人类多能干细胞在神经管畸形发生及预防机制研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     神经管畸形(neural tube defects, NTDs)是最常见、最严重的出生缺陷之一。NTDs的发生是由于囊胚期神经管闭合异常所导致的神经管开放。在世界范围内,其发生率仅次于先天性心脏病,而我国的发生率为全世界最高。除致死性NTDs外,轻型闭合型NTDs不仅将给患儿带来伴随终生的先天残疾及严重的心理缺陷,也会给患儿家庭及社会带来沉重的经济负担。
     随着孕期叶酸(folic acid,FA)补充的推广,NTDs的流行趋势明显下降,但大规模的研究证实使用FA补充剂后仍有30-50%的NTDs无法预防。另外过量补充FA还可能引起包括新生儿胰岛素抵抗或肥胖在内的一系列非治疗作用,因此FA补充是否应当成为强制饮食添加剂,何种剂量为适宜补充剂量,在国际上引起了广泛的争议。
     除叶酸缺乏外,一线抗癫痫药物丙戊酸(Valproic acid,VPA)的应用也是NTDs的诱因之一。对小鼠模型的研究提示,VPA可能通过FA代谢途径导致NTDs,并且给予FA补充可能在一定程度上起到保护作用,从而避免NTDs发生。反对使用VPA的学者强调其致畸性对胎儿的严重影响,但是对于部分常见癫痫类型VPA仍然是无法替代的最佳选择。因此很难在妊娠前期或妊娠期更换其他药物,这使VPA在妊娠期的使用陷入进退两难的境地。
     神经管闭合这一过程始于胚胎第20天,且是贯续发生的发育过程,这使以往的观察研究遇到了很大的困难。同时由于研究对象的特殊性,特别是人类研究存在的伦理问题,使我们无法直接对人类胚胎进行在体实验。此外由于胚胎发育的不可逆性,我们亦无法获知神经管畸形的发生的真实过程,只能通过回顾性分析获得间接的证据。这就使动物模型中获得的信息无法在人类中获得验证。因此如何建立一个人类的NTDs体外研究模型,成为亟待解决的问题。
     本研究探索利用胚胎干细胞(ES cell)和体细胞来源的诱导多能性干细胞(iPScell),结合体外神经系定向诱导分化技术,建立人类干细胞来源神经管研究模型。尝试通过不同组别的药物作用实验,了解FA及VPA对神经管形成及神经系发育的作用。同时在此基础上进行药物浓度筛选的初步应用研究,为在人类系统中验证动物模型中所获理论创造条件。
     第一部分人类多能干细胞来源神经管体外模型建立
     方法:对人类多能干细胞系H1;H9;iPS4进行培养传代。同时进行神经系分化:去除bFGF,悬浮培养细胞,诱导EB形成;利用神经上皮干细胞(NSC)培养基对EB进行贴壁培养,诱导玫瑰花环样神经管结构(RS)形成,利用NSC标记物进行免疫荧光染色鉴定;利用定向诱导分化技术进行进一步分化:缺省分化大脑皮质大椎体细胞;腹侧尾侧化脊髓前脚运动神经元;神经胶质细胞系定向诱导分化;神经脊系细胞定向诱导分化;对分化获得细胞进行特异性标记物免疫荧光染色鉴定。
     结果:人类多能干细胞系体外培养传代后仍表达多能转录因子Oct4, Nanog;H1;H9;iPS4均能形成EB;三系均能在诱导条件下形成RS结构,且Pax6,Nestin阳性;定向诱导分化:获得前脑皮质大椎体细胞,Pax6阳性;获得人γ-氨基丁酸能神经元,GABA阳性;获得多巴胺能神经元,TH阳性;获得脊髓前脚运动神经元,ChAT阳性;获得星形胶质细胞,GFAP,S100阳性;获得神经脊细胞,P75,Sox10,SMA阳性。
     结论:利用三个人类多能干细胞系,通过定向诱导分化,我们首次提出建立人类干细胞来源神经管样结构模型。此模型可以在发育时间,细胞构成,分化潜能上模拟在体神经管的发育过程。它的建立为后续药物浓度筛选提供了条件,为NTDs发生及预防机制研究奠定了基础。
     第二部分叶酸缺乏及补充对神经管结构形成及神经发育的影响
     方法:利用第一部分中建立的人类多能干细胞体外神经管分化模型,选择iPS4作为研究对象,使用无FA的PRIM1640培养基作为空白对照组,根据FA梯度分组:0.02uM组,0.2uM组,2uM组,20uM组,80uM组,160uM组。在无FA的PRIM1640培养基中加入相应浓度FA,对iPS4细胞进行分化。分化过程中比较不同FA分组的:EB形成情况;EB中多能标记物Oct4,Nanog和Sox2的mRNA及蛋白质表达水平;RS形成情况;RS中NSCs标记物Pax6及Nestin的mRNA及蛋白质表达水平;远期神经分化率差别;神经胶质细胞分化率差别;神经脊细胞分化率差别。
     结果:FA缺乏组(0-2uM):人类诱导多能干细胞分化EB形成率降低(P<0.05),多能因子表达量下降;RS形成明显减少(P<0.05),结构紊乱;NSCs标记物Pax6,Nestin的mRNA,蛋白质表达下调;远期神经元,神经脊分化率呈剂量依赖性降低。FA补充组(20-160uM):EB形成率升高,多能因子表达量与iPS细胞相似,RS形成数量增多(P<0.05),神经系标记物表达量上调,远期神经元及神经脊系分化率上升。但在FA补充组中,组间差异均无统计意义。FA缺乏组及FA补充组间神经胶质细胞分化率无显著差别。
     结论:在人类胚胎发育过程中,FA缺乏或缺失将影响早期神经发育。FA缺乏或缺失将抑制NSCs分化,引起RS形成障碍,进而影响远期神经元及神经脊系的分化,最终导致一系列先天缺陷及综合征。对于FA代谢正常围孕期女性,补充FA使其维持在正常或稍高水平(20uM-80uM,即常规富含FA饮食或400ug/day补充剂量)将有利于神经分化及神经管的形成,而无需给予更高剂量FA(160uM或600ug/day),带来不必要的非治疗作用。
     第三部分VPA及叶酸对神经系发育的影响及其相互作用
     方法:利用第一部分中建立的人类多能干细胞体外神经管分化模型,选择iPS4作为研究对象,使用DMEM/F12+N2培养基作为空白对照组,实验分组:VPA组(1mM VPA),VPA+FA组(1mM VPA+160uM FA)。对不同处理组别的iPS细胞进行神经分化,分化过程中比较不同分组的: RS形成情况;RS中NSCs标记物的mRNA及蛋白质表达水平;NSCs殖及凋亡情况;NSCs细胞周期;FA受体Forl在mRNA及蛋白质水平的表达情况;及远期神经分化率差别。
     结果:与对照组相比,VPA处理组:RS形成明显减少(P<0.01),结构紊乱;NSCs标记物Pax6,Nestin的mRNA,蛋白质表达下调(P<0.001);NSCs增殖减少(41.01±3.53%VS.80.09±4.1%,P<0.01);凋亡显著增多(21.38%VS.3.71%,P<0.01),凋亡早期细胞亦增高(29.64%VS.9.76%,P<0.05);处于G2-S期细胞比例下降(34.75%VS.63.67%,P<0.05),G0-G1期细胞增多(65.25%vs.36.33%,P<0.05);FA受体Forl mRNA及蛋白质表达量下调;远期神经元分化率降低。VPA+FA组:RS形成较VPA单独处理组增多,但较对照组仍减少(P<0.05),但RS结构较对照无明显差别;NSCs标记物Pax6,Nestin mRNA,蛋白质表达较VPA组明显升高(P<0.01),与对照组差异无统计学意义;NSCs增殖较VPA单独处理组高,但仍低于对照(58.0±4.67%VS.80.09±4.1%,P<0.05);与VPA单药组相比,凋亡稍降低,但差别不具有统计学意义,与对照组相比,细胞死亡多(15.46%VS.3.71%,P<0.01),但凋亡早期细胞比例无明显差别(9.76%VS.9.86%,P>0.05);与VPA单独处理组相比,处于G2-S期细胞比例增多(43.35%VS.34.75%),G0/G1期的细胞比例减少(56.65%VS.65.25%),但与对照组相比,G0-G1期细胞仍高(56.651%VS.36.34%,P<0.05);FA受体Forl的mRNA及蛋白质表达量下调;与对照相比,远期神经元分化率仍降低。
     结论:结果证实治疗剂量的VPA抑制人类多能干细胞的体外神经分化。其通过抑制细胞增殖,促进细胞凋亡,阻碍FA代谢,破坏正常神经管样结构的形成,导致NTDs的发生,同时影响远期神经分化。补充FA实验组证明FA在其他致畸诱因的存在下,可以在一定程度上保护早期神经胚发育,弥补细胞增殖,抑制细胞凋亡,促进FA代谢,但与对照相比仍存在一定异常。这为解决临床治疗存在的矛盾提供了新的研究平台,在药物筛选中有着一定的应用前景。
     创新点与小结
     本课题首次将人类多能干细胞体外神经管分化模型应用于出生缺陷—NTDs的研究。在建立人类干细胞来源神经管体外模型的基础上,进行了FA浓度筛选及VPA处理等药物筛选的初步应用研究。首次在人类分化发育系统中验证了动物模型中所获得的理论;为后续制备患者个体化神经管分化模型,研究NTDs发病机制,致病基因筛选,优化预防配方奠定了基础;在提高人口质量,最终避免NTDs发生的道路上,迈出了新的一步。
