基于miR-199调控靶向肝癌细胞的溶瘤腺病毒系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌严重威胁着我国人民生命健康。基因-病毒治疗是继手术、放疗、化疗之后,肝癌靶向治疗的一种非常有前景的生物治疗方案。其中,溶瘤腺病毒本身具有裂解肿瘤的能力,又能介导外源基因高效表达,已成为基因-病毒治疗领域重要载体。目前已建立多种腺病毒调控策略,使其特异杀伤肿瘤细胞,而对正常组织细胞基本无毒性。然而,野生型腺病毒对肝脏具有较强的嗜性,如何减少甚至避免腺病毒对正常肝细胞的毒性,仍是应用腺病毒作为载体开展肝癌基因-病毒治疗所面临的巨大挑战。
     microRNA(miRNA)是生物体内源,长度约为19-25个核苷酸的非编码小RNA,它能通过与靶基因mRNA上的靶序列互补配对结合,在转录后水平对基因表达起负调控作用,导致mRNA的降解或翻译抑制。研究表明,miRNA具有高度的时空表达特异性,一些特定的miRNA常在一类肿瘤细胞(如肝癌)中异常下调,与肿瘤发生发展关系密切。因而,可以根据microRNA的调控方式与表达特点,将miRNA引入溶瘤腺病毒的靶向性调控中,即利用肝癌细胞特异性下调的miRNA调控腺病毒增殖必需基因E1A的表达,使其在相应miRNA高水平表达的正常肝细胞内不增殖(E1A被抑制),而在相应miRNA表达缺失的肝癌细胞内有效增殖(E1A正常表达),从而特异杀伤肝癌细胞,避免对正常肝细胞的毒副作用。
     miR-199a/b-3p是正常肝细胞内一种表达量非常高的miRNA(绝对表达量居第三),且在多种类型组织中高水平表达。研究发现,miR-199a/b-3p在肝癌细胞内广谱低水平表达。在本研究中,我们将miR-199a/b-3p靶序列插入E1A的3’非翻译区中,同时将5型腺病毒纤毛替换为5/35型嵌合纤毛,以提高病毒对肿瘤细胞的感染效率,建立基于miR-199调控靶向肝癌细胞的溶瘤腺病毒载体系统。通过Westernblotting、RT-PCR等技术研究在该调控方式作用下,腺病毒E1A的表达情况;通过病毒增殖实验、绿色荧光报告系统等手段检测病毒的增殖特性;应用MTT法检测病毒对肝癌细胞的体外杀伤作用及对正常肝细胞的毒副作用;建立肝癌细胞裸鼠移植瘤模型,研究病毒对移植瘤的抑制作用。
     结果表明,包含8个拷贝miR-199a/b-3p靶序列的溶瘤腺病毒SG7035199T能在miR-199a/b-3p低表达的肝癌细胞株(Hep3B与Huh7)中有效增殖并发挥杀伤作用,病毒感染后E1A能正常表达;而在miR-199a/b-3p高表达的正常肝细胞株(L02)及卵巢癌细胞株(SK-OV3)中基本不增殖,基本不发挥杀伤作用,病毒感染后E1A被有效抑制。而对照病毒,如包含5/35型嵌合纤毛,不具有任何调控的增殖型腺病毒WAd5/35以及包含8个拷贝“种子”序列突变后的miR-199a/b-3p靶序列的溶瘤腺病毒SG7035199MT则能在Hep3B、Huh7、L02、SK-OV3中均能有效增殖并发挥杀伤作用。体内方面,SG7035199T能有效抑制Hep3B移植瘤的生长,其抑瘤能力与WAd5/35、SG7035199MT相当;对于SK-OV3移植瘤,SG7035199T基本无抑制作用,而对照病毒WAd5/35、SG7035199MT能有效抑制移植瘤的生长。综上所述,SG7035199T能特异杀伤肝癌细胞,而对正常肝细胞基本无毒性,是一种较为理想的靶向肝癌细胞的溶瘤腺病毒系统。
Hepatocellular carcinoma (HCC) is a widespread cancer in our country,causingmillions deaths every year. The gene-virology therapy is one of promising strategy totreat for HCC. To this end, various viral vectors have been engineered to carryingtransgenes. Among them, oncolytic adenovirus has unique advantages. It can directlydestroy cancer cells, and mediate effective transgenic expression in the process of viralproduction as well. To date, a series of approaches have been developed to ensureoncolytic adenovirus to conditionally kill cancer cells. However, systemic administrationof adenoviruses can cause significant infection of hepatocytes and may lead to livertoxicity. Therefore, it remains a challenge to selectively target the cancer cells andleaving the normal cells, especial normal liver cells unharmed in the therapeutic use ofoncolytic adenovirus for HCC.
     MicroRNAs (miRNAs) are versatile, noncoding RNAs, which exertposttranscriptional regulation by targeting mRNAs through specific recognition of shortsequences, leading to decreased protein production. It has been well documented thatmiRNA is expressed in tissue-and differentiation state-specific patterns, and is greatlyassociated with cancer development. Because of its tissue-specific expression profile andshort targeting site, miRNA provides considerable flexibility in the design ofconditionally replicative adenoviruses. By introduction of miRNA target sequence intothe3’-untranslated region (UTR) of a key gene that has an essential role in viral growthand replication (e.g. E1A), the virus replication can be controlled by the tissue-specificendogenous miRNA, thus eliminating the unwanted pathology of wild-type adenovirus.
