管内通气空泡流仿真研究,得到垂直管内空泡尾部掺气率变化规律,准确预示了通气空泡下游回流区、过渡区和管流区流场结构,得到了不同区域内气泡体积含量、流体速度和气泡大小等参数演化规律,分析了液流速度、通气量、来流湍流度等对流场参数的影响,通过与试验数据对比,验证了回射流模型和多尺度空泡流模型正确性,为局部通气空泡流仿真提供了理论和方法基础。
     分别基于大尺度和多尺度空泡流模型开展了局部通气空泡流仿真研究,得到大尺度空泡形态随通气量变化规律,分析了不同工况下试验体后尾迹区流体速度、气泡体积含量和气泡大小等参数分布特性,得到了影响气泡流扩散方式和扩散速率的主要原因;分析了试验体表面边界层内参数分布特点,探讨了掺气率和航行攻角对微气泡流参数影响,揭示了局部通气空泡减阻机理,为空泡减阻技术发展提供了技术支撑。
     基于大尺度空泡流模型开展了高速航行体通气空化过程仿真研究,基于仿真结果建立了适用于多种泄气方式和大Froude数范围的空泡形态计算模型,通过与试验数据和仿真结果对比验证了模型准确性;提出了带进水管路航行体性能评价参数,基于自然空化过程仿真得到航行体水动力特性和摄水性随航行工况变化规律,分析了楔形尾翼对自然空泡形态和航行体水动力特性影响,为高速超空泡航行体设计提供了理论依据。
     本文研究成果将促进空泡减阻技术发展,推动多相流仿真技术进步,对超空泡航行体研制具有重要理论意义和工程应用价值。
Drag reduction using cavitation, proposed as a revolutionary method to meet the demand of high speed and long voyage for the future underwater vehicles, is capable of achieving drag reduction over 90% by modifying the flow property and strucure near the vehicle surface. In this paper, the macroscale and multiscale simulation models were established for the ventilated cavitating flow. Systematical and deep research was carried out on the development process of the ventilated cavities, as well as on the interaction between the multiscale cavitating flow and the vehicle body, revealing the evolution process of the macroscale cavity and the dispersion characteristics of the microscale bubbles. The drag reduction mechanisms by the ventilated cavity were further explored, providing theoretical basis for the design of the supercavitating vehicles.
     The interaction between liquid, continuous gas and dispersed bubbles during the formation of the ventilated cavity was analyzed. The macroscale simulation model for the ventilated cavitating flow was complemented based on the homogeneous multiphase model, integrated with the natural cavitation model and the surface tension force model. The air entrainment model by the re-entrained jet was put forward based on the analysis of the air entrainment mechanisms for the free surface flows. Thereafter, the multiscasle simulation model for the ventilated cavitating flow was established based on the Euler-Euler two fluid model, incorperated with two types of population balance methods and the air entrainment model by the re-entrained jet. The proposed numerical models provide important basis for the numerical research on ventilated cavitating flows.
     Numerical research on the ventilated cavity in the verticle pipe was carried out using the multiscale simulation model. The variation of the air entrainment rate at the cavity tail was obtained. Three different regions downstream the ventilated cavity including the vortex region, transitional region and the pipe flow region were successfully predicted. The distribution characteristics of the flow field parameters such as the void fration, velocity and bubble size in different regions were obtained. The influence of liquid velocity, ventilation rate and inlet turbulence intensity on the flow field parameters were further discussed. Good agreement was observed between the simulation results and the experimental data, validating the proposed multiscale simulation model and the air entrainment model. The above research sets the theoretical and method basis for the simulation on ventilated partial cavity.
     Simulations for the ventilated partial cavity was accomplished based on the macroscale model and the multiscale model respectively. The evolution of the cavity shape along with the ventilation rate was successfully captured. The distributions of the flow field parameters including the void fraction, liquid velocity and bubble size in the wake region behind the test body were invesitgated, which revealed the critical elements to the change of the dispersion way and speed of the bubbles. The characteristics of the flow field in the boundary layer of the test body surface were explored. Furthermore, the influences of air entrainment rate and sailing attack angle on the microscale bubbly flow were studied. The drag reduction mechanisms by ventilated partial cavity were better understood, providing technical support for the development of drag reduction method using cavitation.
     Numerical research was carried out for the high-speed ventilated cavitating vehicles based on the macroscale simulation model. A mathematical model for calculating the cavity shape, applicable for the ventilated cavity with various gas-leakage mechanisms and wide range of Froude number was developed. The model was validated in comparison with the experimental and numerical data. The parameters to evaluate the cavitating vehicle with water inlet pipe were put forward. Subsequently, the performance for the cavitating vehicle with water inlet pipe under various sailing speed and attack angle was studied based on the simulation for the natural cavitating process. The interaction between wedge control fins and the natural cavity was investigated. Obtained results provides theoretical basis for the design of high-speed cavitating vehicles.