Introduction
     Neural tube defects (neural tube defects, NTDs) are the most common and severe birthdefects. It is due to the abnormal in neural tube closure at blastocyst stage. The incidenceof NTDs is second only to congenital heart disease worldwide. Moreover, the rate ofChina is the highest in the world. Except for fatal NTDs, closed NTDs will not only causelifelong congenital disabilities and severe mental defects of infected children, but also puta heavy financial burden on their families and society.
     With the folic acid (FA) supplements during pregnancy, the prevalence of NTDs isremarkably decreased. However, large-scale studies showed that there is still30-50%ofNTDs which can not be prevented by FA supplements. Excessive complement FA alsomay cause a series of non-treatment effects including neonatal insulin resistance orobesity. These initiated an extensive controversy in the field including the role of the FAsupplement in NTDs prevention, whether it should become mandatory food additives andwhat dose is appropriate in pregnancy.
     In addition to folic acid deficiency, the application of the first-line antiepileptic drugValproic acid (VPA) is one of other participating factors. A mouse model study showedthat the VPA might lead to NTDs through the FA pathway and FA supplement may playa protective role in NTDs prevention caused by VPA. Scholars against VPA emphasizeits teratogenic effects on fetus, but there is no other better choice besides VPA for somecommon type of epilepsy. And this makes it difficult to change VPA to others duringpre-pregnancy or pregnancy.
     Neural tube closure occurs from the20th day after fertilization, and is a consistentlydeveloping process. This makes the previous studies encounter a lot of difficulties inobservation. As a special study object, especially considering the ethical issues of humanresearch, direct experiments on human embryos in vivo is impossible. In addition, due tothe irreversibility of development, we can not gain the information from the real processof NTDs in human. The only evidence can be obtained is through retrospective analysisindirectly. This makes the information form animal models hard to be verified in human.Therefore, building a human NTDs vitro model is very important for future study. Our research explores the use of embryonic stem cells (ES) and induced pluripotent stemcells (iPS) from somatic cells. Combined with in vitro induced differentiation of neurallinage, we setup human pluripotent stem cell-derived neural tube models. To investigatethe role of the FA and VPA during neural tube formation and nervous systemdevelopment, we applied different dug groups in our neural tube model developmentsystem. Meanwhile based on these studies, we want to initiate some application researchon drug screening, also to validate theory from animal models systems in human.
     Section one: Human pluripotent stem cell-derived in vitro neural tube model
     Methods: Human pluripotent stem cell lines, H1, H9and iPS4were cultured andpassaged. Induced neural linage differentiation: Removed bFGF in suspension cultureand induced EB formation; EB were adherently cultured in NSC medium to induceRosette like structure (RS) formation; Immunofluorescence staining analysis of NSCmarkers; Further directly induced the NSCs ifferentiate into different cell types: defaultdifferentiation to large pyramidal cells of the cerebral cortex; ventral and caudalizeddifferentiation to motor neuron of the spinal cord; induced differentiation to glial cells;induced differentiation to neural crest cells; Immunofluorescence staining analysis of celltype-specific markers.
