无线通信中的协同分集优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在无线通信系统中,信道的衰落会降低信号传输的可靠性,影响通信质量。分集技术作为一种对抗衰落的有效手段,能提高无线通信性能,已经得到了广泛的研究和应用。与传统的时域分集和频域分集技术相比,基于多天线发射或接收的空域分集技术由于不需要占用额外的时域或频域资源来传输冗余信号而具有更大的吸引力。但是,由于大小、成本和能耗等限制,在某些无线终端安装多根天线具有一定的困难。协同分集技术通过用户之间共享天线,实现虚拟多天线传输以获得空域分集,成功的解决了这一问题,是一种具有较大实用价值的新型分集技术。协同分集技术作为一种新型技术在走向应用的过程中仍有很多有待解决的问题,本文主要针对这些问题,对协同分集技术进行优化设计,研究提高协同分集性能或效率的方法。
     能否有效的与其它新型通信技术相结合,是协同分集技术面临的重要问题。放大前传协同方法能够以较低实现复杂度获得满分集度,是一种重要的协同分集方法。网络编码技术由于可已获得通信网络效率的提升而成为一种热门的通信技术。本文提出了一种基于网络编码的放大前传协同分集方法。在该方法中,协同用户通过将本地信号与接收到的协同伙伴的信号相乘,在模拟域实现网络编码,在此基础上,利用网络编码的特点,基于1个反馈比特,选择即时信道条件较好的用户传输网络编码数据,可有效提升放大前传协同分集频谱效率。在通过理论推导得出了该方法的误比特率的上界的基础上,由数值及仿真结果证明了该方法在提高频谱效率的同时,可以获得与普通放大前传协同分集方法相似的性能。
     空时协同分集技术是一种高效的协同分集技术,本文研究了空时协同分集技术,针对协同分集方法中数据两次传输的特点,提出了一种基于Alamouti空时编码的自适应空时协同分集方法,从而较大的提高了空时协同分集技术的传输效率。其基本原理是:在协同用户首次传输后,基站就进行检测并反馈检测结果,协同用户根据检测结果对后续传输进行优化。在推导出了该方法的误比特率性能之后,通过理论和仿真结果证明了该方法既能够降低空时协同分集的误码率,又能够节省传输时隙以提升系统吞吐量。
     对各种信道条件的适应能力是协同分集技术生存的关键问题之一,但是,与非协同方法相比,在有时域分集的信道条件下,普通有校验解码前传协同方法不仅不能获得性能提升,反而会导致性能下降。本文提出了一种基于信号空间分集的有校验解码前传协同方法。在所提方法中,协同用户将中继信号和自己的信号按信号空间分集的优化方式进行旋转叠加然后传输,基站对数据进行迭代检测。仿真结果表明无论信道是否存在时域分集,所提方法均可获得较好的误码率性能。
     最新的研究表明无校验解码前传协同方法能够在低复杂度的情况下通过各种方式接近或达到满分集性能,具有较好的应用前景。但由于发生在中继节点处的错误传播,无校验解码前传的性能分析及优化具有一定的难度。本文在建立无校验解码前传断线率模型的基础上,提出了一种在各态历经性信道中基于少量反馈比特的最小化断线率的方法。仿真结果表明该方法仅通过很少的反馈比特就可以显著的提升性能。
In wireless communication system, channel fading can decrease the reliability and quality of communication. Diversity technique, which is an efficient manner to combat fading and improve the communication performance, has been widely researched and used. Space diversity, which does not require extra time or frequency resource to transmit redundant signal, is more attractive than traditional time and frequency diversity techniques. However, it is difficult to deploy multiple antennas on some wireless equipments due to size, cost and energy constrains. Cooperative diversity, in which users share their antennas to obtain space diversity, solves this problem and becomes a new valuable diversity technique. There're still some problems to be solved on application of cooperative diversity. This dissertation develops the research on optimized design of cooperative diversity, to solve some of these problems.
     How to work together with other new technologies is an important problem of cooperative diversity. Amplify-and-forward cooperative diversity scheme is an important cooperative manner as its low complexity and full diversity orders. Network coding is an attractive technology to improve efficiency of communication networks. In this dissertation, an amplify-and-forward cooperative diversity scheme based on network coding is proposed. In this scheme, the cooperation users multiply local signals to the signals received from cooperation partner to realize network coding in analog domain. The network coding signals are transmitted by the user with better instantaneous channel condition, based on one bit feedback from the destination, to improve the spectral efficiency. The theoretic bound of average bit error rate is derived. Both of the theorem and simulation results prove that the proposed scheme has similar performance with plain amplify-and-forward, while achieving higher spectral efficiency.