     The research achievements in the thesis will surely promote the development of drag reduction techniques using cavitation, as well as providing support for the advancement of the simulation techniques for the multiphase flows. The research will be of great theoretical value as well as engineering practice meaning for the future supercavitating vehicle research.
引文
[1] Logvinovich G V. Hydrodynamics of flows with free boundaries[M]. Halsted Press, 1973: 208.
    [2] Reichardt H. The laws if cavitation bubbles as axially symmetrical bodies in a flow[R]. Britian: Ministry of Aircraft Production Reports and Translations, 1946.
    [3] Self M W, Ripken J F. Steady-state cavity studies in a free-jet water tunnel[R]. St. Anthony Falls Hydraulic Laboratory, University of Minnesota, 1955.
    [4] Cox R N, Clayden W A. Air entrainment at the rear of a steady cavity[Z]. London: 1956.
    [5] Waid R L. Cavity shapes for circular disks at angles of attack[R]. California Institute of Technology, 1957.
    [6] Garabedian P R. Calculation of axially symmetric cavities and jets[J]. Pacific Journal of Mathematics. 1956, 6(4): 611-684.
    [7] Campbell I J, Hilborne D V. Air entrainment behind artificially inflated cavities[Z]. Washington: 1958.
    [8] Savchenko Y N. Investigation of high-speed supercavitating underwater motion of bodies[R]. High-speed motion in water AGARD Report, 1998.
    [9] Holl J W, Stirbring D R, Hall W R. Ventilated cavity test of a 3-inch diameter streamlined nose[R]. AD A059525, 1978.
    [10] Schauer T J. An experimental study of a ventilated supercavitating vehicle[D]. MS Thesis in Aerospace Engineering, University of Minnesota, 2003.
    [11] Semenenko V N. Artificial Supercavitation. Physics and Calculation[Z]. Brussels, Belgium: 2001.
    [12] Kuklinski R, Fredette A, Henoch C, et al. Experimental studies in the control of cavitating bodies[Z]. Keystone, Colorado: 2006.
    [13] Kuklinski R, Henoch C. Experimental study of ventilated cavities on dynamic test model[Z]. California, Pasadena, USA: 2001.
    [14] Stinebring D R. Basic research into high-speed supercavitating bodies[R]. ONR Project, 1997.
    [15] Stinebring D R, Cook R B, Dzielski J E, et al. High-speed supercavitating vehicles[Z]. Keystone, Colorado: 2006.
    [16] Arndt R E A, Balas G J, Wosnik M. Control of cavitating flows: a perspective[J]. JSME Intern ational Journal Series B Fluids and Thermal Engineering. 2005, 48(2): 334-341.
    [17]黄海龙.无动力水下超空泡试验分析[D].哈尔滨工业大学, 2003.
    [18]曹伟,王聪,魏英杰,等.自然超空泡形态特性的射弹试验研究[J].工程力学. 2006, 23(12): 175-179.
    [19] Zhang X W, Wei Y J, Zhang J Z, et al. Experimental research on the shape characters of natural and ventilated supercavitation[J]. Journal of Hydrodynamics. 2007, 19(5): 564-571.
    [20]张学伟,魏英杰,张嘉钟,等.模型结构对通气超空泡影响的实验研究[J].工程力学. 2008, 25(9): 203-208.
    [21]贾力平.空化器诱导超空泡特性的数值仿真与试验研究[D].哈尔滨工业大学, 2007.
    [22]蒋增辉,于开平,张嘉钟,等.超空泡航行体尾部流体动力特性试验研究[J].工程力学. 2008, 25(3): 26-30.
    [23]张嘉钟,赵静,魏英杰,等.回注射流及其对通气超空泡形态影响的研究[J].船舶力学. 2010,14(6): 571-576.
    [24]张宇文,王育才,党建军.细长体空泡流型试验研究[J].水动力学研究与进展. 2004, 19(3): 394-400.
    [25]袁绪龙,张宇文,王育才,等.水下航行体通气超空泡非对称性研究[J].力学学报. 2004, 36(2): 146-150.
    [26]裴譞,张宇文,袁绪龙,等.尾翼对超空泡航行器形态及力学特性影响实验研究[J].实验流体力学. 2011, 25(1): 23-28.
    [27]陈鑫.通气空泡流研究[D].上海交通大学, 2006.
    [28] Feng X, Lu C, Hu T. Experimental research on a supercavitating slender body of revolution with ventilation[J]. Journal of Hydrodynamics. 2002, 14(2): 17-23.
    [29] Lee Q, Xue L, He Y. Experimental study of ventilated supercavities with a dynamic pitching model[J]. Journal of Hydrodynamics. 2007, 20(4): 456-460.
    [30]颜开,史淦君,薛晓.用Mackey方法计算鱼雷带空泡航行时的入水弹道[J].弹道学报. 1998, 10(2): 93-96.