     The miR-199a/b-3p is highly expressed in hepatocytes and several types of tissues.Data have shown that miR-199a/b-3p is downregulated in almost all of primary HCCtissues and HCC cell lines, making it an ideal candidate for adenoviral regulation. In thisstudy, we have engineered an oncolytic adenovirus, SG7011199T, by introducing eightcopies of miR-199a/b-3p target sites into the3’ untranslated region of E1A, a key geneassociated with adenoviral replication, to control the expression of the E1A gene,subsequently the replication and cytotoxicity of the virus. The results showed that theE1A expression (both RNA and protein levels) of the SG7011199Twas tightly regulatedaccording to the endogenous expression level of the miR-199a/b-3p gene. As contrastedwith wild-type adenovirus, the replication of SG7011199Twas distinctly inhibited in normal liver cells lines (i.e. L02) and ovarian cancer cell line (i.e. SK-OV3) expressedhigh level of miR-199a/b-3p, whereas was almost not disturbed in HCC cells (i.e. Hep3Band Huh7) with low level of miR-199a/b-3p. Consequently, the cytotoxicity ofSG7011199Tto normal liver cells was successfully decreased while its oncolytic activityto HCC cells was maintained in vitro and in mice with xenograft HCC tumor. Theseresults suggested that SG7011199Tmay be a promising anticancer agent or vector tomediate the expression of therapeutic gene, broadly applicable in the treatment for HCCand other cancers where the miR-199a/b-3p gene is downregulated.
引文
[1].Quivrin M, Mornex F, Enachescu C, Martin E, Ligey-Bartolomeu A, Nouhaud E, Chamois J,Maingon P, Créhange G. Primary liver cancer. Cancer Radiother.2010;14Suppl1:S103-10.
    [2].徐增辉,钱其军.肝癌靶向基因治疗的载体选择及其优化.中华肝脏病杂志.2011;19(8):563-565.
    [3].Habib NA, Ding SF, el-Masry R, Mitry RR, Honda K, Michail NE, Dalla Serra G, Izzi G, Greco L,Bassyouni M, el-Toukhy M, Abdel-Gaffar Y. Preliminary report: the short-term effects of direct p53DNA injection in primary hepatocellular carcinomas. Cancer Detect Prev.1996;20(2):103-7.
    [4].Wildner O. Oncolytic viruses as therapeutic agents. Ann Med.2001;33(5):291-304.
    [5].Sinkovics J, Horvath J.New developments in the virus therapy of cancer: a Historical review.Intervirology.1993;36(4):193-214.
    [6].周丽君.肿瘤靶向性腺病毒载体研究进展.国际肿瘤学杂志.2006;33(11):801-3.
    [7].DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M, Hamper U, DeJong R,Detorie N, Rodriguez R, Haulk T, DeMarzo AM, Piantadosi S, Yu DC, Chen Y, Henderson DR,Carducci MA, Nelson WG, Simons JW. A phase I trial of CV706, a replication-competent, PSAselective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer followingradiation therapy. Cancer Res.2001;61:7464-72.
    [8].Ohashi M, Kanai F, Tateishi K, Taniguchi H, Marignani PA, Yoshida Y, Shiratori Y, Hamada H,Omata M. Target gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma byE1B55k-attenuated adenovirus. Biochem Biophys Res Commun.2001;282(2):529-35.
    [9].Li Y, Chen Y, Dilley J, Arroyo T, Ko D, Working P, Yu DC. Carcinoembryonic antigen-producingcell-specific oncolytic adenovirus, OV798, for colorectal cancer therapy. Mol Cancer Ther.2003;2(10):1003-9.
    [10].Li X, Zhang J, Gao H, Vieth E, Bae KH, Zhang YP, Lee SJ, Raikwar S, Gardner TA, HutchinsGD, VanderPutten D, Kao C, Jeng MH. Transcriptional targeting modalities in breast cancer genetherapy using adenovirus vectors controlled by alpha-lactalbumin promoter. Mol Cancer Ther.2005;4(12):1850-9.
    [11].Zhang Q, Nie M, Sham J, Su C, Xue H, Chua D, Wang W, Cui Z, Liu Y, Liu C, Jiang M, Fang G,Liu X, Wu M, Qian Q. Effective gene-viral therapy for telomerase-positive cancers by selectivereplication-competent adenovirus combining with endostatin gene. Cancer Res.2004;64(15):5390-7.
    [12].Zhang Q, Chen G, Wang X, Peng L, Liu C, Yang Y, Su C, Wu H, Li L, Liu X, Wu M, Qian Q.Increased safety with preserved antitumoral efficacy on hepatocellular carcinoma with dual-regulatedoncolytic adenovirus. Clinical Cancer Res.2006;12(21):6523-31.
    [13].Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-JohannesA, Fattaey A, McCormick F. An adenovirus mutant that replicates selectively in p53-deficient humantumor cells. Science.1996;274(5286):373-6.
    [14].Hall AR, Dix BR, O'Carroll SJ, Braithwaite AW. P53-dependent cell death/apoptosis is requiredfor a productive adenovirus infection. Nat Med.1998;4(9):1068-72.