     Results: Human pluripotent stem cell lines cultured and passaged in vitro still expressedOct4, and Nanog; they are able to form EB; all three Lines can form the RS structureunder inducing conditions. And the cells in RS were Pax6, Nestin positive; Furtherinduced differentiation: large pyramidal cells of the cerebral cortex is Pax6positive;γ-aminobutyric acid neurons is GABA positive; Dopaminergic neurons is TH positive;Motor neurons of the spinal cord is ChAT positive; Astrocytes is GFAP and S100positive; Neural crest cells is P75, Sox10and SMA positive.
     Conclusion: Through induced differentiation of three human pluripotent stem cell lines,we first proposed the establishment of a human stem cell-derived neural tube-likestructure model in vitro. This model simulates the development of the neural tube in vivo,in the aspects of developmental time, cellularity and differentiation potential. It providesa novel potential in vitro system for drug screening and mechanism research of NTDs.
     Section two: the influence of Folate deficiency and supplement on neural tube formation and neurodevelopment
     Methods: Based on the human pluripotent stem cell-derived RS model in section one, weselect iPS4as the object of study. Using the PRIM1640/woFA medium as a blank controlgroup, we grouped the experiment according to the FA concentration:0.02uM,0.2uM,2uM,20uM,80uM,160uM. iPS4cells were differentiated in PRIM1640/woFA mediumadding corresponding concentration of FA. Compare the following aspects among groups:EB formation; the mRNA and protein expression levels of pluripotent markers as Oct4and Nanog; RS formation; the mRNA and protein expression levels of NSC markers inRS as Pax6and Nestin; The differentiation rate in neurons, glial cells and neural crestcells.
     Results: Lack of FA groups (0-2μM): EB formation rate is lower (P <0.05), and theexpression levels of pluripotent factors decreased; RS formation was significantly lessthan high dosage groups (P <0.05); The mRNA and protein expression levels of Pax6,and Nestin were down regulated; Differentiation rates of neuron and neural crest reducedin a dose-dependent way. FA supplemented groups (20-160uM): EB formation ratesincreased, pluripotent factors expression levels were similar with iPS cells; RS formationincreased (P <0.05), the expression of markers of NSCs unregulated and thedifferentiation rates of neuron and neural crest increased. There is no statisticalsignificance among FA supplemented groups. The glial cell differentiation had nosignificant difference among all groups.
     Conclusion: During human embryonic development, the absence or lack of FA willaffect early neurodevelopment. FA deficiency inhibited the NSC differentiation. Theresulting RS formation inhibition will affect further differentiation of neuron and neuralcrest lineages. This then leads to a series of birth defects and syndrome. For thepreconceptional women with normal FA metabolism, keeping the FA concentrationaround normal or slightly higher levels (20uM-80uM in serum, by taking FA rich diet or400ug/day supplement dose) will be conducive to neuronal differentiation and theformation of the neural tube. There is no need to have an even higher dose of FA (160uMor600ug/day) which will bring unnecessary non-therapeutic side effects.
     Section three: Influence of VPA and folic acid on the development of the nervoussystem and their interactions
     Methods: Select iPS4as the object of study in Section three, using DMEM/F12+N2 medium as a blank control group. And the experimental groups were divided into: VPAtreatment group (1mM of VPA) and VPA+FA group (1uM VPA+160mM FA).Neuronal induced differentiation was preformed in different groups. Compare the resultsin: RS formation; the mRNA and protein expression levels of NSC markers; Analysis ofNSC proliferation and apoptosis; Cell cycle Analysis of NSCs; The mRNA and proteinexpression levels of the FA receptor Forl expression; Long-term neuronal differentiationrate.
     Results: VPA group: RS formation reduced significantly (P <0.01); Pax6and Nestinexpression lowered (P<0.001) in mRNA and protein; Proliferation of NSCs deseased(41.01±3.53%, P <0.01); Apoptosis increased significantly (21.18%vs.3.57%, P <0.01);The proportion of cells in G2-S phase declined (35.69%VS.63.37%, P <0.05) whileG0-G1phase increased (64.31%vs.36.63%, P <0.05); Forl expression lowered;Long-term neuron differentiation rate reduced. VPA+FA group: Compared with VPAgroup, RS formation increased; Pax6and Nestin expression are significantly higher (P<0.01); NSC proliferation and cells in G2-S (43.69%VS.35.69%) increased(58.0±4.67%, P <0.05); Compared with the control group, cell death (15.71%vs.3.57%, P<0.01) increased; percentage of G0-G1phase is still high (56.31%vs36.63%, P <0.05);Forl expression lowered; Long-term neuron differentiation rate still reduced.
     Conclusion: The results confirm that therapeutic dose of VPA will inhibit in vitro neuraldifferentiation of human pluripotent stem cells. It works through the inhibition of cellproliferation; activation of apoptosis; interference of FA metabolism and destruction ofnormal neural tube-like structure formation. In the presence of other teratogens, FAsupplementation plays some role in protecting early neural embryo development, incompensation for cell proliferation, inhibition of apoptosis. But there is still a certainabnormality compared with the control. This provides a new research platform to solvethe clinical contradiction and could be useful in drug screening.
     Summary and innovation
     For the first time, our subject applied in vitro human pluripotent stem cells derived neuraltube model in research of human birth defects as NTDs. Based on the establishment ofthe neural tube model in vitro of the human source of stem cells, we preliminary appliedthe FA and VPA treatment screening. We firstly verified the theories from animal modelsin human differentiation and development system. This also laid the foundation for generation of patients’ individualized differentiation of neural tube model, study of NTDspathogenesis, screening of virulence gene and for optimizing prevention recipe. And ithas taken a new step on the road to improve the population quality, and to prevent NTDsultimately.
引文
[1] Shurtleff DB. Epidemiology of neural tube defects and folic acid. Cerebrospinal Fluid Res2004;1:5.
    [2] Mitchell LE. Epidemiology of neural tube defects. Am J Med Genet C Semin Med Genet2005;135C:88-94.
    [3] Pei LJ, Li Z, Li S et al. The epidemiology of neural tube defects in high-prevalence andlow-prevalence areas of China. Zhonghua Liu Xing Bing Xue Za Zhi2003;24:465-470.
    [4] Li Z, Ren A, Zhang L et al. Extremely high prevalence of neural tube defects in a4‐county areain Shanxi Province, China. Birth Defects Research Part A: Clinical and Molecular Teratology2006;76:237-240.