    [31]顾建农,高永琪.系列头型空泡特征及其对细长体阻力特性影响的试验研究[J].海军工程大学学报. 2003, 15(4): 5-9.
    [32] Stutz B, Reboud J L. Experiments on unsteady cavitation[J]. Experiments in Fluids. 1997, 22: 191-198.
    [33] Gopalan S, Katz J. Flow structure and modeling issues in the closure region of attached cavitation[J]. Physics of Fluids. 2000, 12(4): 895-911.
    [34] Yu P W. Experimental and numerical examination of cavitating flows[D]. The University of Michigan, 1995.
    [35] Arndt R E A, Song C C S, Kjeldsen M, et al. Instability of partial cavitation: a mumerical/experimental approach[Z]. Val de Reuil, France: 2000.
    [36] Qin Q, Wang H, Arndt R E A. An integrated experimental/numerical study of the bubbly wake behind a cavitating hydrofoil [Z]. Houston, TX, USA: 2005.
    [37] Chanson H. Air Bubble Entrainment in Free-Surface Turbulent Shear Flows [M]. London, UK: Academic Press, 1996.
    [38] Bin A K. Gas entrainment by plunging liquid jets[J]. Chemical Engineering Science. 1993, 48(21): 3585-3630.
    [39] Ahmed A. Aeration by plunging liquid jet[D]. Loughborough University of Technology, 1974.
    [40] Burgess J M, Molloy N A. Gas absorption in the plunging liquid jet reactor[J]. Chemical Engineering Science. 1973, 28: 183-190.
    [41] Evans G M. A study of a plunging jet bubble column[D]. Australia: University of Newcastle, 1990.
    [42] Kusabiraki D, Niki H, Yamagiwa K, et al. Gas entrainment rate and flow pattern of vertical plunging liquid jets[J]. Canada Journal of Chemical Engineering. 1990, 68: 893-903.
    [43] Davoust L, Achard J L, Hammoumi M E. Air entrainment by a plunging jet: the dynamical roughness concept and its estimation by a light absorption technique[J]. International Journal of Multiphase Flow. 2002, 28: 1541-1564.
    [44] Cummings P D, Chanson H. Air entrainment in the developing flow region of plunging jets. Part 1 theoretical development[J]. Journal of Fluids Engineering. 1997, 119(3): 597-602.
    [45] Cumming I W. The impact of falling liquids with liquid surfaces[D]. Loughborough University of Technology, 1975.
    [46] Mccarthy M J, Henderson J B, Molloy N A. Entrainment by plunging jets[C]. Butterworths, London: 1970.
    [47] Van de Sande E. Air entrainment by plunging water jets[D]. Technische Hogeschool Delft, 1974.
    [48] Ohl C D, Oguz H N, Prosperetti A. Mechanism of air entrainment by a disturbed liquid jet[J]. PHYSICS OF FLUIDS. 2000, 12(7): 1710-1714.
    [49] Savchenko Y N, Semenenko V N. The gas absorption into supercavity from liquid-gas bubble mixture[Z]. Grenoble, France: 1998.
    [50] Robertson D D C, O Shaughnessy D P, Molloy N A. The mechanism of sheath formation by plunging jets[J]. Chemical Engineering Science. 1973, 28: 1635-1636.
    [51] Chanson H, Brattberg T. Air entrainment by two-dimensional plunging jets: the impingement region and the very-near flow field[Z]. 1998.
    [52] Zhu Y G, Oguz H N, Properetti A. On the mechanism of air entrainment byliquid jets at a free surface[J]. Journal of Fluid Mechanics. 2000, 404: 151-177.
    [53] Cummings P D, Chanson H. Air entrainment in the developing flow region of plunging jets. Part 2 experimental[J]. Journal of Fluids Engineering. 1997, 119(3): 603-608.
    [54] Yagasaki T, Kuzuoka T. Surface entrainment of gas by plunging liquid jet[R]. Japan: Kogakuin University, 1979.
    [55] Bin A. Investigation of the aeration effect of free liquid jet[D]. Warsaw University of Technology, 1971.
    [56] Evans G M, Jameson G J, Atkinson E W. Prediction of the bubble size generated by a plunging liquid jet bubble column[J]. Chemical Engineering Science. 1992, 47: 3265-3272.
    [57] Ohkawa A, Kawai Y, Kusabiraki D, et al. Bubble size, interfacial area and volumetric liquid-phase mass transfer coefficient in downflow bubble columns with gas entrainment by a liquid jet[J]. Journal of Chemical Engineering of Japan. 1987, 20: 99-101.
    [58] Mckeogh E J, Ervine D A. Air entrainment rate and diffusion pattern of plunging liquid jets[J]. Chemical Engineering Science. 1981, 36(7): 1161-1172.