    [15].Fukuda K, Abei M, Ugai H, Seo E, Wakayama M, Murata T, Todoroki T, Tanaka N, Hamada H,Yokoyama KK. E1A, E1B double-restricted adenovirus for oncolytic gene therapy of gallbladdercancer. Cancer Res.2003;63(15):4434-40.
    [16].Li G, Sham J, Yang J, Su C, Xue H, Chua D, Sun L, Zhang Q, Cui Z, Wu M, Qian Q. Potentantitumoral efficacy of an E1b55kda-deficient adenovirus carrying murine endostatin inhepatocellular carcinoma. International Journal of Cancer.2005;113(4):640-8.
    [17].Wang X, Su C, Cao H, Li K, Chen J, Jiang L, Zhang Q, Wu X, Jia X, Liu Y, Wang W, Liu X, WuM, Qian Q. A novel triple-regulated oncolytic adenovirus carrying p53gene exerts potent antitumorefficacy on common human solid cancers. Mol Cancer Ther.2008;7(6):1598-603.
    [18].Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G, Belousova N, CurielDT. An adenovirus vector with genetically modified fibers demonstrates expanded tropism viautilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol.1998;72(12):9706-13.
    [19].Gu DL, Gonzalez AM, Printz MA, Doukas J, Ying W, D'Andrea M, Hoganson DK, Curiel DT,Douglas JT, Sosnowski BA, Baird A, Aukerman SL, Pierce GF. Fibroblast growth factor2retargetedadenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumoractivity in mice. Cancer Res.1999;59(11):2608-14.
    [20].Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM, Barnes MN, AlvarezRD, Siegal GP, Curiel DT, Hemminki A. Gene transfer to ovarian cancer versus normal tissues withfiber-modified adenoviruses. Mol Ther.2002;5(6):695-704.
    [21].Liu J, Ma L, Wang Y, Liu X, Qian Q. A novel strategy for cancer treatment: Targeting cancerstem cells. Chinese Science Bulletin.2008;53(12):1777-83.
    [22].钱其军,张琪.肿瘤靶向治疗的现状和展望.中国肿瘤生物治疗杂志.2006;13(4):239-242.
    [23].薛绪潮,钱其军.肿瘤增殖病毒治疗肿瘤的研究现状[J].中国肿瘤.2001;7:408-10.
    [24].Hallden G, Thorne SH, Yang J, Kirn DH. Replication-selective oncolytic adenoviruses. MethodsMol Med.2004;90:71-90.
    [25].Wildner O. Oncolytic viruses as therapeutic agents. Ann Med.2001;33(5):291-304.
    [26].Lai EC. MicroRNAs are complementary to3’UTR sequence motifs that mediate negativepost-transcriptional regulation. Nat Genet.2002;30(4):363-4.
    [27].Berezikov E, Cuppen E, Plasterk RH. Approaches to microRNA discovery. Nat Genet.2006;38Suppl: S2-7.
    [28].Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO,Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U,Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, DeVita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, WernetP, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, BrownsteinMJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microRNAexpression atlas based on small RNA library sequencing. Cell.2007;129(7):1401-14.
    [29].Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M,Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions anddown-regulation of micro-RNA genes miR15and miR16at13q14in chronic lymphocytic leukemia.Proc Natl Acad Sci U S A.2002;99(24):15524-9.
    [30].Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y,Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7micrornas in humanlung cancers in association with shortened postoperative survival. Cancer Res.2004;64(11):3753-6.
    [31].Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C,Ferrazzi E, Grazi GL, Croce CM, Bolondi L, Negrini M. Cyclin G1is a target of miR-122a, amicroRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res.2007;67(13):6092-9.
    [32].He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D,Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ. A microRNA component of thep53tumour suppressor network. Nature.2007;447(7148):1130-4.
    [33].Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, Chen CJ, HildesheimA, Sugden B, Ahlquist P. MicroRNA29c is down-regulated in nasopharyngeal carcinomas,up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci USA.2008;105(15):5874-8.
    [34].Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K.Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma andnon-tumorous tissues. Oncogene.2006;25(17):2537-45.
    [35].Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, Tian W, ZhangQ, Wang C, Zhang Q, Zhuang SM, Zheng L, Liang A, Tao W, Cao X. Identification of miRNomes inhuman liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target forhepatocellular carcinoma. Cancer Cell.2011;19(2):232-43.
    [1]. Lai EC. MicroRNAs are complementary to3’UTR sequence motifs that mediate negativepost-transcriptional regulation. Nat Genet.2002;30(4):363-4.
    [2]. Bell JC, Kirn D. MicroRNAs fine-tune oncolytic viruses. Nat Biotechnol.2008;26(12):1346-8.
    [3]. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K.Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma andnon-tumorous tissues. Oncogene.2006;25(17):2537-45.
    [4]. Budhu A, Jia HL, Forgues M, Liu CG, Goldstein D, Lam A, Zanetti KA, Ye QH, Qin LX, CroceCM, Tang ZY, Wang XW. Identification of metastasis-related microRNAs in hepatocellularcarcinoma. Hepatology.2008;47(3):897-907.
    [5]. Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y, Tantoso E, Li KB, Ooi LL, Tan P, Lee CG.Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224up-regulation and apoptosis inhibitor-5as a microRNA-224-specific target. J Biol Chem.2008;283(19):13205-15.