    [5] Malcoe LH, Shaw GM, Lammer EJ, Herman AA. The effect of congenital anomalies on mortalityrisk in white and black infants. Am J Public Health1999;89:887-892.
    [6] Worley G, Rosenfeld LR, Lipscomb J. Financial counseling for families of children with chronicdisabilities. Dev Med Child Neurol1991;33:679-689.
    [7] Milunsky A, Jick H, Jick SS et al. Multivitamin/folic acid supplementation in early pregnancyreduces the prevalence of neural tube defects. Jama1989;262:2847-2852.
    [8] Berry RJ, Li Z, Erickson JD et al. Prevention of Neural-Tube Defects with Folic Acid in China.New England Journal of Medicine1999;341:1485-1490.
    [9] Heseker HB, Mason JB, Selhub J, Rosenberg IH, Jacques PF. Not all cases of neural-tube defectcan be prevented by increasing the intake of folic acid. Br J Nutr2009;102:173-180.
    [10] Zhu J, Li X, Wang Y et al. Prevalence of neural tube defect pregnancies in China and the impact ofgestational age of the births from2006to2008: a hospital-based study. J Matern Fetal Neonatal Med2012;25:1730-1734.
    [11] Smith AD, Kim YI, Refsum H. Is folic acid good for everyone? The American journal of clinicalnutrition2008;87:517-533.
    [12] Johnston RB. Will increasing folic acid in fortified grain products further reduce neural tubedefects without causing harm?: consideration of the evidence. Pediatric research2008;63:2-8.
    [13] Botto LD, Moore CA, Khoury MJ, Erickson JD. Neural-Tube Defects. New England Journal ofMedicine1999;341:1509-1519.
    [14] Au KS, Ashley‐Koch A, Northrup H. Epidemiologic and genetic aspects of spina bifida and otherneural tube defects. Developmental disabilities research reviews2010;16:6-15.
    [15] Hol FA, Geurds MP, Chatkupt S et al. PAX genes and human neural tube defects: an amino acidsubstitution in PAX1in a patient with spina bifida. J Med Genet1996;33:655-660.
    [16] Lu W, Zhu H, Wen S et al. Screening for novel PAX3polymorphisms and risks of spina bifida.Birth Defects Res A Clin Mol Teratol2007;79:45-49.
    [17] Hernández-Díaz S, Werler MM, Walker AM, Mitchell AA. Folic Acid Antagonists duringPregnancy and the Risk of Birth Defects. New England Journal of Medicine2000;343:1608-1614.
    [18] Elmazar M, Nau H. Methotrexate increases valproic acid‐induced developmental toxicity, inparticular neural tube defects in mice. Teratogenesis, carcinogenesis, and mutagenesis1992;12:203-210.
    [19] Nau H, Hauck RS, Ehlers K. Valproic Acid‐Induced Neural Tube Defects in Mouse and Human:Aspects of Chirality, Alternative Drug Development, Pharmacokinetics and Possible Mechanisms.Pharmacology&toxicology2009;69:310-321.
    [20] Meador KJ, Baker GA, Browning N et al. Cognitive Function at3Years of Age after FetalExposure to Antiepileptic Drugs. New England Journal of Medicine2009;360:1597-1605.
    [21] Tomson T. Which Drug for the Pregnant Woman with Epilepsy? New England Journal of Medicine2009;360:1667-1669.
    [22] Jentink J, Bakker MK, Nijenhuis CM, Wilffert B, de Jong-van den Berg LT. Does folic acid usedecrease the risk for spina bifida after in utero exposure to valproic acid? Pharmacoepidemiol Drug Saf2010;19:803-807.
    [23] Sanes DH, Reh TA, Harris WA. Development of the nervous system: Academic Press2011.
    [24] Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from humanblastocysts. Science1998;282:1145-1147.
    [25] Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult humanfibroblasts by defined factors. Cell2007;131:861-872.
    [26] Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA. In vitro differentiation of transplantableneural precursors from human embryonic stem cells. Nature biotechnology2001;19:1129-1133.
    [27] Reefhuis J, Honein M, Schieve L, Rasmussen S. Use of clomiphene citrate and birth defects,National Birth Defects Prevention Study,1997–2005. Human Reproduction2011;26:451-457.
    [28] Wyszynski DF. Neural tube defects: from origin to treatment: Oxford University Press, USA2005.
    [29] Czeizel AE, Dudás I. Prevention of the First Occurrence of Neural-Tube Defects byPericonceptional Vitamin Supplementation. New England Journal of Medicine1992;327:1832-1835.
    [30] Eichholzer M, Tonz O, Zimmermann R. Folic acid: a public-health challenge. Lancet2006;367:1352-1361.
    [31] RAMPERSAUD E, MELVIN EC, SPEER MC. Nonsyndromic neural tube defects: genetic basisand genetic investigations: Oxford University Press: Oxford2006.
    [32] Leck I. Causation of neural tube defects: clues from epidemiology. Br Med Bull1974;30:158-163.
    [33] Sanderson P, McNulty H, Mastroiacovo P et al. Folate bioavailability: UK Food Standards Agencyworkshop report. Br J Nutr2003;90:473-479.
    [34] Yajnik CS, Deshpande SS, Jackson AA et al. Vitamin B12and folate concentrations duringpregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia2008;51:29-38.
    [35] Troen AM, Mitchell B, Sorensen B et al. Unmetabolized folic acid in plasma is associated withreduced natural killer cell cytotoxicity among postmenopausal women. J Nutr2006;136:189-194.
    [36] Van Horn L. Development of the2010US Dietary Guidelines Advisory Committee Report:perspectives from a registered dietitian. J Am Diet Assoc2010;110:1638-1645.
    [37] Hirsch S, Sanchez H, Albala C et al. Colon cancer in Chile before and after the start of the flourfortification program with folic acid. Eur J Gastroenterol Hepatol2009;21:436-439.
    [38] Mason JB, Dickstein A, Jacques PF et al. A temporal association between folic acid fortificationand an increase in colorectal cancer rates may be illuminating important biological principles: ahypothesis. Cancer Epidemiol Biomarkers Prev2007;16:1325-1329.
    [39] Yasuda S, Hasui S, Yamamoto C et al. Placental folate transport during pregnancy. BiosciBiotechnol Biochem2008;72:2277-2284.