    [59] van de Sande E, Simth J M. Surface entrainment of air by high velocity water jets[J]. Chemical Engineering Science. 1973, 28: 1161-1168.
    [60] Suciu G, Smigelschi O. Gas absorption by column with gas entrainment by a liquid jet operating at turbulent liquid plunging jets[J]. Chemical Engineering Science. 1977, 32: 889-896.
    [61] Hara H, Shimada K, Kumagai M. The behaviour of gas entrainment by a liquid jet[J]. Kagaku Kogaku Ronhunshu. 1977, 3: 424-425.
    [62] Schmidtke M, Danciu D, Lucas D. Air entrainment by impinging jets. experimental identification of the key phenomena and approaches for their simulation in CFD[Z]. Brussels, Belgium: 2009.
    [63] Brattberg T, Chanson H. Air entrapment and air bubble dispersion at two dimensional plunging water jets[J]. Chemical Engineering Science. 1998, 53(24): 4113-4127.
    [64] Lin T J, Donnelly H G. Gas bubble entrainment by plunging laminar liquid jets[J]. AIChE Journal. 1966, 12: 563.
    [65] Ervine D A, Elsawy E M. The effect of falling nappe on river aeration[Z]. Sao Paulo, Brazil: 1975390-397.
    [66] Mckeogh E. A study of air entrainment using plunging water jets[D]. Queen's University of Belfast, UK, 1978.
    [67] Lara P. Onset of air entrainment for a water jet impinging vertically on a water surface[J]. ChemicalEngineering Science. 1979, 34: 1164.
    [68] Ervine D A, Ahmed A A. A scaling relationship for a two-dimensional vertical dropshaft[Z]. UK: 1982195-214.
    [69] Sene K J. Air entrainment by plunging jets[J]. Chemical Engineering Science. 1988, 43: 2615-2623.
    [70] Wood I R. Air entrainment in free-surface flows[M]. Rotterdam, The Netherlands: IAHR Hydraulic Structures Design Manual NO.4, Hydraulic Design Considerations, Balkema Publishers, 1991.
    [71] Cummings P D. Aeration due to breaking waves[D]. University of Queensland, Australia, 1996.
    [72] Cummings P D, Chanson H. An experimental study of individual air bubble entrainment at a planar plunging jet[J]. Trans IChemE. 1999, 77: 159-164.
    [73] Chansona H, Aoki S, Hoqueb A. Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets[J]. Chemical Engineering Science. 2004, 59: 747-758.
    [74] Bonetto F, Lahey Jr R T. An experimental study on air carry under due to a plunging liquid jet [J]. International Journal of Multiphase Flow. 1993, 19(2): 281-294.
    [75] Riiser K, Fabre J, Suzanne C. Gas entrainment at the rear of a Taylor bubble[Z]. Stockholm: 19921-8.
    [76] Bacon R P, Scott D M, Thorpe R B. Large bubbles attached to spargers in downwards two-phase flow[J]. International Journal of Multiphase Flow. 1995, 21(5): 949-959.
    [77] Su C. Gas entrainment at the bottom of a Taylor bubble in vertical gas-liquid slug flows[D]. University of Houston, 1995.
    [78] Lee Y H, Scott D M, Thorpe R B. The Scale-up of Large Bubbles Attached to Spargers in Downward Two-phase Flow[J]. Chemical Engineering Science. 1997, 52: 3797-3809.
    [79] Lee Y H, Scott D M, Thorpe R B. The Scale-up of Large Bubbles Attached to Spargers in Downward Two-phase Flow[J]. Chemical Engineering Science. 1999, 54: 3839-3898.
    [80] Delfos R, Wisse C J, Oliemans R V A. Measurement of air-entrainment from a stationary Taylor bubble in a vertical tube[J]. International Journal of Multiphase Flow. 2001, 27: 1769-1787.
    [81] Sotiriadis A A, Thorpe R B. Liquid re-circulation in turbulent vertical pipe flow behind a cylindrical bluffbody and a ventilated cavity attached to a sparger[J]. Chemical Engineering Science. 2005: 981-994.
    [82] Evans G M, Machniewski P M, Bin A K. Bubble size distribution and void fraction in the wake region below a ventilated gas cavity in downward pipe flow[J]. Chemical Engineering Research and Design. 2004, A9(82): 1095-1104.
    [83] Frank T. Numerical simulation of slug flow regime for an air–water two phase flow in horizontal pipes[Z]. Avignon, France: 2005.
    [84] H?hne T, ValleéC, Prasser H M. Experimental and numerical prediction of horizontal stratified flows[Z]. Leipzig, Germany: 2007.
    [85] Isshi M. Thermo-fluid dynamic theory of two-phase flow[M]. New York: Springer Science, 1995.
    [86] Dellanoy Y, Kueny J L. Two-phase Flow Approach in Unsteady Cavitation Modeling[J]. ASME FED-Vol. 1990, 98: 153-158.