    [6]. Huang YS, Dai Y, Yu XF, Bao SY, Yin YB, Tang M, Hu CX. Microarray analysis of microRNAexpression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. JGastroenterol Hepatol.2008;23(1):87-94.
    [7]. Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C,Ferrazzi E, Grazi GL, Croce CM, Bolondi L, Negrini M. Cyclin G1is a target of miR-122a, amicroRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res.2007;67(13):6092-9.
    [8]. Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF, Wong N. MicroRNA-223is commonlyrepressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology.2008;135(1):257-69.
    [9]. Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, Zhuang SM. MicroRNA-101, down-regulated inhepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res.2009;69(3):1135-42.
    [10].Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124and miR-203areepigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma.Carcinogenesis.2010;31(5):766-76.
    [11].Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S, Wu M, Pan Z, Zhou W. microRNA-22,downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cellproliferation and tumourigenicity. Br J Cancer.2010;103(8):1215-20.
    [12].Gao P, Wong CC, Tung EK, Lee JM, Wong CM, Ng IO. Deregulation of microRNA expressionoccurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis.J Hepatol.2011;54(6):1177-84.
    [13].Wu L, Cai C, Wang X, Liu M, Li X, Tang H. MicroRNA-142-3p, a new regulator of RAC1,suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett.2011;585(9):1322-30.
    [14].Zhou C, Liu J, Li Y, Liu L, Zhang X, Ma CY, Hua SC, Yang M, Yuan Q. microRNA-1274a, amodulator of sorafenib induced a disintegrin and metalloproteinase9(ADAM9) down-regulationin hepatocellular carcinoma. FEBS Lett.2011;585(12):1828-34.
    [15].Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, Negrini M, Miotto E, CroceCM, Patel T. microRNA-29can regulate expression of the long non-coding RNA gene MEG3inhepatocellular cancer. Oncogene.2011;30(47):4750-6.
    [16].Fang JH, Zhou HC, Zeng C, Yang J, Liu Y, Huang X, Zhang JP, Guan XY, Zhuang SM.MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrixmetalloproteinase2expression. Hepatology.2011;54(5):1729-40.
    [17].Wang CM, Wang Y, Fan CG, Xu FF, Sun WS, Liu YG, Jia JH. miR-29c targets TNFAIP3, inhibitscell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma.Biochem Biophys Res Commun.2011;411(3):586-92.
    [18].Li D, Liu X, Lin L, Hou J, Li N, Wang C, Wang P, Zhang Q, Zhang P, Zhou W, Wang Z, Ding G,Zhuang SM, Zheng L, Tao W, Cao X. MicroRNA-99a inhibits hepatocellular carcinoma growthand correlates with prognosis of patients with hepatocellular carcinoma. Biol Chem.2011;286(42):36677-85.
    [19].Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, Liu CG, Volinia S, Croce CM,Schmittgen TD, Ghoshal K, Jacob ST. Methylation mediated silencing of MicroRNA-1gene andits role in hepatocellular carcinogenesis. Cancer Res.2008;68(13):5049-58.
    [20].Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, Zhuang SM. MicroRNA-195suppresses tumorigenicityand regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology.2009;50(1):113-21.
    [21].Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X. miR-34a inhibits migration and invasion bydown-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett.2009;275(1):44-53.
    [22].Ji J, Zhao L, Budhu A, Forgues M, Jia HL, Qin LX, Ye QH, Yu J, Shi X, Tang ZY, Wang XW.Let-7g targets collagen type I alpha2and inhibits cell migration in hepatocellular carcinoma. JHepatol.2010;52(5):690-7.
    [23].Shimizu S, Takehara T, Hikita H, Kodama T, Miyagi T, Hosui A, Tatsumi T, Ishida H, Noda T,Nagano H, Doki Y, Mori M, Hayashi N. The let-7family of microRNAs inhibits Bcl-xLexpression and potentiates sorafenib-induced apoptosis in human hepatocellular carcinoma. JHepatol.2010;52(5):698-704.
    [24].Henry JC, Park JK, Jiang J, Kim JH, Nagorney DM, Roberts LR, Banerjee S, Schmittgen TD.miR-199a-3p targets CD44and reduces proliferation of CD44positive hepatocellular carcinomacell lines. Biochem Biophys Res Commun.2010;403(1):120-5.
    [25].Liang L, Wong CM, Ying Q, Fan DN, Huang S, Ding J, Yao J, Yan M, Li J, Yao M, Ng IO, He X.MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directlytargeting oncogene LIN28B2. Hepatology.2010;52(5):1731-40.
    [26].Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, Man K, Ng IO. The microRNAmiR-139suppresses metastasis and progression of hepatocellular carcinoma by down-regulatingRho-kinase2. Gastroenterology.2011;140(1):322-31.
    [27].Shen Q, Cicinnati VR, Zhang X, Iacob S, Weber F, Sotiropoulos GC, Radtke A, Lu M, Paul A,Gerken G, Beckebaum S. Role of microRNA-199a-5p and discoidin domain receptor1in humanhepatocellular carcinoma invasion. Mol Cancer.2010;9:227.