    [40] Shuaibi AM, House JD, Sevenhuysen GP. Folate status of young Canadian women after folic acidfortification of grain products. J Am Diet Assoc2008;108:2090-2094.
    [41] Wald NJ, Law MR, Morris JK, Wald DS. Quantifying the effect of folic acid. Lancet2001;358:2069-2073.
    [42] Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary ReferenceIntakes and its Panel on Folate, Other B Vitamins, and Choline. Institute of Medicine (US) StandingCommittee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other BVitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate,Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academies Press (US);1998;196-305
    [43] Spielmann H. Predicting the risk of developmental toxicity from in vitro assays. Toxicol ApplPharmacol2005;207:375-380.
    [44] Spielmann H, Seiler A, Bremer S et al. The practical application of three validated in vitroembryotoxicity tests. The report and recommendations of an ECVAM/ZEBET workshop (ECVAMworkshop57). Altern Lab Anim2006;34:527-538.
    [45] Robert E, Guibaud P. Maternal valproic acid and congenital neural tube defects. Lancet1982;2:937.
    [46] Hiilesmaa VK, Bardy AH, Granstrom ML, Teramo KA. Valproic acid during pregnancy. Lancet1980;1:883.
    [47] Loscher W, Nau H, Marescaux C, Vergnes M. Comparative evaluation of anticonvulsant and toxicpotencies of valproic acid and2-en-valproic acid in different animal models of epilepsy. Eur JPharmacol1984;99:211-218.
    [48] Huot C, Gauthier M, Lebel M, Larbrisseau A. Congenital malformations associated with maternaluse of valproic acid. Can J Neurol Sci1987;14:290-293.
    [49] Ornoy A. Valproic acid in pregnancy: how much are we endangering the embryo and fetus? ReprodToxicol2009;28:1-10.
    [50] Adab N, Jacoby A, Smith D, Chadwick D. Additional educational needs in children born tomothers with epilepsy. J Neurol Neurosurg Psychiatry2001;70:15-21.
    [51] Artama M, Auvinen A, Raudaskoski T, Isojarvi I, Isojarvi J. Antiepileptic drug use of women withepilepsy and congenital malformations in offspring. Neurology2005;64:1874-1878.
    [52] Delgado-Escueta A, Enrile-Bacsal F. Juvenile myoclonic epilepsy of Janz. Neurology1984;34:285-285.
    [53] Panayiotopoulos C. Idiopathic generalised epilepsies. A clinical guide to epileptic syndromes andtheir treatment2010:377-421.
    [54] Harden CL, Pennell PB, Koppel BS et al. Management issues for women with epilepsy--focus onpregnancy (an evidence-based review): III. Vitamin K, folic acid, blood levels, and breast-feeding:Report of the Quality Standards Subcommittee and Therapeutics and Technology AssessmentSubcommittee of the American Academy of Neurology and the American Epilepsy Society. Epilepsia2009;50:1247-1255.
    [55] Duncan S. Teratogenesis of sodium valproate. Curr Opin Neurol2007;20:175-180.
    [56] Genton P, Semah F, Trinka E. Valproic acid in epilepsy: pregnancy-related issues. Drug Saf2006;29:1-21.
    [57] Batty N, Malouf GG, Issa JPJ. Histone deacetylase inhibitors as anti-neoplastic agents. Cancerletters2009;280:192-200.
    [58] Tung EW, Winn LM. Epigenetic modifications in valproic acid-induced teratogenesis. ToxicolAppl Pharmacol2010;248:201-209.
    [59] Jergil M, Kultima K, Gustafson AL, Dencker L, Stigson M. Valproic acid-induced deregulation invitro of genes associated in vivo with neural tube defects. Toxicol Sci2009;108:132-148.
    [60] Dawson JE, Raymond AM, Winn LM. Folic acid and pantothenic acid protection against valproicacid-induced neural tube defects in CD-1mice. Toxicol Appl Pharmacol2006;211:124-132.
    [61] Piedrahita JA, Oetama B, Bennett GD et al. Mice lacking the folic acid-binding protein Folbp1aredefective in early embryonic development. Nat Genet1999;23:228-232.
    [62] Hansen DK, Streck RD, Antony AC. Antisense modulation of the coding or regulatory sequence ofthe folate receptor (folate binding protein-1) in mouse embryos leads to neural tube defects. BirthDefects Res A Clin Mol Teratol2003;67:475-487.
    [63] Spiegelstein O, Mitchell LE, Merriweather MY et al. Embryonic development of folate bindingprotein-1(Folbp1) knockout mice: Effects of the chemical form, dose, and timing of maternal folatesupplementation. Dev Dyn2004;231:221-231.
    [64] Kozma C. Valproic acid embryopathy: report of two siblings with further expansion of thephenotypic abnormalities and a review of the literature. Am J Med Genet2001;98:168-175.
    [65] Malm H, Kajantie E, Kivirikko S, Kaariainen H, Peippo M, Somer M. Valproate embryopathy inthree sets of siblings: further proof of hereditary susceptibility. Neurology2002;59:630-633.
    [1] Mitchell LE. Epidemiology of neural tube defects. Am J Med Genet C Semin Med Genet2005;135C:88-94.
    [2] Xiao KZ. Epidemiology of neural tube defects in China. Zhonghua Yi Xue Za Zhi1989;69:189-191,114.
    [3] Dai L, Zhu J, Zhou G et al. Dynamic monitoring of neural tube defects in China during1996to2000. Zhonghua Yu Fang Yi Xue Za Zhi2002;36:402-405.
    [4] Czeizel AE, Dudás I. Prevention of the First Occurrence of Neural-Tube Defects byPericonceptional Vitamin Supplementation. New England Journal of Medicine1992;327:1832-1835.
    [5] Eichholzer M, Tonz O, Zimmermann R. Folic acid: a public-health challenge. Lancet2006;367:1352-1361.
    [6] Malcoe LH, Shaw GM, Lammer EJ, Herman AA. The effect of congenital anomalies onmortality risk in white and black infants. Am J Public Health1999;89:887-892.
    [7] Worley G, Rosenfeld LR, Lipscomb J. Financial counseling for families of children with chronicdisabilities. Dev Med Child Neurol1991;33:679-689.
    [8] Sanes DH, Reh TA, Harris WA. Development of the nervous system: Academic Press2011.
