MIMO雷达模型与信号处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO,Multiple-Input Multiple-Output)雷达使用多天线发射多重探测信号照射目标,并利用多天线接收目标反射的后向散射回波信号。与传统的相控阵雷达相比,MIMO雷达可以显著改善参数可辨识性,实现更为灵活的发射方向图设计,改进目标检测和参数估计性能,并可通过采用更灵活的发射波形设计以提高检测和估计性能。本文研究了MIMO雷达的模型、信号检测、参数估计以及优化波形设计等方面问题。
     本文的主要工作包括以下几方面。
     1.本文系统地研究和总结了现有的MIMO雷达信号模型,包括波形分集的共址MIMO雷达、发射和接收空间全分集的统计MIMO雷达和仅发射分集的统计MIMO雷达,以及基于共址MIMO雷达的MIMO-STAP雷达模型。在此基础上,本文在仅发射分集统计MIMO雷达的接收阵列引入了目标的角度扩展,提出了使用非相干子阵的共址MIMO雷达的等效模型,将MIMO-STAP模型拓展到多目标情况。
     2.在共址MIMO雷达模型中,目标被建模为点目标,因此发射和接收的信号都是完全相干的;而在统计MIMO雷达模型中,目标被建模为具有丰富散射的扩展目标,因此发射和接收的信号分别是完全不相关的。本文在MIMO雷达模型中考虑了空间部分相干性,即阵列发射信号通过有限的路径照射到目标的多个散射点,而目标散射点的后向回波信号也通过有限的路径被阵列接收,因此目标相对于发射和接收阵列表现为有限的角度扩展。本文提出了MIMO雷达的参数物理模型来描述这种空间部分相干性。
     3.现有的共址MIMO雷达模型、发射和接收全分集的和仅发射分集的统计MIMO雷达模型都是建立在实际物理散射过程的描述上。利用这些模型不便于获得目标散射特性的整体性质,因此在处理诸如优化波形设计等需要利用目标散射特性的问题时,需要特定的复杂技术。在MIMO雷达的参数物理模型的基础上,并借鉴MIMO无线通信理论和阵列信号处理中的波束域理论,本文提出了MIMO雷达的虚拟表示模型。这种表示方法是通过将各方向的探测信号以及目标在各方向的物理散射分别投影到固定的傅里叶方向,并利用虚拟的等效信道矩阵来描述目标的整体散射特性。
     4.在MIMO雷达的虚拟表示模型基础上,本文进一步提出了MIMO雷达的标准模型。该模型将各方向的探测信号以及目标在各方向的物理散射分别投影到发射和接收特征方向,并利用散射矩阵来描述目标的整体散射特性。该模型提供了共址MIMO雷达模型、统计MIMO雷达模型,以及具有空间部分相干的MIMO雷达模型的统一描述,并有助于获得广泛适用的优化波形设计方案。
     5.对于具有空间部分相干性的发射分集统计MIMO雷达,利用空间相干矩阵的Toeplitz结构、Toeplitz矩阵与轮换矩阵的渐近等价性,以及离散傅里叶变换矩阵对轮换矩阵的对角化性质,本文提出了一种具有较低计算量的渐近优化检测算法。
     6.对共址MIMO雷达,本文研究了Capon、APES、GLRT和发射分集平滑等目标角度估计算法。对于使用非相干子阵的共址MIMO雷达,本文提出了一种结合发射分集平滑技术和广义MUSIC算法的参数估计算法。该算法不仅具有高分辨的角度估计性能,而且可根据需要选择使用某些特定的非相干子阵,从而实现灵活的发射和接收分集。
     7.对于仅发射分集统计MIMO雷达,基于准静态衰落的假设下,本文提出了目标角度和衰落向量参数估计的两种渐近最大似然估计算法、CAPES算法、以及衰落向量参数估计的稳健的APES算法;基于目标随机快速衰落的假设,本文提出了子空间算法和协方差匹配技术两种方法;本文也将盲信号处理技术应用于MIMO雷达的参数估计问题中。仿真实验表明,发射分集可有效改善目标的角度估计性能。
     8.基于MIMO雷达标准模型,本文应用极大化条件互信息量和极小化最小均方误差两种准则实现了MIMO雷达的优化估计波形的设计(designs of optimalestimation waveforms)。该设计结果不仅适用于统计MIMO雷达模型,还适于具有部分空间相干性的共址MIMO雷达。本文也提出将Kronecker结构的矩阵估计技术用于解决MIMO雷达的优化估计波形设计问题。
A Multiple-Input Multiple-Output (MIMO) radar transmits multiple probing sig-nals via multiple antennas,and receives the backscattered signals reflected from thetargets using multiple antennas.In contrast with the conventional phased array radar,the waveform diversity enables the MIMO radar with colocated antennas to have muchimproved capabilities including significantly improved parameter identifiability,muchenhanced flexibility for transmit beampattern design,and direct applicability of adap-tive array processing algorithms.The spatial diversity of the target's radar cross sectionobtained by the statistical MIMO radar enables improved detection and estimation per-formance.