    [28].Wang C, Song B, Song W, Liu J, Sun A, Wu D, Yu H, Lian J, Chen L, Han J. UnderexpressedmicroRNA-199b-5p targets hypoxia-inducible factor-1α in hepatocellular carcinoma and predictsprognosis of hepatocellular carcinoma patients. J Gastroenterol Hepatol.2011;26(11):1630-7.
    [29].Hou J, Lin L, Zhou W, Wang Z, Ding G, Dong Q, Qin L, Wu X, Zheng Y, Yang Y, Tian W, ZhangQ, Wang C, Zhang Q, Zhuang SM, Zheng L, Liang A, Tao W, Cao X. Identification ofmiRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutictarget for hepatocellular carcinoma. Cancer Cell.2011;19(2):232-43.
    [30].Yl sm ki E, Hakkarainen T, Hemminki A, Visakorpi T, Andino R, Saksela K. Generation of aconditionally replicating adenovirus based on targeted destruction of E1A mRNA by a celltype-specific MicroRNA. J Virol.2008;82(22):11009-15.
    [31].Cawood R, Chen HH, Carroll F, Bazan-Peregrino M, van Rooijen N, Seymour LW. Use oftissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of itsability to kill cancer cells. PLoS Pathog.2009;5(5):e1000440.
    [32].Jin H, Lv S, Yang J, Wang X, Hu H, Su C, Zhou C, Li J, Huang Y, Li L, Liu X, Wu M, Qian Q.Use of microRNA Let-7to control the replication specificity of oncolytic adenovirus inhepatocellular carcinoma cells. PLoS One.2011;6(7):e21307.
    [1].Choi JW, Lee JS, Kim SW, Yun CO. Evolution of oncolytic adenovirus for cancertreatment. Adv Drug Deliv Rev.2011.[Epub ahead of print]
    [2].DeWeese TL, van der Poel H, Li S, Mikhak B, Drew R, Goemann M, Hamper U,DeJong R, Detorie N, Rodriguez R, Haulk T, DeMarzo AM, Piantadosi S, Yu DC,Chen Y, Henderson DR, Carducci MA, Nelson WG, Simons JW. A phase I trial ofCV706, a replication-competent, PSA selective oncolytic adenovirus, for thetreatment of locally recurrent prostate cancer following radiation therapy. CancerRes.2001;61:7464-72.
    [3].Ohashi M, Kanai F, Tateishi K, Taniguchi H, Marignani PA, Yoshida Y, Shiratori Y,Hamada H, Omata M. Target gene therapy for alpha-fetoprotein-producinghepatocellular carcinoma by E1B55k-attenuated adenovirus. Biochem Biophys ResCommun.2001;282(2):529-35.
    [4].Li Y, Chen Y, Dilley J, Arroyo T, Ko D, Working P, Yu DC. Carcinoembryonicantigen-producing cell-specific oncolytic adenovirus, OV798, for colorectal cancertherapy. Mol Cancer Ther.2003;2(10):1003-9.
    [5].Li X, Zhang J, Gao H, Vieth E, Bae KH, Zhang YP, Lee SJ, Raikwar S, Gardner TA,Hutchins GD, VanderPutten D, Kao C, Jeng MH. Transcriptional targetingmodalities in breast cancer gene therapy using adenovirus vectors controlled byalpha-lactalbumin promoter. Mol Cancer Ther.2005;4(12):1850-9.
    [6].Zhang Q, Nie M, Sham J, Su C, Xue H, Chua D, Wang W, Cui Z, Liu Y, Liu C, JiangM, Fang G, Liu X, Wu M, Qian Q. Effective gene-viral therapy fortelomerase-positive cancers by selective replication-competent adenoviruscombining with endostatin gene. Cancer Res.2004;64(15):5390-7.
    [7].Zhang Q, Chen G, Wang X, Peng L, Liu C, Yang Y, Su C, Wu H, Li L, Liu X, Wu M,Qian Q. Increased safety with preserved antitumoral efficacy on hepatocellularcarcinoma with dual-regulated oncolytic adenovirus. Clinical Cancer Res.2006;12(21):6523-31.
    [8]. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA,Sampson-Johannes A, Fattaey A, McCormick F. An adenovirus mutant thatreplicates selectively in p53-deficient human tumor cells. Science.1996;274(5286):373-6.
    [9].Hall AR, Dix BR, O'Carroll SJ, Braithwaite AW. p53-dependent cell death/apoptosisis required for a productive adenovirus infection. Nat Med.1998;4(9):1068-72.
    [10].Fukuda K, Abei M, Ugai H, Seo E, Wakayama M, Murata T, Todoroki T, Tanaka N,Hamada H, Yokoyama KK. E1A, E1B double-restricted adenovirus for oncolyticgene therapy of gallbladder cancer. Cancer Res.2003;63(15):4434-40.
    [11].Li G, Sham J, Yang J, Su C, Xue H, Chua D, Sun L, Zhang Q, Cui Z, Wu M, Qian Q.Potent antitumoral efficacy of an E1b55kda-deficient adenovirus carrying murineendostatin in hepatocellular carcinoma. International Journal of Cancer.2005;113(4):640-8.
    [12].Wang X, Su C, Cao H, Li K, Chen J, Jiang L, Zhang Q, Wu X, Jia X, Liu Y, Wang W,Liu X, Wu M, Qian Q. A novel triple-regulated oncolytic adenovirus carrying p53gene exerts potent antitumor efficacy on common human solid cancers. Mol CancerTher.2008;7(6):1598-603.