    [87] Chen Y, Heister S. Two-phase modeling of cavitating flows[J]. Computers and fluids. 1995, 24(7): 799-809.
    [88] Kubota A, Kato H, Yamaguchi H. A new modeling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics. 1992, 24(7): 799-809.
    [89] Qin Q. Numerical modeling of natural and ventilated cavitating flows[D]. University of Minnesota, 2004.
    [90] Ventikos Y. A numerical method for the simulation of steady and unsteady cavitating flows[J]. Computer and Fluids. 2000, 29.
    [91] Merkle C L, Feng J, Buelow P E O. Computational modeling of the dynamics of sheet cavitation[C]. Grenoble, France: 1998.
    [92] Ahuja V, Hosangadi A, Arunajatesan S. Simulations of cavitating flows using hybrid unstructured meshes[J]. Journal of Fluids Engineering. 2001, 123: 331-340.
    [93] Kunz R F, Boger D A, Stinebring D R, et al. A preconditioned Navier-stokes method for two-phase flows with application to cavitation prediction[J]. Journal of Computational Fluids. 2000, 29(8): 849-875.
    [94] Owis F M, Nayfeh A H. Numerical simulation of super- and partially-cavitating flows over an axisymmetric projectile[Z]. Reno, NV: 2001.
    [95] Vaidyanathan R, Senocak I, Wu J, et al. Sensitivity evaluation of a transport-based turbulent cavitation model[Z]. St. Louis, Missouri: 20021-12.
    [96] Senocak I, Shyy W. A pressure-based method for turbulent cavitating flow computations[J]. Journal of Computational Physics. 2002, 176: 363-383.
    [97] Passandideh-Fard M, Roohi E. Transient simulation of cavitating flows using a modified volume-of-fluid(VOF) technique[J]. International Journal of Computational Fluid Dynamics. 2008, 22(1-2): 97-114.
    [98] Youngs D L. An interface tracking method for a 3D Eulerian hydrodynamics code[R]., 1984.
    [99] Singhal A K, Li H. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering. 2002, 124: 617-624.
    [100] Chen Y, Lu C, Guo J. Numerical study of the cavitating flows over underwater vehicle with large angle of attack[J]. Journal of Hydrodynamics. 2010, 22(5): 850-855.
    [101] Salvador G P, Frankel S H. Numerical modeling of cavitation using fluent: validation and parametric studies[Z]. Portland, Oregon: 20049.
    [102] Ji B, Luo X, Zhang Y, et al. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. CHIN. PHYS. LETT. 2010, 27(9).
    [103] Bemtsen C S. Numerical modeling of sheet and tip vortex cavitation with Fluent5[Z]. 2001.
    [104] Senocak I, Shyy W. Evaluation of cavitation models for Navier-Stokes computations[Z]. Montreal, Canada: 2002.
    [105] Wu J, Wang G, Shyy W. Time-dependent turbulent cavitating flow computations with interfacial transport and filter-based models[J]. International Journal for Numerical Methods in Fluids. 2005(49): 739-761.
    [106] Kunz R F, Boger D, Chyczewski T S, et al. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies[Z]. San Francisco: 1999.
    [107] Kunz R F, Lindau J W, Billet M L, et al. Multiphase CFD modeling of developed and supercavitating flows[R]. Brussels:RTO-AVT and VKI, 2001.
    [108] Lindau J W, Kunz R F. Advancement and application of multiphase CFD modeling to high speed supercavitating flows[R]. N00014-0J-J-0325, 2004.
    [109] Lindau J W, Venkateswaran S, Kunz R F, et al. Computation of compressible multiphase flows[Z]. Reno, Nevada: 200310.
    [110] Lindau J W, Kunz R F, Boger D A, et al. High Reynolds Number, unsteady, multiphase CFDmodeling of cavitating flows[J]. Journal of Fluids Engineering. 2002, 124: 607-616.
    [111] Lindau J W, Kunz R F, Mulherin J M, et al. Fully coupled, 6-DOF to URANS, modeling of cavitating flows around a supercavitating vehicle[Z]. Osaka, Japan: 200311.
    [112] Li D, Sankaran V, Lindau J W, et al. A unified computational formulation for multi-component and multi-phase flows[Z]. Reno, Nevada: 2005.
    [113] Kinzel M P, Lindau J W, Peltier J, et al. Computational investigations of air entrainment, hysteresis, and loading for large-scale, buoyant cavities[Z]. 2007.
    [114] Kinzel M P, Lindau J W. Free-Surface Proximity Effects in Developed and Super-Cavitation[Z]. 2008.
    [115] Kinzel M P, Lindau J W, Kunz R F. A Level-set Approach for Compressible, Multiphase Fluid Flows with Mass Transfer[Z]. San Antonio, Texas: 200938.