     The problems of modeling of MIMO radar,the target detection,the parameterestimation,and optimal waveform designs are considered herein.
     The main contribution of this thesis are as follows.
     1.The recent results on signal models of MIMO radars are systematically sum-marized,including the MIMO radars with colocated antennas with waveform diversity,the statistical MIMO radars with transmit and receive diversity,the statistical MIMOradars with transmit diversity only,and the MIMO-STAP radars with colocated an-tennas.The statistical MIMO radar model with transmit diversity only is generalizedby introducing the target angular spread at the receive array.The equivalent model ofthe MIMO radars equipped with noncoherent transmit and receive colocated antennasubarrays is proposed.The multiple-target model of the MIMO-STAP system is alsoproposed.
     2.The point target model is used in the MIMO radars with colocated antennas,and hence the signals transmitted and received respectively via the transmit and re-ceive antenna arrays are fully coherent.In the statistical MIMO radars,the target ismodeled as extended with rich scattering,and the transmitted and received signals arecompletely decorrelated,respectively.This contribution introduces the partial spatialcoherence in the MIMO radars,i.e.,the signals illuminate on finite number of scat-terers of the target,while the backscattered signals are received via finite number of paths as well.Hence,the target exhibits finite angular spread with respect to both thetransmit and receive arrays.The parametric physical MIMO radar model is proposedto describe the partial spatial coherence.
     3.The MIMO radar with colocatd antennas,the statistical MIMO radars withtransmit and receive diversity,and the statistical MIMO radars with transmit diver-sity only,are constructed based on the physical scattering description.However,thesemodels cannot effectively capture the scattering characteristics,and it is not easy tohandle the problems which needs these information,such as the optimal waveform de-sign.Based on the parametric physical model of MIMO radars,exploiting the theory ofMIMO wireless communications and that of the bearnspace in array signal processing,the virtual representation model is proposed.In this model,the probing and reflectedsignals in different directions are respectively projected onto fixed Fourier directions,and the equivalent channel model is used to describe the scattering characteristics ofthe target.
     4.The canonical model of MIMO radars is further proposed,with the models ofMIMO radars with colocated antennas,the statistical MIMO radar,and that with partialspatial coherence as its special cases.The probing signals from different directionsare projected onto the transmit eigen directions,while the physical reflections of thetarget towards different directions are projected onto the receive eigen directions.Thescattering characteristics of different scatterers is described by a scattering matrix.Thismodel eases the universal optimal waveform design.
     5.For the statistical MIMO radar with transmit diversity only and angular spreadat the receive array,an efficient asymptotically optimal detection algorithm is proposedby use of the Toeplitz structure of the spatial coherence matrix,and the asymptoticequivalence of Toeplitz and circulant matrices,where the circulant matrix is diago-nalised by the discrete Fourier transform matrix.
     6.The direction finding algorithms,including Capon,APES,GLRT and transmitdiversity smoothing techniques are considered for the MIMO radars with colocatedantennas.The generalized MUSIC algorithm in conjunction with the transmissiondiversity smoothing technique are proposed in the parameter estimation problem of theMIMO radar with colocated antennas equipped with noncoherent transmit and receive colocated antenna subarrays.The spatial diversity at either the transmit or the receivecan be flexibly obtained by selecting certain transmit or receive subarrays.
     7.Several algorithms are proposed to deal with the problem of parameter estima-tion of the statistical MIMO radar with transmit diversity only.Under the quasistaticfading assumption,this contribution proposes two asymptotical maximum likelihoodmethods,and the CAPES algorithm to obtain the angle and fading parameters estima-tion,as well as the robust APES algorithm for fading estimation.Under the stochasticfading assumption,the covariance matching technique and the subspace algorithm areproposed for angle estimation.The application of blind signal processing in the param-eter estimation problem is discussed as well.The performance improvement of angleestimation with transmit diversity is validated through simulations.
     8.This contribution maximizes the conditional mutual information and minimizesminimum mean-square error respectively to obtain the optimal estimation waveformswith the canonical MIMO radar model.This result may be considered as a generalsolution to the statistical MIMO radar and MIMO radar with partial spatial coherence.The Kronecker structure matrix estimation technique is also applied to the problem ofoptimal waveform design.
引文
[1]Proakis J G.Digital Communications.4th ed.,New York,NY:McGraw-Hill,2001.
    [2]Tse D,Viswanath P.Fundamentals of Wireless Communication.Cambridge,UK:Cambridge University Press,2005.
    [3]Foschini G J.Layered Space-Time Architecture for wirelss communication in a fading environment when using multi-element antennas.Bell Labs Technical Journal,1996,1(2):41-59.
    [4]Foschini G J,Gans M J.On limits of wireless communications in a fading environment when using multiple antennas.Wireless Personal Communications,1998,6(3):311-335.