    [13].Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G,Belousova N, Curiel DT. An adenovirus vector with genetically modified fibersdemonstrates expanded tropism via utilization of a coxsackievirus and adenovirusreceptor-independent cell entry mechanism. J Virol.1998;72(12):9706-13.
    [14].Gu DL, Gonzalez AM, Printz MA, Doukas J, Ying W, D'Andrea M, Hoganson DK,Curiel DT, Douglas JT, Sosnowski BA, Baird A, Aukerman SL, Pierce GF.Fibroblast growth factor2retargeted adenovirus has redirected cellular tropism:evidence for reduced toxicity and enhanced antitumor activity in mice. Cancer Res.1999;59(11):2608-14.
    [15].Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM, BarnesMN, Alvarez RD, Siegal GP, Curiel DT, Hemminki A. Gene transfer to ovariancancer versus normal tissues with fiber-modified adenoviruses. Mol Ther.2002;5(6):695-704.
    [16].Liu J, Ma L, Wang Y, Liu X, Qian Q. A novel strategy for cancer treatment:Targeting cancer stem cells. Chinese Science Bulletin.2008;53(12):1777-83.
    [17].Kelly EJ, Hadac EM, Greiner S, Russell SJ. Engineering microRNA responsivenessto decrease virus pathogenicity. Nat Med.2008;14(11):1278-83.
    [18].Yl sm ki E, Hakkarainen T, Hemminki A, Visakorpi T, Andino R, Saksela K.Generation of a conditionally replicating adenovirus based on targeted destruction ofE1A mRNA by a cell type-specific MicroRNA. J Virol.2008;82(22):11009-15.
    [19].Cawood R, Chen HH, Carroll F, Bazan-Peregrino M, van Rooijen N, Seymour LW.Use of tissue-specific microRNA to control pathology of wild-type adenoviruswithout attenuation of its ability to kill cancer cells. PLoS Pathog.2009;5(5):e1000440.
    [20].Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H, Bell JC. A let-7MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specificreplication. Mol Ther.2008;16(8):1437-43.
    [1]. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL,Wahl GM. Cancer stem cells--perspectives on current status and future directions: AACRWorkshop on cancer stem cells. Cancer Res.2006;66(19):9339-44.
    [2]. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, PatersonB, Caligiuri MA, Dick JE. A cell initiating human acute myeloid leukaemia aftertransplantation into SCID mice. Nature.1994;367(6464):645-8.
    [3]. Frank NY, Schatton T, Frank MH. The therapeutic promise of the cancer stem cell concept. JClin Invest.2010;120(1):41-50.
    [4]. Soltanian S, Matin MM. Cancer stem cells and cancer therapy. Tumour Biol.2011;32(3):425-40.
    [5]. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospectiveidentification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A.2003;100(7):3983-8.
    [6]. Cox CV, Evely RS, Oakhill A, Pamphilon DH, Goulden NJ, Blair A. Characterization of acutelymphoblastic leukemia progenitor cells. Blood.2004;104(9):2919-25.
    [7]. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and theexistence of two cell populations within an epithelial stem cell niche. Cell.2004;118(5):635-48.
    [8]. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, CusimanoMD, Dirks PB. Identification of human brain tumour initiating cells. Nature.2004;432(7015):396-401.
    [9]. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT,Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell.2005;121(6):823-35.
    [10].Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification oftumorigenic prostate cancer stem cells. Cancer Res.2005;65(23):10946-51.
    [11].Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R,Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK. Ovarian cancer side populationdefines cells with stem cell-like characteristics and Mullerian Inhibiting Substanceresponsiveness. Proc Natl Acad Sci U S A.2006;103(30):11154-9.
    [12].Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, BignerDD, Rich JN. Stem cell-like glioma cells promote tumor angiogenesis through vascularendothelial growth factor. Cancer Res.2006;66(16):7843-8.
    [13].O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiatingtumour growth in immunodeficient mice. Nature.2007;445(7123):106-10.
    [14].Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL,Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cellproperties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A.2007;104(3):973-8.
    [15].Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, Zheng BJ, Guan XY. Identification andcharacterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology.2007;132(7):2542-56.
    [16].Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C.Distinct populations of cancer stem cells determine tumor growth and metastatic activity inhuman pancreatic cancer. Cell Stem Cell.2007;1(3):313-23.
    [17].Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, JordanS, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH.Identification of cells initiating human melanomas. Nature.2008;451(7176):345-9.
    [18].Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti J Jr, Chang HY, vande Rijn M, Shortliffe L, Weissman IL. Identification, molecular characterization, clinicalprognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl AcadSci U S A.2009;106(33):14016-21.
    [19].Suvà ML, Riggi N, Stehle JC, Baumer K, Tercier S, Joseph JM, Suvà D, Clément V, Provero P,Cironi L, Osterheld MC, Guillou L, Stamenkovic I. Identification of cancer stem cells inEwing's sarcoma. Cancer Res.2009;69(5):1776-81.
    [20].Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, Chu PW, Lam CT, Poon RT, Fan ST.Significance of CD90+cancer stem cells in human liver cancer. Cancer Cell.2008;13(2):153-66.