    [9] Catala M, Teillet MA, De Robertis EM, Le Douarin ML. A spinal cord fate map in the avianembryo: while regressing, Hensen's node lays down the notochord and floor plate thus joining thespinal cord lateral walls. Development1996;122:2599-2610.
    [10] Copp AJ. Neurulation in the cranial region--normal and abnormal. J Anat2005;207:623-635.
    [11] Macdonald KB, Juriloff DM, Harris MJ. Developmental study of neural tube closure in a mousestock with a high incidence of exencephaly. Teratology1989;39:195-213.
    [12] Shum AS, Copp AJ. Regional differences in morphogenesis of the neuroepithelium suggestmultiple mechanisms of spinal neurulation in the mouse. Anat Embryol (Berl)1996;194:65-73.
    [13] Ybot-Gonzalez P, Gaston-Massuet C, Girdler G et al. Neural plate morphogenesis during mouseneurulation is regulated by antagonism of Bmp signalling. Development2007;134:3203-3211.
    [14] Wyszynski DF. Neural tube defects: from origin to treatment: Oxford University Press, USA2005.
    [15] Copp AJ, Greene ND, Murdoch JN. The genetic basis of mammalian neurulation. Nat Rev Genet2003;4:784-793.
    [16] Botto LD, Moore CA, Khoury MJ, Erickson JD. Neural-Tube Defects. New England Journal ofMedicine1999;341:1509-1519.
    [17] Shuaibi AM, House JD, Sevenhuysen GP. Folate status of young Canadian women after folic acidfortification of grain products. J Am Diet Assoc2008;108:2090-2094.
    [18] Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary ReferenceIntakes and its Panel on Folate, Other B Vitamins, and Choline. Institute of Medicine (US) StandingCommittee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other BVitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate,Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington (DC): National Academies Press(US);1998;196-305
    [19] Heseker HB, Mason JB, Selhub J, Rosenberg IH, Jacques PF. Not all cases of neural-tube defectcan be prevented by increasing the intake of folic acid. Br J Nutr2009;102:173-180.
    [20] Zhu J, Li X, Wang Y et al. Prevalence of neural tube defect pregnancies in China and the impactof gestational age of the births from2006to2008: a hospital-based study. J Matern Fetal NeonatalMed2012;25:1730-1734.
    [21] Stiefel D, Copp AJ, Meuli M. Fetal spina bifida in a mouse model: loss of neural function inutero. J Neurosurg2007;106:213-221.
    [22] Spinner SS, Miesnik SR, Koh JG, Howell LJ. Maternal, fetal, and neonatal care in open fetalsurgery for myelomeningocele. J Obstet Gynecol Neonatal Nurs2012;41:447-454.
    [23] Waes JG, Finnell RH. Importance of model organisms in understanding the biology and geneticbasis of human nonsyndromic neural tube defects. Teratology2001;64:177-180.
    [24] Khoury MJ, Beaty TH, Liang KY. Can familial aggregation of disease be explained by familialaggregation of environmental risk factors? Am J Epidemiol1988;127:674-683.
    [25] Partington MD, McLone DG. Hereditary factors in the etiology of neural tube defects. Results ofa survey. Pediatr Neurosurg1995;23:311-316.
    [26] Demenais F, Le Merrer M, Briard ML, Elston RC. Neural tube defects in France: segregationanalysis. Am J Med Genet1982;11:287-298.
    [27] Fineman RM, Jorde LB, Martin RA, Hasstedt SJ, Wing SD, Walker ML. Spinal dysraphia as anautosomal dominant defect in four families. Am J Med Genet1982;12:457-464.
    [28] Leck I. Causation of neural tube defects: clues from epidemiology. Br Med Bull1974;30:158-163.
    [29] Kennedy D, Chitayat D, Winsor EJ, Silver M, Toi A. Prenatally diagnosed neural tube defects:ultrasound, chromosome, and autopsy or postnatal findings in212cases. Am J Med Genet1998;77:317-321.
    [30] Hume RF, Jr., Drugan A, Reichler A et al. Aneuploidy among prenatally detected neural tubedefects. Am J Med Genet1996;61:171-173.
    [31] Philipp T, Kalousek DK. Neural tube defects in missed abortions: embryoscopic and cytogeneticfindings. Am J Med Genet2002;107:52-57.
    [32] Luo J, Balkin N, Stewart JF, Sarwark JF, Charrow J, Nye JS. Neural tube defects and the13qdeletion syndrome: evidence for a critical region in13q33-34. Am J Med Genet2000;91:227-230.
    [33] Epidemiology of anencephalus, spina bifida, and congenital hydrocephalus. Br Med J1976;2:1156.
    [34] Knox EG. Twins and neural tube defects. Br J Prev Soc Med1974;28:73-80.
    [35] Kaneko S, Battino D, Andermann E et al. Congenital malformations due to antiepileptic drugs.Epilepsy research1999;33:145-158.
    [36] Holmes LB, Harvey EA, Coull BA et al. The teratogenicity of anticonvulsant drugs. N Engl JMed2001;344:1132-1138.
    [37] Nau H. Valproic acid-induced neural tube defects. Ciba Found Symp1994;181:144-152;discussion152-160.
    [38] Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes.Mol Genet Metab2000;71:121-138.
    [39] Hibbard BM. The Role of Folic Acid in Pregnancy; with Particular Reference to Anaemia,Abruption and Abortion. J Obstet Gynaecol Br Commonw1964;71:529-542.
    [40] Cockroft DL. Vitamin deficiencies and neural-tube defects: human and animal studies. HumReprod1991;6:148-157.
    [41] Smithells RW, Sheppard S, Schorah CJ et al. Possible prevention of neural-tube defects bypericonceptional vitamin supplementation. Lancet1980;1:339-340.
    [42] Laurence K, James N, Miller MH, Tennant G, Campbell H. Double-blind randomised controlledtrial of folate treatment before conception to prevent recurrence of neural-tube defects. British medicaljournal (Clinical research ed)1981;282:1509.
    [43] Smithells RW, Nevin NC, Seller MJ et al. Further experience of vitamin supplementation forprevention of neural tube defect recurrences. Lancet1983;1:1027-1031.
    [44] Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRCVitamin Study Research Group. Lancet1991;338:131-137.