    [5]Paulraj A J,Papadias C B.Space-time processing for wireless communications.IEEE Signal Processing Mag.,1997,14(6):49-83.
    [6]Ertel R B,Cardieri P,Sowerby K W,et al.Overview of spatial channel models for antenna array communication systems.IEEE Personal Commun.Mag.,1998,5(1):10-22.
    [7]Telatar I E.Capacity of multi-antenna Gaussian channels.European Transactions on Telecommunications,1999,10(6):585-595.
    [8]Chuah C N,Tse D N C,Kahn J M,et al.Capacity scaling in MIMO wireless systems under correlated fading.IEEE Trans.Inform.Theory,2002,48(3):637-650.
    [9]M(?)ller R R.A random matrix model of communication via antenna arrays.IEEE Trans.Inform.Theory,2002,49(9):2495-2506.
    [10]Sayeed A M.Deconstructing Multiantenna Fading Channels.IEEE Trans.Signal Processing,2002,50(10):2563-2579.
    [11]Gesbert D,B(?)lcskei H,Gore D A,et al.Outdoor MIMO wireless channels:models and performance prediction.IEEE Trans.Commun.,2002,50(12):1926-1934.
    [12]Paulraj A J,Gore D A,Nabar R U,et al.An overview of MIMO communications-a key to gigabit wireless.Proc.IEEE,2004,92(2):198-218.
    [13]Jensen M A,Wallace J W.A review of antennas and propagation for MIMO wireless communications.IEEE Trans.Antennas Propagat.,2004,52(11):2810-2824.
    [14]Debbah M,M(?)ller R R.MIMO Channel Modeling and the Principle of Maximum Entropy.IEEE Trans.Inform.Theory,2005,51(5):1667-1690.
    [15]Veeravalli V V,Liang Y,Sayeed A M.Correlated MIMO wireless channels:capacity,optimal signaling,and asymptotics.IEEE Trans.Inform.Theory,2005,51(6):2058-2072.
    [16]Weichselberger W,Herdin M,(?)zcelik H,et al.A stochastic MIMO channelmodel with joint correlation of both link ends.IEEE Trans.Wireless Commun.,2006,5(1):90-100.
    [17]B(?)lcskei H,Gesbert D,Paulraj A J.On the capacity of OFDM-based spatial multiplexing systems.IEEE Trans.Commun.,2002,50(2):225-234.
    [18]Skolnik M I.Introduction to Radar Systems.3rd ed.,New York,NY:McGraw-Hill,2001.
    [19]Skolnik M.Opportunities in radar-2002.Electronics & Communication Engineering Journal,2002,14(6):263-272.
    [20]Luce A.Experimental results on SIAR digital beamforming radar.Proceedings of IEEE International Radar Conference,London,UK,1992.505-510.
    [21]Colin J M.Phased array radars in France:Present and future.Proceedings ofProc.IEEE Int.Symp.Phased Array Systems and Technology,1996.458-462.
    [22]Papoutsis I,Baker C J,Griffiths H D.Fundamental Performance Limitations of Radar Networks.Proceedings of Proc.1st Electro-Magnetic Remote Sensing(EMRS)Defence Technology Centre(DTC)Technical Conf.,Edinburgh,UK,2004.
    [23]何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析.电子学报,2005.33(12A):143-147.
    [24]Haimovich A M,Blum R S,Leonard J.Cimini J.MIMO Radar with widely separated antennas.IEEE Signal Processing Mag.,2008,25(1):116-129.
    [25]Bliss D W,Forsythe K W.Multiple-input multiple-output(MIMO)radar and imaging:degrees of freedom and resolution.Proceedings of Signals,Systems and Computers,Conference Record of the 37th Asilomar Conference on,Pacific Grove,CA,2003.54-59.
    [26]Rabideau D J,Parker E Ubiquitous MIMO multifunction digital array radar.Proceedings of Signals,Systems and Computers,Conference Record of the 37th Asilomar Conference on,Pacific Grove,CA,2003.1057-1064.
    [27]Robey F C,Courts S,Weikle D,et al.MIMO radar theory and experimental results.Proceedings of Signals,Systems and Computers,Conference Record of the 38th Asilomar Conference on,Pacific Grove,CA,2004.300-304.
    [28]Forsythe K W,Bliss D W,Fawcett G S.Multiple-input multiple-output(MIMO)radar:Performance Issues.Proceedings of Signals,Systems and Computers,Conference Record of the 38th Asilomar Conference on,Pacific Grove,CA,2004.310-315.
    [29]Fishler E,Haimovich A,Blum R,et al.MIMO radar:an idea whose time has come.Proceedings ofProc.IEEE Radar Conference,Philadelphia,Pennsylvania,USA,2004.71-78.
    [30]Fishler E,Haimovich A,Blum R,et al.Performance of MIMO radar systems:advantages of angular diversity.Proceedings of Signals,Systems and Computers,Conference Record of the 38th Asilomar Conference on,Pacific Grove,CA,2004.305-309.