    [21].Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, Zhang SH, Huang DD, Tang L, Kong XN,Chen C, Liu SQ, Wu MC, Wang HY. Wnt/beta-catenin signaling contributes to activation ofnormal and tumorigenic liver progenitor cells. Cancer Res.2008;68(11):4287-95.
    [22].Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E,Reid LM, Minato H, Honda M, Kaneko S, Tang ZY, Wang XW. EpCAM-positivehepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features.Gastroenterology.2009;136(3):1012-24.
    [23].Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D,Hatano H, Nagano H, Barnard GF, Doki Y, Mori M. CD13is a therapeutic target in humanliver cancer stem cells. J Clin Invest.2010;120(9):3326-39.
    [24].Lee TK, Castilho A, Cheung VC, Tang KH, Ma S, Ng IO. CD24(+) liver tumor-initiating cellsdrive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. CellStem Cell.2011;9(1):50-63.
    [25].Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, Budhu A, Zanetti KA, Chen Y, QinLX, Tang ZY, Wang XW. EpCAM and alpha-fetoprotein expression defines novel prognosticsubtypes of hepatocellular carcinoma. Cancer Res.2008;68(5):1451-61.
    [26].Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J, Li J. Cancer stem/progenitor cells are highlyenriched in CD133+CD44+population in hepatocellular carcinoma. Int J Cancer.2010;126(9):2067-78.
    [27].Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, WeissmanIL. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature.2003;423(6938):409-14.
    [28].Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis.Nature.2004;432(7015):324-31.
    [29].Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic andadult fibroblast cultures by defined factors. Cell.2006;126(4):663-76.
    [30].Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev CellDev Biol.2007;23:675-99.
    [31].Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA,Daidone MG. Isolation and in vitro propagation of tumorigenic breast cancer cells withstem/progenitor cell properties. Cancer Res.2005;65(13):5506-11.
    [32].Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, Hung SC, Chang YL, Tsai ML,Lee YY, Ku HH, Chiou SH. Oct-4expression maintained cancer stem-like properties in lungcancer-derived CD133-positive cells. PLoS One.2008;3(7):e2637.
    [33].Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, Itzkovitz S, Noske A,Zürrer-H rdi U, Bell G, Tam WL, Mani SA, van Oudenaarden A, Weinberg RA. Slug and sox9cooperatively determine the mammary stem cell state. Cell.2012;148(5):1015-28.
    [34].Lai EC. MicroRNAs are complementary to3’UTR sequence motifs that mediate negativepost-transcriptional regulation. Nat Genet.2002;30(4):363-4.
    [35].Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, KamphorstAO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J,Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB,Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M,Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T,Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M,Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing.Cell.2007;129(7):1401-14.
    [36].van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins andits implications for cancer. Nat Rev Cancer.2011;11(9):644-56.
    [37].Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL,Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expressionprofiles classify human cancers. Nature.2005;435(7043):834-8.
    [38].Liu C, Tang DG. MicroRNA regulation of cancer stem cells. Cancer Res.2011;71(18):5950-4.
    [39].Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E.let-7regulates self renewal and tumorigenicity of breast cancer cells. Cell.2007;131(6):1109-23.
    [40].Yu F, Deng H, Yao H, Liu Q, Su F, Song E. Mir-30reduction maintains self-renewal andinhibits apoptosis in breast tumor-initiating cells. Oncogene.2010;29(29):4194-204.
    [41].Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP,Chiao E, Dirbas FM, Somlo G, Pera RA, Lao K, Clarke MF. Downregulation of miRNA-200clinks breast cancer stem cells with normal stem cells. Cell.2009;138(3):592-603.
    [42].Gal H, Pandi G, Kanner AA, Ram Z, Lithwick-Yanai G, Amariglio N, Rechavi G, Givol D.MIR-451and Imatinib mesylate inhibit tumor growth of Glioblastoma stem cells. BiochemBiophys Res Commun.2008;376(1):86-90.
    [43].Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A,Newton HB, Chiocca EA, Lawler S. Targeting of the Bmi-1oncogene/stem cell renewal factorby microRNA-128inhibits glioma proliferation and self-renewal. Cancer Res.2008;68(22):9125-30.
    [44].Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, Esposito V, GaleoneA, Navas L, Esposito S, Gargiulo S, Fattet S, Donofrio V, Cinalli G, Brunetti A, Vecchio LD,Northcott PA, Delattre O, Taylor MD, Iolascon A, Zollo M. MicroRNA-199b-5p impairscancer stem cells through negative regulation of HES1in medulloblastoma. PLoS One.2009;4(3):e4998.
    [45].Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y,Schmittgen TD, Lopes B, Schiff D, Purow B, Abounader R. MicroRNA-34a inhibitsglioblastoma growth by targeting multiple oncogenes. Cancer Res.2009;69(19):7569-76.
    [46].Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D, Xu L. Restoration of tumor suppressormiR-34inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer.2008;8:266.
    [47].Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D,Fearon ER, Lawrence TS, Xu L. MicroRNA miR-34inhibits human pancreatic cancertumor-initiating cells. PLoS One.2009;4(8):e6816.
    [48].Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, HonorioS, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG. The microRNA miR-34a inhibitsprostate cancer stem cells and metastasis by directly repressing CD44. Nat Med.2011;17(2):211-5.