    [116] Kinzel M P. Computational techniques and analysis of cavitating-fluid flows[D]. The Pennsylvanis State University, 2008.
    [117]卢静,张嘉钟.通气超空泡通气率影响的数值仿真研究[J].哈尔滨商业大学学报. 2009, 25(2): 229-233.
    [118]周景军,于开平,杨明.低弗鲁德数条件下通气超空泡泄气机理数值模拟[J].工程力学. 2011, 28(1): 251-256.
    [119] Zhou J, Yu K, Min J, et al. The comparative study of ventilated super cavity shape in water tunnel and infinite flow field[J]. Journal of Hydrodynamics. 2010, 22(5): 689-696.
    [120] Yu K, Zhou J, Min J. A Contribution to Study on the Lift of Ventilated Supercavitating Vehicle With Low Froude Number[J]. Journal of Fluids Engineering. 2010.
    [121]傅慧萍.回转体超空泡流减阻特性及其稳定性研究[D].上海交通大学, 2003.
    [122]胡勇,陈鑫,鲁传敬,等.水下航行体尾喷燃气与通气超空泡相互作用的研究[J].水动力学研究与进展. 2008, 23(4): 438-445.
    [123] Yang W, Zhang Y, Yang J. Three dimensional multiphase computational fLuid dynamics analysis of ventilated supercavitation[J]. Chinese Journal of Mechanical Engineering. 2008, 21(1): 61-65.
    [124] Galimov A Y, Sahni O, Jr. R T L, et al. Parallel adaptive simulation of a plunging liquid jet[J]. Acta Mathematica Scientia. 2010, 30(2): 522-538.
    [125] Laux H, Johansen S T. A CFD analysis of the air entrainment rate due to a plunging steel jet combining mathematical models for dispersed and separated multiphase flows[Z].
    [126] Moraga F J, Carrica P M, Drew D A, et al. A sub-grid air entrainment model for breaking bow waves and naval surface ships[J]. Computers & Fluids. 2008, 37(3): 281-298.
    [127] Ma J, Oberai A A. A quantitative sub-grid air entrainment model for bubbly flows–plunging jets[J]. Computers & Fluids. 2010, 39: 77-86.
    [128] Ma J, Oberai A A, Drew D A, et al. A two-way coupled polydispersed simulation of bubbly flow beneath a plunging liquid jet[Z]. Minicha, Canada: 20101-9.
    [129] Ma J, Oberai A A, Drew D A, et al. A comprehensive sub-grid air entrainment model for RaNS modeling of free-surface bubbly fows[J]. Computers & Fluids.
    [130] Rigby G D, Evans G M. Bubble breakup from ventilated cavities in multiphase reactors[J]. Chemical Engineering Science. 1997, 52: 3677-3684.
    [131] Thorpe R B, Evans G M, Zhang K. Liquid recirculation and bubble breakup beneath ventilated gas cavities in downward pipe flow[J]. Chemical Engineering Science. 2001, 56: 6399-6409.
    [132] Semenenko V N. Artificial Supercavitation. Physics and Calculation[Z]. Brussels:RTO-AVT andVKI: 2001.
    [133] ANSYS CFX-11 User Manual. ANSYS CFX[Z]. 2007.
    [134] Brackbill J U. A continuum method for modeling surface tension[J]. Journal of Computational Physics. 1992, 100(2): 741-750.
    [135] Barth T J, Jesperson D C. The design and application of upwind schemes on unstructured meshes[Z]. Reno, Nevada: 1989.
    [136] Zwart P J. Numerical modelling of free surface and cavitating flows[Z]. 2005.
    [137] Rhie C M, Chow W L. Numerical study of the turbulent-flow past an airfoil with trailing edge separation[J]. AIAA Journal. 1983, 21: 1525-1532.
    [138] Ervine D, Mckeogh E, Elsawy E. Effect of turbulence intensity on the rate of air entrainment by plunging water jets[J]. ICE proceedings. 1980, 69: 425-450.
    [139] Kockx J P, Nieuwstadt F T M. Gas entrainment by a liquid film falling around a stationary Taylor bubble in a vertical tube[J]. International Journal of Multiphase Flow. 2005(31): 1-24.
    [140] Fu X. Interfacial area measurement and transport modeling in air-water two-phase flow[D]. Purdue University, 2001.
    [141] Fernandes R C, Semiat R. Hydrodynamic Model for Gias-Liquid Slug Flow in Vertical Tubes[J]. AlChE Journal. 1983, 29(6).
    [142] Sakiades B C. Boundary layer on continuous solid surfaces: II. The boundary layer on a continuous flat surface[J]. AIChE Journal. 1961, 7: 26-28.
    [143] White C R. Viscous fluid flow[M]. New York: Mc Graw-Hill, 1974.
    [144] Spurk J H. On the gas loss from ventilated supercavities[J]. Acta Mechanica. 2002: 125-135.