    [31]Fishler E,Haimovich A,Blum R S,et al.Spatial Diversity in Radars-Models and Detection Performance.IEEE Trans.Signal Processing,2006,54(3):823-838.
    [32]Ward J.Space-Time Adaptive Processing for Airbome Radar.Technical Report 1015,MIT Lincoln Laboratory,Lexington,MA,USA,Dec.,1994.http://handle.dtic.mil/100.2/ ADA293032.
    [33] Ward J. Space-time adaptive processing for airborne radar. Proceedings of Acoustics,Speech, and Signal Processing (ICASSP'1995), International Conference on, Detroit, MI,USA, 1995. 2809-2812.
    [34] Ward J. Space-time adaptive processing for airborne radar. Proceedings of Space-Time Adaptive Processing (Ref. No. 1998/241), IEE Colloquium on, London, UK, 1998. 2/1-2/6.
    [35] Klemm R. Introduction to space-time adaptive processing. Proceedings of Space-Time Adaptive Processing (Ref. No. 1998/241), IEE Colloquium on, London, UK, 1998. 1/1-1/11.
    [36] Klemm R. Introduction to space-time adaptive processing. Electronics & Communication Engineering Journal, 1999, 11(1):5-12.
    [37] Melvin W L. A STAP overview. IEEE Aerosp. Electron. Syst. Mag, 2004, 19(1): 19-35.
    [38] Li J, Stoica P. MIMO Radar with colocated antennas. IEEE Signal Processing Mag., 2007,24(5):106-114.
    [39] Skolnik M I, (eds.). Radar Handbook. 2nd ed., New York, NY: McGraw-Hill, 1990.
    [40] Brennan L E, Reed I S. Theory of Adaptive Radar. IEEE Trans. Aerosp. Electron. Syst.,1972, 9(2):237-252.
    [41] Lehmann N H, Fishier E, Haimovich A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding. IEEE Trans. Signal Processing, 2007, 55(5):2215-2225.
    [42] Lehmann N. Some Contributions on MIMO Radar[博士学位论文]. New Jersy, US: New Jersey Institute of Technology, 2007.
    [43] Sammartino P F, Baker C J, Griffiths H D. A comparison of algorithms for MIMO and netted radar systems. Proceedings of 2nd International Waveform Diversity and Design Conf., Lihue, Hawaii, 2006. 22-27.
    [44] Sammartino P F, Baker C J, Griffiths H D. Target model effects on MIMO radar performance. Proceedings of Acoustics, Speech and Signal Processing, IEEE International Conference on (ICASSP), Pacific Grove, CA, 2006. 1129-1132.
    [45] Yang Y, Blum R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Trans. Aerosp. Electron. Syst., 2007,43(1):330-343.
    [46] Yang Y, Blum R S. Minimax Robust MIMO radar waveform design. IEEE J. Select. Topics Signal Processing, 2007, 1(1): 147-155.
    [47] Friedlander B. Waveform design for MIMO radars. IEEE Trans. Aerosp. Electron. Syst.,2007,43(1):1227-1238.
    [48] Tabrikian J, Bekkerman I. Transmission diversity smoothing for multi-target localization.Proceedings of Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), Philadelphia, Pennsylvania, USA, 2005. 1041-1044.
    [49] Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars.IEEE Trans. Signal Processing, 2006, 54(10):3873-3883.
    [50] Xu L, Li J. Iterative generalized-likelihood ratio test for MIMO radar. IEEE Trans. Signal Processing, 2007, 55(6):2375-2385.
    [51] Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using partial signal correlation. Proceedings of Signals, Systems and Computers, Conference Record of the 38th Asilomar Conference on, Pacific Grove, CA, 2004. 295-299.
    [52] Li J, Stoica P, Xie Y. On Probing Signal Design for MIMO Radar. Proceedings of Signals,Systems and Computers, ACSSC '06. 40th Asilomar Conference on, Pacific Grove, CA,2006. 13-35.
    [53] Stoica P, Li J, Xie Y. On probing signal design for MIMO radar. IEEE Trans. Signal Processing, 2007, 55(8):4153-4161.
    [54] Xu L, Li J, Stoica P, et al. Waveform optimization for MIMO radar: a Cramer-Rao Bound Study. Proceedings of Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '07), Honolulu, Hawaii, 2007. 917-920.
    [55] Li J, Xu L, Stoica P, et al. Range compression and waveform optimatization for MIMO radar: A Cramer-Rao Bound Study. IEEE Trans. Signal Processing, 2008, 56(1):218-232.
    [56] Mecca V F, Ramakrishnan D, Krolik J L. MIMO Radar Space-Time Adaptive Processing for Multipath Clutter Mitigation. Proceedings of Sensor Array and Multichannel Signal Processing, IEEE Workshop (SAM 2006), Waltham, MA, 2006. 249-253.
    [57] Mecca V F, Krolik J L. Slow-Time MEMO STAP with Improved Power Efficiency. Proceedings of Signals, Systems and Computers, 41th Asilomar Conference on (ACSSC '07),Pacific Grove, CA, 2007. 202-206.