    [49].Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, Deng C, Wauthier E, Reid LM, Ye QH,Qin LX, Yang W, Wang HY, Tang ZY, Croce CM, Wang XW. Identification of microRNA-181by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells.Hepatology.2009;50(2):472-80.
    [50].Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med.2011;17(3):313-9.
    [51].Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M, Sayegh MH,Sadee W, Frank MH. ABCB5-mediated doxorubicin transport and chemoresistance in humanmalignant melanoma. Cancer Res.2005;65(10):4320-33.
    [52].Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44eradicates human acutemyeloid leukemic stem cells. Nat Med.2006;12(10):1167-74.
    [53].Jin L, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, Guthridge MA, ThomasD, Barry EF, Boyd A, Gearing DP, Vairo G, Lopez AF, Dick JE, Lock RB. Monoclonalantibody-mediated targeting of CD123, IL-3receptor alpha chain, eliminates human acutemyeloid leukemic stem cells. Cell Stem Cell.2009;5(1):31-42.
    [54].Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer.2005;5(4):275-84.
    [55].Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependenttransporters. Nat Rev Cancer.2002;2(1):48-58.
    [56].Elliott A, Adams J, Al-Hajj M. The ABCs of cancer stem cell drug resistance. IDrugs.2010;13(9):632-5.
    [57].Cheung ST, Cheung PF, Cheng CK, Wong NC, Fan ST. Granulin-epithelin precursor andATP-dependent binding cassette (ABC) B5regulate liver cancer cell chemoresistance.Gastroenterology.2011;140(1):344-55.
    [58].Emmink BL, Van Houdt WJ, Vries RG, Hoogwater FJ, Govaert KM, Verheem A, Nijkamp MW,Steller EJ, Jimenez CR, Clevers H, Borel Rinkes IH, Kranenburg O. Differentiated humancolorectal cancer cells protect tumor-initiating cells from irinotecan. Gastroenterology.2011;141(1):269-78.
    [59].Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A,Gulotta G, Medema JP, Stassi G. Colon cancer stem cells dictate tumor growth and resist celldeath by production of interleukin-4. Cell Stem Cell.2007;1(4):389-402.
    [60].Vlashi E, McBride WH, Pajonk F. Radiation responses of cancer stem cells. J Cell Biochem.2009;108(2):339-42.
    [61].Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, RichJN. Glioma stem cells promote radioresistance by preferential activation of the DNA damageresponse. Nature.2006;444(7120):756-60.
    [62].Chang CJ, Hsu CC, Yung MC, Chen KY, Tzao C, Wu WF, Chou HY, Lee YY, Lu KH, ChiouSH, Ma HI. Enhanced radiosensitivity and radiation-induced apoptosis in gliomaCD133-positive cells by knockdown of SirT1expression. Biochem Biophys Res Commun.2009;380(2):236-42.
    [63].Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+breastcancer-initiating cells to radiation. J Natl Cancer Inst.2006;98(24):1777-85.
    [64].Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE,Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J,Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF. Association of reactive oxygenspecies levels and radioresistance in cancer stem cells. Nature.2009;458(7239):780-3.
    [65].Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA,Stassi G, Larocca LM, De Maria R. Tumour vascularization via endothelial differentiation ofglioblastoma stem-like cells. Nature.2010;468(7325):824-8.
    [66].Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B,Leversha M, Brennan C, Tabar V. Glioblastoma stem-like cells give rise to tumourendothelium. Nature.2010;468(7325):829-33.
    [67].Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, Ahmadi R, Lohr J,Dictus C, Gdynia G, Combs SE, Goidts V, Helmke BM, Eckstein V, Roth W, Beckhove P,Lichter P, Unterberg A, Radlwimmer B, Herold-Mende C. Differentiation therapy exertsantitumor effects on stem-like glioma cells. Clin Cancer Res.2010;16(10):2715-28.
    [68].Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A,Dimeco F, Vescovi AL. Bone morphogenetic proteins inhibit the tumorigenic potential ofhuman brain tumour-initiating cells. Nature.2006;444(7120):761-5.
    [69].Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identificationof selective inhibitors of cancer stem cells by high-throughput screening. Cell.2009;138(4):645-59.
    [70].Lotem J, Sachs L. Epigenetics and the plasticity of differentiation in normal and cancer stemcells. Oncogene.2006;25(59):7663-72.
    [71].Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D,Cano A, Birchmeier W, Huelsken J. Cutaneous cancer stem cell maintenance is dependent onbeta-catenin signalling. Nature.2008;452(7187):650-3.
    [72].Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch,and Hedgehog pathways. Nat Rev Clin Oncol.2011;8(2):97-106.
    [73].Rasheed ZA, Kowalski J, Smith BD, Matsui W. Concise review: Emerging concepts in clinicaltargeting of cancer stem cells. Stem Cells.2011;29(6):883-7.
    [74].Short JJ, Curiel DT. Oncolytic adenoviruses targeted to cancer stem cells. Mol Cancer Ther.2009;8(8):2096-102.
    [75].Jin H, Lv S, Yang J, Wang X, Hu H, Su C, Zhou C, Li J, Huang Y, Li L, Liu X, Wu M, Qian Q.Use of microRNA Let-7to control the replication specificity of oncolytic adenovirus inhepatocellular carcinoma cells. PLoS One.2011;6(7):e21307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700