    [45] Czeizel AE, Dudas I. Prevention of the first occurrence of neural-tube defects bypericonceptional vitamin supplementation. N Engl J Med1992;327:1832-1835.
    [46] Fowler B. The folate cycle and disease in humans. Kidney Int Suppl2001;78:S221-229.
    [47] Boyles AL, Hammock P, Speer MC. Candidate gene analysis in human neural tube defects. Am JMed Genet C Semin Med Genet2005;135C:9-23.
    [48] Molloy AM. Folate and homocysteine interrelationships including genetics of the relevantenzymes. Curr Opin Lipidol2004;15:49-57.
    [49] De Marco P, Calevo MG, Moroni A et al. Reduced folate carrier polymorphism (80A-->G) andneural tube defects. Eur J Hum Genet2003;11:245-252.
    [50] Heil SG, van der Put NM, Trijbels FJ, Gabreels FJ, Blom HJ. Molecular genetic analysis ofhuman folate receptors in neural tube defects. Eur J Hum Genet1999;7:393-396.
    [51] Rothenberg SP, da Costa MP, Sequeira JM et al. Autoantibodies against folate receptors inwomen with a pregnancy complicated by a neural-tube defect. N Engl J Med2004;350:134-142.
    [52] van der Put NM, Steegers-Theunissen RP, Frosst P et al. Mutated methylenetetrahydrofolatereductase as a risk factor for spina bifida. Lancet1995;346:1070-1071.
    [53] van der Put NM, van den Heuvel LP, Steegers-Theunissen RP et al. Decreased methylenetetrahydrofolate reductase activity due to the677C-->T mutation in families with spina bifidaoffspring. J Mol Med (Berl)1996;74:691-694.
    [54] Nelen WL, Blom HJ, Thomas CM, Steegers EA, Boers GH, Eskes TK.Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folateconcentrations resulting from low dose folic acid supplementation in women with unexplainedrecurrent miscarriages. J Nutr1998;128:1336-1341.
    [55] van der Put NM, Gabreels F, Stevens EM et al. A second common mutation in themethylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J HumGenet1998;62:1044-1051.
    [56] Trifonova EA, Eremina ER, Urnov FD, Stepanov VA. The Genetic Diversity and Structure ofLinkage Disequilibrium of the MTHFR Gene in Populations of Northern Eurasia. Acta Naturae2012;4:53-69.
    [57] van der Put NM, van der Molen EF, Kluijtmans LA et al. Sequence analysis of the coding regionof human methionine synthase: relevance to hyperhomocysteinaemia in neural-tube defects andvascular disease. QJM1997;90:511-517.
    [58] Harmon DL, Shields DC, Woodside JV et al. Methionine synthase D919G polymorphism is asignificant but modest determinant of circulating homocysteine concentrations. Genet Epidemiol1999;17:298-309.
    [59] Leclerc D, Wilson A, Dumas R et al. Cloning and mapping of a cDNA for methionine synthasereductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci U S A1998;95:3059-3064.
    [60] Wilson A, Platt R, Wu Q et al. A common variant in methionine synthase reductase combinedwith low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metab1999;67:317-323.
    [61] Hol FA, van der Put NM, Geurds MP et al. Molecular genetic analysis of the gene encoding thetrifunctional enzyme MTHFD (methylenetetrahydrofolate-dehydrogenase,methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase) in patients with neuraltube defects. Clin Genet1998;53:119-125.
    [62] Greene ND, Copp AJ. Development of the vertebrate central nervous system: formation of theneural tube. Prenat Diagn2009;29:303-311.
    [63] Zohn IE, Sarkar AA. Modeling neural tube defects in the mouse. Curr Top Dev Biol2008;84:1-35.
    [64] Harris MJ, Juriloff DM. Mouse mutants with neural tube closure defects and their role inunderstanding human neural tube defects. Birth Defects Research Part A: Clinical and MolecularTeratology2006;79:187-210.
    [65] Kibar Z, Capra V, Gros P. Toward understanding the genetic basis of neural tube defects. ClinGenet2007;71:295-310.
    [66] Deak KL, Dickerson ME, Linney E et al. Analysis of ALDH1A2, CYP26A1, CYP26B1,CRABP1, and CRABP2in human neural tube defects suggests a possible association with alleles inALDH1A2. Birth Defects Res A Clin Mol Teratol2005;73:868-875.
    [67] Rat E, Billaut-Laden I, Allorge D et al. Evidence for a functional genetic polymorphism of thehuman retinoic acid-metabolizing enzyme CYP26A1, an enzyme that may be involved in spina bifida.Birth Defects Res A Clin Mol Teratol2006;76:491-498.
    [68] Stegmann K, Boecker J, Richter B et al. A screen for mutations in human homologues of miceexencephaly genes Tfap2alpha and Msx2in patients with neural tube defects. Teratology2001;63:167-175.
    [69] Deak KL, Boyles AL, Etchevers HC et al. SNPs in the neural cell adhesion molecule1gene(NCAM1) may be associated with human neural tube defects. Human genetics2005;117:133-142.
    [70] Giampietro P, Raggio C, Reynolds C et al. An analysis of PAX1in the development of vertebralmalformations. Clinical genetics2005;68:448-453.
    [71] Zhu H, Wicker NJ, Volcik K et al. Promoter haplotype combinations for the human PDGFRAgene are associated with risk of neural tube defects. Mol Genet Metab2004;81:127-132.
    [72] Zhu H, Lu W, Laurent C, Shaw GM, Lammer EJ, Finnell RH. Genes encoding catalytic subunitsof protein kinase A and risk of spina bifida. Birth Defects Res A Clin Mol Teratol2005;73:591-596.
    [73] Stegmann K, Boecker J, Kosan C, Ermert A, Kunz J, Koch MC. Human transcription factorSLUG: mutation analysis in patients with neural tube defects and identification of a missense mutation(D119E) in the Slug subfamily-defining region. Mutat Res1999;406:63-69.
    [74] Morrison K, Papapetrou C, Hol FA et al. Susceptibility to spina bifida; an association study offive candidate genes. Ann Hum Genet1998;62:379-396.
    [75] Kibar Z, Torban E, McDearmid JR et al. Mutations in VANGL1associated with neural-tubedefects. N Engl J Med2007;356:1432-1437.
    [76] Kibar Z, Bosoi CM, Kooistra M et al. Novel mutations in VANGL1in neural tube defects. HumMutat2009;30:E706-715.