    [58] Chen C Y, Vaidyanathan P P. Beamforming issues in modern MIMO radars with Doppler.Proceedings of Signals, Systems and Computers, ACSSC '06. 40th Asilomar Conference on, Pacific Grove, CA, 2006. 41-45.
    [59] Chen C Y, Vaidyanathan P P. A subspace method for MIMO radar space-time adaptive processing. Proceedings of Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '07), Honolulu, Hawaii, 2007. 925-928.
    [60] Xu L, Li J, Stoica P. Radar imaging via adaptive MIMO techniques. Proceedings of Proc.14th Eur. Signal Processing Conf., Florence, Italy, 2006.
    [61] Ostrovityanov R V, Basalov F A. Statistical Theory of Extended Radar Targets. Dedham,MA: Artech House, inc., 1985.
    [62] Bell M R. Information theory and radar waveform design. IEEE Trans. Inform. Theory,1993, 39(5): 1578-1597.
    [63] Donnet B J, Longstaff I D. Combining MIMO radar with OFDM Communications. Proceedings of Proceedings of the 3rd European Radar Conference (EuRAD 2006), Manchester, England, 2006. 37-40.
    [64] Donnet B J, Longstaff I D. MIMO radar, techniques and opportunities. Proceedings of Proceedings of the 3rd European Radar Conference (EuRAD 2006), Manchester, England,2006. 112-115.
    [65] Bekkerman I, Tabrikian J. Spatially coded transmission for active arrays. Proceedings of Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP'04), Montreal, Quebec, Canada, 2004. 209-212.
    [66] Kay S M. Fundamentals of Statistical Signal Processing, vol. Ⅱ Detection theory. Engle-wood Cliffs, NJ: Prentice-Hall, 1998.
    [67] Kay S M. Fundamentals of Statistical Signal Processing, vol. Ⅰ Estimation Theory. Engle-wood Cliffs, NJ: Prentice-Hall, 1993.
    [68] Wax M, Ziskind I. On unique localization of multiple sources by passive sensor arrays.IEEE Trans. Acoust., Speech, Signal Processing, 1989, 37(7):996-1000.
    [69] Nehorai A, Starer D, Stoica P. Direction-of-arrival estimation in applications with multipath and few snapshots. Circuits, Syst., Signal Process., 1991,10:327-342.
    [70] Li J, Stoica P, Xu L, et al. On Parameter Identifiability of MIMO Radar. IEEE Signal Processing Lett., 2007, 14(12):968-971.
    [71] Krim H, Viberg M. Two decades of array signal processing research. IEEE Signal Processing Mag., 1996, 13(4):67-94.
    [72] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans.Antennas Propagat., 1986, 34(3):276-280.
    [73] Xu L, Li J, Stoica P. Adaptive Techniques for MIMO Radar. Proceedings of Sensor Array and Multichannel Signal Processing, IEEE Workshop, Waltham, MA, 2006. 258-262.
    [74] Capon J. High resolution frequency wave number spectrum analysis. Proc. IEEE, 1969,57:1408-1418.
    [75] Ⅲ O L F. An algorithm for linearly constrained adaptive array processing. Proc. IEEE,1972, 60:926-935.
    [76] Li J, Stoica P. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans. Signal Processing, 1996, 44(6): 1469-1484.
    [77] Jakobsson A, Stoica P. Combining Capon and APES for estimation of spectral lines. Circuits, Systems, and Signal Processing, 2000, 19(2):159-169.
    [78] Wang H, Cai L. On adaptive multiband signal detection with GLR algorithm. IEEE Trans.Aerosp. Electron. Syst., 1991, 27(2):225-233.
    [79] Kelly E J. An Adaptive Detection Algorithm. IEEE Trans. Aerosp. Electron. Syst., 1986,22(2):225-233.
    [80] Li J, Stoica P, Wang Z. On robust Capon beamforming and diagonal loading. IEEE Trans.Signal Processing, 2003, 53(7):1702-1715.
    [81] Li J, Stoica P, Wang Z. Doubly constrained robust Capon beamformer. IEEE Trans. Signal Processing, 2004, 52(9):2407-2423.
    [82] Stoica P, Moses R. Introduction to Spectral Analysis. Upper Saddle River, NJ: Prentice-Hall, 1997.
    [83] Stoica P, Li H, Li J. Amplitude estimation of sinusoidal signals: survey, new results, and an application. IEEE Trans. Signal Processing, 2000,48(2):338-352.
    [84] Trees HLV. Detection, Estimation, and Modulation Theory, Part I. New York: John Wiley & Sons, 1968.
    [85] Kailath T, Poor H V. Detection of stochastic processes. IEEE Trans. Inform. Theory, 1998,44(6):2230-2259.
    [86] Maio A D, Lops M. Design principles of MIMO radar detectors. IEEE Trans. Aerosp.Electron. Syst., 2007, 43(3):886-898.