    [145] Tu J Y. Private communication on "Population Balance Modelling of Bubbly Flows"[R]. Australia: RMIT University, 2010.
    [146] Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal. 1979: 843-855.
    [147] Simonnet M, Gentric C, Olmos E, et al. Experimental determination of the drag coefficient in a swarm of bubbles[J]. Chemical Engineering Science. 2007: 858-866.
    [148] Kunz R F, Gibeling H J, Maxey M R. Validation of Two-fluid Eulerian CFD Modeling for Microbubble Drag Reduction Across a Wide Range of Reynolds Numbers[J]. Journal of Fluids Engineering. 2007, 129: 66-79.
    [149] Johansen S T, Boysan F. Fluid Dynamics in Bubble Stirred Ladles: Part II[J]. Metall. Trans. B. 1988: 755-764.
    [150] Drew D A, Lahey Jr. R T. Application of general constitutive principles to the derivation of multidimensional two-phase flow equation[J]. International Journal of Multiphase Flow. 1979: 243-264.
    [151] Lopez De Bertodano M. Turbulent Bubbly Two-phase Flow in a Triangular Duct[D]. Troy, New York: Rensselaer Polytechnic Institute, 1992.
    [152] Takagi S, Matsumoto Y. Numerical Study on the Forces Acting on a Bubble and Particle[Z]. Lyon, France: 1998.
    [153] Drew D A, Lahey Jr. R T. The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Flow[J]. International Journal of Multiphase Flow. 1987, 13: 113-121.
    [154] Wang S K, Lee S J, Lahey R T J, et al. 3-D turbulence structure and phase distribution measurements in bubbly two-phase ? ows[J]. International Journal Of Multiphase Flow. 1987, 13: 327-343.
    [155] Tomiyama A. Struggle with Computational Bubble Dynamics[Z]. Lyon, France: 1998.
    [156] Wellek R M, Agrawal A K, Skelland A H P. Shapes of Liquid Drops Moving in Liquid Media[J]. AIChE Journal. 1966, 12: 854-862.
    [157] Antal S P, Lahey Jr. R T, Flaherty J E. Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-phase Flow[J]. International Journal of Multiphase Flow. 1991, 17(5): 635-652.
    [158] Lopez De Bertodano M. Two-? uid model for two-phase turbulent jet[J]. Nuclear Engineering and Design. 1998, 179: 65-74.
    [159] Moraga J F, Larreteguy A E, Drew D A, et al. Assessment of turbulent dispersion models for bubbly flows in the low Stokes number limit[J]. International Journal of Multiphase Flow. 2003, 29: 655-673.
    [160] Burns A D, Frank T, Hamill I, et al. The Favre Averaged Drag Model for Turbulenbce Dispersion in Eulerian Multi-phase Flows[Z]. Yokohama, Japan: 2004.
    [161] Revuelta A, Rodriguez-Rodriguez J, Martinez-Bazan C. Bubble break-up in a straining flow at finite Reynolds numbers[J]. Journal of Fluid Mechanics. 2006, 551: 175-184.
    [162] Ramkrishna D, Mahoney A W. Population balances modeling[J]. Chemical Engineering Science. 2002, 57: 595-606.
    [163] Debry E, Sportisse B, Jourdain B. A stochastic approach to numerical simulation of the general equation for aerosis[J]. Journal of Computational Physics. 2003, 184: 649-669.
    [164] Maisels A, Kruis F E, Fissan H. Direct simulation Monte Carlo for simulation nucleation, coagulation and surface growth in dispersed systems[J]. Chemical Engineering Science. 2004, 59: 2231-2239.
    [165] Yeoh G H, Tu J Y. Computational techniques for multiphase flows[M]. New York: Butterworth-Heinemann, 2009.
    [166] Yeoh G H, Tu J Y. Numerical Modelling of Bubbly Flows With and Without Heat and Mass Transfer[J]. Applied Mathematical Model. 2006: 1067-1095.
    [167] Cheung S C P, Yeoh G H, Tu J Y. On the Modelling of Population Balance in Isothermal Vertical Bubbly Flows—Average Bubble Number Density Approach[J]. Chemical Engineering Processing. 2006: 742-756.
    [168] Serizawa I, Kataoka I. Phase distribution in two-phase ? ow[C]. Washington DC: 1998.
    [169] Otake T, Tone S, Nakao K, et al. Coalescence and breakup of bubbles in liquids[J]. Chemical Engineering Science. 1997, 32: 377-383.
    [170] Yao W, Morel C. Volumetric Interfacial Area Prediction in Upwards Bubbly Two-phase Flow[J]. International Journal of Heat Mass Transfer. 2004.
    [171] Cheung S C P, Yeoh G H, Tu J Y. On the numerical study of isothermal vertical bubbly flow using two population balance approaches[J]. Chemical Engineering Science. 2007, 62(3): 4659-4674.