    [77] Klootwijk R, Groenen P, Schijvenaars M et al. Genetic variants in ZIC1, ZIC2, and ZIC3are notmajor risk factors for neural tube defects in humans. Am J Med Genet A2004;124A:40-47.
    [78] Sadler TW, Greenberg D, Coughlin P, Lessard JL. Actin distribution patterns in the mouse neuraltube during neurulation. Science1982;215:172-174.
    [79] Ybot-Gonzalez P, Copp AJ. Bending of the neural plate during mouse spinal neurulation isindependent of actin microfilaments. Dev Dyn1999;215:273-283.
    [80] Shang E, Wang X, Wen D, Greenberg DA, Wolgemuth DJ. Double bromodomain-containinggene Brd2is essential for embryonic development in mouse. Dev Dyn2009;238:908-917.
    [81] Takeuchi T, Yamazaki Y, Katoh-Fukui Y et al. Gene trap capture of a novel mouse gene, jumonji,required for neural tube formation. Genes Dev1995;9:1211-1222.
    [82] Lakkis MM, Golden JA, O'Shea KS, Epstein JA. Neurofibromin Deficiency in Mice CausesExencephaly and Is a Modifier for Splotch Neural Tube Defects. Developmental biology1999;212:80-92.
    [83] Epstein DJ, Vekemans M, Gros P. Splotch (Sp2H), a mutation affecting development of themouse neural tube, shows a deletion within the paired homeodomain of Pax-3. Cell1991;67:767-774.
    [84] Engleka KA, Gitler AD, Zhang M, Zhou DD, High FA, Epstein JA. Insertion of Cre into the Pax3locus creates a new allele of Splotch and identifies unexpected Pax3derivatives. Dev Biol2005;280:396-406.
    [85] Mansouri A, Gruss P. Pax3and Pax7are expressed in commissural neurons and restrict ventralneuronal identity in the spinal cord. Mech Dev1998;78:171-178.
    [86] Lardelli M, Williams R, Mitsiadis T, Lendahl U. Expression of the Notch3intracellular domainin mouse central nervous system progenitor cells is lethal and leads to disturbed neural tubedevelopment. Mech Dev1996;59:177-190.
    [87] Ishibashi M, Ang SL, Shiota K, Nakanishi S, Kageyama R, Guillemot F. Targeted disruption ofmammalian hairy and Enhancer of split homolog-1(HES-1) leads to up-regulation of neuralhelix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev1995;9:3136-3148.
    [88] Hirata H, Tomita K, Bessho Y, Kageyama R. Hes1and Hes3regulate maintenance of the isthmicorganizer and development of the mid/hindbrain. EMBO J2001;20:4454-4466.
    [89] Ruland J, Duncan GS, Elia A et al. Bcl10is a positive regulator of antigen receptor-inducedactivation of NF-kappaB and neural tube closure. Cell2001;104:33-42.
    [90] Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH. Brca1deficiency results in earlyembryonic lethality characterized by neuroepithelial abnormalities. Nat Genet1996;12:191-194.
    [91] Wang X, Wang RH, Li W et al. Genetic interactions between Brca1and Gadd45a in centrosomeduplication, genetic stability, and neural tube closure. Journal of Biological Chemistry2004;279:29606-29614.
    [92] Massa V, Savery D, Ybot-Gonzalez P et al. Apoptosis is not required for mammalian neural tubeclosure. Proceedings of the National Academy of Sciences2009;106:8233-8238.
    [93] Leonard JR, Klocke BJ, D'Sa C, Flavell RA, Roth KA. Strain-dependent neurodevelopmentalabnormalities in caspase-3-deficient mice. J Neuropathol Exp Neurol2002;61:673-677.
    [94] Kuida K, Haydar TF, Kuan CY et al. Reduced apoptosis and cytochrome c-mediated caspaseactivation in mice lacking caspase9. Cell1998;94:325-337.
    [95] Hakem R, Hakem A, Duncan GS et al. Differential requirement for caspase9in apoptoticpathways in vivo. Cell1998;94:339-352.
    [96] Miner JH, Cunningham J, Sanes JR. Roles for laminin in embryogenesis: exencephaly,syndactyly, and placentopathy in mice lacking the laminin alpha5chain. J Cell Biol1998;143:1713-1723.
    [97] Arikawa-Hirasawa E, Watanabe H, Takami H, Hassell JR, Yamada Y. Perlecan is essential forcartilage and cephalic development. Nature genetics1999;23:354-358.
    [98] De Arcangelis A, Mark M, Kreidberg J, Sorokin L, Georges-Labouesse E. Synergistic activitiesof alpha3and alpha6integrins are required during apical ectodermal ridge formation andorganogenesis in the mouse. Development1999;126:3957-3968.
    [99] Holmberg J, Clarke DL, Frisen J. Regulation of repulsion versus adhesion by different spliceforms of an Eph receptor. Nature2000;408:203-206.
    [100] Abdul-Aziz NM, Turmaine M, Greene ND, Copp AJ. EphrinA-EphA receptor interactions inmouse spinal neurulation: implications for neural fold fusion. Int J Dev Biol2009;53:559-568.
    [101] Lee DH, Kim EY, Park S et al. Reclosure of surgically induced spinal open neural tube defectsby the intraamniotic injection of human embryonic stem cells in chick embryos24hours after lesioninduction. J Neurosurg2006;105:127-133.
    [102] Lee DH, Phi JH, Kim SK, Cho BK, Kim SU, Wang KC. Enhanced reclosure of surgicallyinduced spinal open neural tube defects in chick embryos by injecting human bone marrow stem cellsinto the amniotic cavity. Neurosurgery2010;67:129-135; discussion135.
    [103] Gupta D, Sharma S, Venugopal P, Kumar L, Mohanty S, Dattagupta S. Stem cells as atherapeutic modality in pediatric malformations. Transplantation proceedings: Elsevier2007:700-702.
    [104] Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived fromhuman somatic cells. Science2007;318:1917-1920.
    [105] Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult humanfibroblasts by defined factors. Cell2007;131:861-872.
    [106] Park IH, Arora N, Huo H et al. Disease-specific induced pluripotent stem cells. Cell2008;134:877-886.
    [107]107Zhang X, Huang CT, Chen J et al. Pax6is a human neuroectoderm cell fate determinant.Cell Stem Cell2010;7:90-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700