    [87] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans. Inform. Theory,1998,42(2):744-765.
    [88] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs.IEEE Trans. Inform. Theory, 1999,45(5):1456-1467.
    [89] Chen C Y, Vaidyanathan P P. High resolution capabilities of MIMO radar. Proceedings of Signals, Systems and Computers, ACSSC '06. 40th Asilomar Conference on, Pacific Grove, CA, 2006. 25-30.
    [90] Yan H, Li J, Liao G. Multitarget Identification and Localization Using Bistatic MIMO Radar Systems. EURASIP Journal on Advanced in Signal Processing, 2008..
    [91] Xu L, Stoica P, Li J. Parameter Estimation and Number Detection of MIMO Radar Targets.Proceedings of Signals, Systems and Computers, 41th Asilomar Conference on (ACSSC'07), Pacific Grove, CA, 2007. 177-181.
    [92] Stoica P, Selen Y. Model-order selection: a review of information criterion rules. IEEE Signal Processing Mag., 2004,21(4):36-47.
    [93] Sturm J F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.Optimization Methods and Software, 1999, 11-12:625-653.
    [94] Cover T M, Thomas J A. Elements of Information Theory. New York: John Wiley & Sons,1991.
    [95] Verdu S, Poor H V. On Minimax robustness: a general approach and applications. IEEE Trans. Inform. Theory, 1984, 30(2):328-340.
    [96] Kassam S A, Poor H V. Robust techniques for signal processing: A survey. Proc. IEEE,1985, 73(3):433-482.
    [97] Ganesan G, Stoica P. Space-time block codes: a maximum SNR approach. IEEE Trans.Inform. Theory, 2001, 47(4): 1650-1656.
    [98] Forsythe K W, Bliss D W. Waveform correlation and optimization issues for MIMO radar.Proceedings of Signals, Systems and Computers, Conference Record of the 39th Asilomar Conference on, Pacific Grove, CA, 2005. 1306-1310.
    [99]Antonio G S,Fuhrmann D R.Beampattern synthesis for wideband MIMO radar systems.Proceedings of Computaional Adavances in Multi-sensor Adaptive Processing,1 st IEEE International Workshop on(CAMSAP2005),Puerto Vallarta,Mexico,2005.105-108.
    [100]Liu B,He Z,Zeng J,et al.Polyphase orthogonal code design for MIMO radar systems.Proceedings of International Conference on Radar(CIE'06),Shanghai,China,2006.113-116.
    [101]刘波.MIMO雷达正交波形设计及信号处理研究[博士学位论文].成都:电子科技大学,2008.
    [102]Veen B D V,Buckley K M.Beamforming:a versatile approach to spatial filtering.IEEE Signal Processing Mag.,1988,5(2):4-24.
    [103]Chert C Y,Vaidyanathan P P.MIMO Radar Space-Time Adaptive Processing Using Prolate Spheroidal Wave Functions.IEEE Trans.Signal Processing,2008,56(2):623-635.
    [104]Klemm R.Adaptive clutter suppression for airborne phased array radars.IEE Proceedings F.Communications,Radar and Signal Processing,1983,130(1):125-132.
    [105]Goldstein J S,Reed I S.Theory of partially adaptive radar.IEEE Trans.Aerosp.Electron.Syst.,1997,33(4):1309-1325.
    [106]Lehmann N,Haimovich A,Blum R,et al.MIMO Radar Application to Moving Target Detection in Homogenous Clutter.Proceedings of Adaptive Sensor Array Processing(ASAP'06),MIT Lincoln Laboratory,Waltham,MA,2006.
    [107]Zoltowski.M D,Kautz G M,Silverstein S D.Beamspace Root-MUSIC.IEEE Trans.Signal Processing,1993,41(1):344-364.
    [108]Hong Z,Liu K,Robert W.Heath J,et al.Spatial multiplexing in correlated fading via the virtual channel representation.IEEE J.Select.Areas Commun.,2003,21(5):856-866.
    [109]Liu K,Raghavan V,Sayeed A M.Capacity scaling and spectral efficiency in wide-band correlated MIMO channels.IEEE Trans.Inform.Theory,2003,49(10):2504-2526.
    [110]Kotecha J H,Sayeed A M.Transmit signal design for optimal estimation of correlated MIMO channels.IEEE Trans.Signal Processing,2004,52(2):546-557.
    [111]Kotecha J H,Sayeed A M.Canonical Statistical modeling and capacity analysis of correlated MIMO fading channels.Technical report,Department of Electrical and Computer Engineering,University of Wisconsin-Madison(UW-ECE),Mar.,2004.http://dune.ece.wisc.edu/pdfs/kotecha_wcom_mod_cap04.pdf.
    [112]Horn R A,Johnson C R.Matrix Analysis.Reprint ed.,Cambridge,UK:Cambridge University Press,1990.
    [113]Horn RA,Johnson C R.Topics in Matrix Analysis.Cambridge,UK:Cambridge University Press,1991.