    [172] Frank T, Zwart P J, Shi J, et al. Inhomogeneous MUSIG Model—a Population Balance Approach for Polydispersed Bubbly Flow[Z]. Bled, Slovenia: 2005.
    [173] Yeoh G H, Tu J Y. Population balance modelling for bubbly flows with heat and mass transfer[J]. Chemical Engineering Science., 59(15): 3125-3139.
    [174] Prince M J, Blanch H W. Bubble coalescence and breakage in air sparged bubble columns[J]. AIChE Journal. 1990: 1485-1499.
    [175] Chesters A K, Hoffman G. Bubble Coalescence in Pure Liquids[J]. Applied Scientific Research. 1982: 353-361.
    [176] Luo H, Svendsen H. Theoretical model for drop and bubble breakage in turbulent dispersions[J]. AIChE Journal. 1996: 1225-1233.
    [177] Sato Y, Sadatomi M, Sekoguchi K. Momentum and heat transfer in two-phase bubbly flow—I[J]. International Journal of Multiphase Flow. 1981: 167-178.
    [178] Franc J P, Michel J M. Fundamentals of Cavitation[M]. 6 ed. Netherlands: Kluwer Academic Publisher, Netherlands, 2004.
    [179] Stinebring D R, Billet M L. Developed cavitation-cavity dynamics[R]., 2001.
    [180] Epshtein L A. Methods of theory of dimensionality and similarity in problems of ship hydromechanics[M]. Leningrad: Sudostroenie Publishing House, 1970.
    [181] Madavan N K, Deutsch S, Merkle C L. Reduction of turbulent skin friction by microbubbles[J]. Physics of Fluids. 1984, 27: 356-363.
    [182] Madavan N K, Deutsch S, Merkle C L. Measurements of Local Skin Friction in a Microbubble-Modified Turbulent Boundary Layer[J]. Journal of Fluid Mechanics. 1985, 156: 237-256.
    [183] Sanders W C, Winkel E S. Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer[J]. Journal of Fluid Mechanics. 2006, 552: 353-380.
    [184] Ceccio S L. Friction drag reduction of external flows with bubble and gas injection[J]. Annu. Rev. Fluid Mech. 2010(42): 183-203.
    [185] Deutsch S, Casano J. Microbubble skin friction reduction on an axisymmetric body[J]. Phys. Fluids. 1986, 29(11): 3590-3597.
    [186] Henstock W H, Hanratty T J. Gas absorption by a liquid layer flowing on the wall of a pipe[J]. AIChE Journal. 1979, 25: 122-131.
    [187] Chanson H, Brattberg T. Experimental study of the air-water shear flow in a hydraulic jump[J]. International Journal of Multiphase Flow. 2000, 26: 583-607.
    [188] Clift R, Grace J, Weber M. Bubbles, Drops and Particles[M]. Academic Press, 1978.
    [189] Ervine D, Mckeogh E, Elsawy E. Effect of turbulence intensity on the rate of air entrainment by plunging water jets[J]. ICE proceedings. 1980, 69: 425-450.
    [190] Abraham N V. High-speed Bodies in Partially Cavitating Axisymmetric Flow[Z]. Osaka, Japan: 2003.
    [191] Eduard A. Microbubble drag reduction downstream of ventilated partial cavity[J]. Journal of Fluids Engineering. 2010, 132: 51302.
    [192] Johanssona P B V, George W K. Equilibrium similarity, effects of initial conditions and local Reynolds number on the axisymmetric wake[J]. PHYSICS OF FLUIDS. 2003, 15(3): 603-617.
    [193] Savchenko Y N. Experimental investigation of supercavitating motion of bodies[Z]. Brussels:RTO-AVT and VKI: 2001.
    [194] Waid R L. Cavity shapes for circular disks at angles of attack[R]. California Institute of Technology, 1957.
    [195] Kodama Y, Kakugawa A, Takahashi T, et al. Experimental study on microbubbles and their applicability to ships for skin friction reduction[J]. International Journal of Heat and Fluid Flow. 2000, 21: 582-588.
    [196] Ferrante A, Elghobashi S. On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles[J]. Journal of Fluid Mechanics. 2004, 503: 345-355.
    [197] Kam W N. Overview of the ONR Supercavitating High-Speed Bodies Program[Z]. Keystone, Colorado: 2006.
    [198] David R S, Robert B C. High-Speed Supercavitating Vehicles[Z]. Keystone, Colorado: 2006.
    [199] Xu C, Heister S D. Modeling Cavitating Venturi Flows[Z]. Indianapolis, Indiana: 2002.
    [200]韩泉东.空间变推力液体火箭发动机流量调节及燃烧过程仿真研究[D].国防科技大学, 2006.
    [201] Kirschner I N, Kring D C, Stokes A W, et al. Control strategies for supercavitating vehicles[J]. Journal of Vibration and Control. 2002(8): 219-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700