    [114]陈景良,陈向晖.特殊矩阵.北京:清华大学出版社,2001.
    [115]张贤达.矩阵分析与应用.北京:清华大学出版社,2004.
    [116] Dogand(?)i(?) A, Nehorai A. Generalized multivariate analysis of variance. IEEE Signal Processing Mag., 2003,20(5):39-54.
    [117] Xu L, Li J. Performance analysis of multivariate complex amplitude estimators. IEEE Trans. Signal Processing, 2005, 53(8):3162-3171.
    [118] Chen C Y, Vaidyanathan P P. MIMO Radar Ambiguity Optimization Using Frequency-Hopping Waveforms. Proceedings of Signals, Systems and Computers, 41th Asilomar Conference on (ACSSC '07), Pacific Grove, CA, 2007. 192-196.
    [119] Zhou S, Giannakis G B. Optimal Transmitter Eigen-Beamforming and Space-Time Block Coding Based on Channel Mean Feedback. IEEE Trans. Signal Processing, 2002,50(10):2599-2613.
    [120] Calvary P, Janer D. Spatio-temporal coding for radar array processing. Proceedings of Acoustics, Speech, and Signal Processing, (ICASSP '98). Proceedings of the 1998 IEEE International Conference on, Seattle, WA, 1998. 2509-2512.
    [121] Trump T, Ottersten B. Estimation of Nominal Direction of Arrival and Angular Spread Using an Array of Sensors. Signal Processing, 1996, 50:57-70.
    [122] Besson O, Stoica P. Decoupled estimation of DO A and angular spread for a spatially distributed source. IEEE Trans. Signal Processing, 2000,48(7): 1872-1882.
    [123] Owsley N L. Sonar Array Processing. In: Haykin S, (eds.). Proceedings of Array Signal Processing, chapter 3. Englewood Cliffs, NJ: Prentice-Hall, 1985:.
    [124] Haykin S. Radar Array Processing for angle of arrival estimation. In: Haykin S, (eds.).Proceedings of Array Signal Processing, chapter 4. Englewood Cliffs, NJ: Prentice-Hall,1985:.
    [125] Wilson S L, Carlson B D. Radar detection in multipath. IEE Proc.-Radar, Sonar Navig.,1999, 146(1):45-54.
    [126] Astely D, Ottersten B. The effects of local scattering on direction of arrival estimation with MUSIC. IEEE Trans. Signal Processing, 1999,47(12):3220-3234.
    [127] Raleigh G G, Cioffi J M. Spatio-temporal coding for wireless communication. IEEE Trans.Commun., 1999,46(3):357-366.
    [128] Raleigh G G, Jones V K. Multivariate modulation and coding for wireless communication.IEEE J. Select. Areas Commun., 1999, 17(5):851-866.
    [129] Foster P, Vezzosi G. Application of spheroidal sequences to array processing. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP'87), Dallas, TX, 1987. 2268-2271.
    [130] Hassanien A, Elkader S A, Gershman A B, et al. Convex Optimization Based Beam-space preprocessing with improved robustness against out-of-sector sources. IEEE Trans. Signal Processing, 2006, 54(5): 1587-1595.
    [131] Rao A M, Jones D L. Efficient quadratic detection in perturbed arrays via Fourier Transform Techniques. IEEE Trans. Signal Processing, 2001, 49(7): 1269-1281.
    [132] Rao A M, Jones D L. Efficient detection with arrays in the presence of angular spacing.IEEE Trans. Signal Processing, 2003, 51(2):301-312.
    [133] Johnson D H, Dudgeon D E. Array Signal Processing: Concepts and Techniques. Engle-wood Cliffs, NJ, USA: Prentice-Hall, 1993.
    [134] Rudin W. Functional analysis. 2nd ed., Beijing, China: China Machine Press, 2004.
    [135] Haykin S. Adaptive Filter Theory. 4th ed., Englewood Cliffs, NJ, USA: Prentice-Hall,2002.
    [136] Gray R M. On the asymptotic eigenvalue distribution of Toeplitz matrices. IEEE Trans.Inform. Theory, 1972, 18(6):725-730.
    [137] Pearl J. On coding and filtering stationary signals by discrete Fourier transforms. IEEE Trans. Inform. Theory, 1973, 19(2):229-232.
    [138] Stoica P, Li H, Li J. A New Derivation of the APES Filter. IEEE Signal Processing Lett.,1999, 6(8):205-206.
    [139] Gini F, Lombardini F. Multilook APES for Multibaseline SAR interferometry. IEEE Trans.Signal Processing, 2002, 50(7): 1800-1803.
    [140] Russell D J, Palmer R D. Application of APES to adaptive arrays no the CDMA reverse channel. IEEE Trans. Veh. Technol., 2004, 53(1):3-17.
    [141] Wang Y, Sun Y, Li J, et al. Adaptive imaging for forward-looking ground penetrating radar.IEEE Trans. Aerosp. Electron. Syst., 2005, 41(3):922-936.
    [142] Alty S R, Jakobsson A, Larsson E G. Efficient time-recursive implementation of matched filterbank spectral estimators. IEEE Trans. Circuits Syst. I, 2005, 52(3):516-521.
    [143] Stark H, (eds.). Image Recovery: Theory and Application. New York: Academic Press,inc., 1987.
    [144] Rieken D W, Fuhrmann D R. Generalizing MUSIC and MVDR for multiple noncoherent arrays. IEEE Trans. Signal Processing, 2004, 52:2396-2406.
    [145] Li J, Stoica P, Viberg M. Computationally efficient angle estimation for signals with known waveforms. IEEE Trans. Signal Processing, 1995, 43(9):2154-2163.
    [146] Ottersten B, Stoica P, Roy R. Covariance matching estimation techniques for array signal processing applications. Digital Signal processing, 1998, 8(3): 185-210.
    [147] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans.Acoust., Speech, Signal Processing, 1989, 37(5):720-741.
    [148] Stoica P, Sharman K. Novel eigenanalysis method for direction estimation. Radar and Signal Processing, IEE Proceedings F, 1990, 137(1): 19-26.
    [149] Gershman A B, Stoica P. New MODE-based techniques for direction finding with an improved threshold performance. Signal Processing, 1999, 76(3):221-235.
    [150] Cardoso J F, Souloumiac A. Blind beaming for non-Gaussian signals. IEE Proceedings-F,1993, 140(6):362-370.
    [151] Cardoso J F. High-Order Contrasts for Independent Component Analysis. Neural Computation, 1999, 11(1): 157-192.
    [152] Cichocki A, Amari S. Adaptive Blind Signal and Image Processing. West Sussex, England:John Wiley & Sons, 2002.
    [153] Swindlehurst A L, Stoica P. Maximum likelihood methods in radar array signal processing.Proc. IEEE, 1998, 86(2):421-441.
    [154] Golub G H, Loan C F V. Matrix Computations. 3rd ed., Baltimore, Marland, USA: Johns Hopkins University Press, 1996.
    [155] Stoica P, Sharman K C. Maximum likelihood methods for direction-of-arrival estimation.IEEE Trans. Acoust., Speech, Signal Processing, 1990, 38(7):1132-1143.
    [156] Stoica P, Larsson E G, Gershman A B. The stochastic CRB for array processing: a textbook derivation. IEEE Signal Processing Lett., 2001, 8(5): 148-150.
    [157] Pesavento M, Gershman A B. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise. IEEE Trans. Signal Processing, 2001,49(7): 1310-1324.
    [158] Stoica P, Xiong H, Xu L, et al. Adaptive beamforming for quadrupole resonance. Digital Signal Processing, 2007, 17(3):634-651.
    [159] Wax M, Kailath T. Detection of signals by information theoretic criteria. IEEE Trans.Acoust., Speech, Signal Processing, 1985, 33(2):387-392.
    [160] Lewis R M, Torczon V. Pattern search algorithms for bound constrained minimization.SIAM Journal on Optimization, 1999, 9(4): 1082-1099.
    [161] Torczon V. On the convergence of pattern search algorithms. SIAM Journal on Optimization, 1997, 7(1): 1-25.
    [162] Audet C, Jr. J D. Analysis of Generalized Pattern Searches. SIAM Journal on Optimization,2003, 13(3):889-903.
    [163] Haykin S, (eds.). Unsupervised Adaptive Filtering, Volume I: Blind Source Separation.New York, USA: John Wiley & Sons, 2000.
    [164] Tong L, Liu R W, Soon V C, et al. Indeterminacy and idenfication of blind identification.IEEE Trans. Circuits Syst., 1991, 38(5):499-509.
    [165] Loan C V, Pitsianis N. Approximation with Kronecker products. In: Moonen M S, Golub G H, (eds.). Proceedings of Linear Algebra for Large Scale and Real Time Applications.Kluwer Publications, 1993: 293-341.
    [166] Werner K, Jansson M, Stoica P. Kronecker Structured Covariance Matrix Estimation. Proceedings of Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '07), Honolulu, Hawaii, 2007. 825-828.
    [167] Cover T M, Gamal A E. An information-theoretic proof of Hadamard's inequality. IEEE Trans. Inform. Theory, 1983, 29(6):930-931.
    [168] Ohno S, Giannakis G B. Capacity Maximizing MMSE-Optimal Pilots for Wireless OFDM Over Frequency-Selective Block Rayleigh-Fading Channels. IEEE Trans. Inform. Theory,2004,50(9):2138-2145.
    [169] Boyd S, Vandenberghe L. Convex Optimization. Cambridge, UK: Cambridge University Press, 2004.
    [170] Honig M L, Goldstein J S. Adaptive Reduced-rank interference suppression based on the multistage wiener filter. IEEE Trans. Signal Processing, 2002, 50(6):986-994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700