     Space time cooperative diversity is a high-efficiency cooperative diversity manner. In this dissertation, space time cooperative diversity techniques are researched. An adaptive space time transmission scheme base on twice detections at base station is proposed, where the cooperation users adaptively arrange resource in retransmission based on the detection results fed back by base station. The theoretic bit error rate of the proposed scheme is derived. Both theorem and simulation results prove the proposed scheme can improve the bit error rate, while achieving higher throughput by saving some transmission slots.
     The adaptation capability in different kinds of channels is one of the key issues for cooperative diversity technologies to survive. However, the performance of plain decode-and-forward with cyclic redundant check cooperative diversity scheme is worse than non-cooperation scheme when the latter can achieve time diversity. In this dissertation a signal space diversity decode-and-forward scheme is proposed. In the propose scheme, cooperation users rotate and superpose local signals and the signals received from cooperation partner in signal space diversity manner, and the destination node detects the signals in iterative manner. Simulation results prove that the proposed scheme can achieve good performance in both two kinds of channels.
     Recent research shows that decode-and-forward without cyclic redundant check cooperative diversity scheme can approach to full diversity orders with low complexity, and consequently has a good prospect in application. However the performance analysis and optimization is difficult due to the wrong-bits-forward at relay nodes. In this dissertation, an outage probability model for decode-and-forward without cyclic redundant check cooperative diversity scheme is made up first, and based on this model an outage probability minimization algorithm with a few feedback bits in ergodic channel is proposed. The simulation results prove that a few feedback bits can heavily improve the outage performance in the proposed scheme.
引文
[1]尤肖虎,曹淑敏,傅学群.我国未来移动通信研究开发展望.电信科学,2002,18(8):26-29
    [2]W.W.Lu.4G research in Asia.IEEE Communication Magazine,2003,3:104-106
    [3]T.S.Rappaport,A.Annamalai,R.M.Buehrer,etal.Wireless communications:past events and a future perspective.IEEE Communication Magazine 50th Anniversary Commemorative Issue,2002,5:148-161
    [4]S.Y.Hui,K.H.Yeung.Challenges in the migration to 4G mobile systems.IEEE Communication Magazine,2003,41(12):54-59
    [5]H.B(o|¨)lcskei,A.J.Paulraj,K.V.S.Hari.Fixed broadband wireless access:state of the art,challenges,future directions.IEEE Communication Magazine,2001,38(1):100-108
    [6]Sampath H,Talwar S,Tellado J,etal.A fourth-generation MIMO-OFDM broadband wireless system:Design,performance,field trial results.IEEE Communication Magazine,2002,38(9):14-149.
    [7]St(u|¨)ber G L,Barry J R,Mclaughlin S W,etal.Broadband MIMO-OFDM Wireless Communications.Proceedings of the IEEE,2004,92(2):271-294
    [8]A.V.Zelst,T.C.W.Schenk.Implementation of a MIMO OFDM-based wireless LAN system.IEEE Transactions on Signal Processing,2004,52(2):483-494
    [9]Y.Kim,B.J.Jeong,J.Chung,etal.Beyond 3G:vision,requirements,enabling technologies.IEEE Communication Magazine,2003,41(3):120-124
    [10]S.Catreux,V.Erceg,D.Gesbert,etal.Adaptive modulation and MIMO coding for broadband wireless data networkings.IEEE Communication Magazine,2002,39(6):108-115
    [11]R.D.Murch,K.B.Letaief.Antenna systems for broadband wireless access.IEEE Communication Magazine,2002,38(4):76-83
    [12]S.D.Blostein,H.Leib.Multiple antenna systems:Their role and impact in future wireless access.IEEE Communication Magazine,2003,40(7):94-101
    [13]T.S.Rappaport.Wireless Communications:Principles and Practice.Prentice-Hall,Inc.,1996,40-52
    [14]D.Brennan.Linear diversity combining techniques.IRE,1959,vol.47:1075-1102
    [15] W. C. Jakes. Microwave Mobile Communication, 2nd ed. Piscataway, NJ: IEEE Press, 1994,60-65
    [16] G. L. Stuber. Principles of Mobile Communications. Norwell, MA: Kluwer Academic Publishers, 1996,40-53
    [17] T. S. Rappaport. Wireless Communications: Principles and Practice. Upper Saddle River, NJ:Prentice Hall, 1996, 60-78
    [18] J. G. Proakis. Digital Communications, 3rd ed. New York: McGraw Hill, 1995,96-99
    [19] S. Benedetto, E. Biglieri. Principles of Digital Transmission with Wireless Applications. New York: Kluwer Academic/Plenum Publishers, 1999,56-60
    [20] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE J.Select. Areas Commun., 1998,16(10):1451-1458
    [21] T. M. Cover, A. A. El Gamal. Capacity theorems for the relay channel. IEEE Trans. Info.Theory, September 1979, 25(5):572-584
    [22] M. H. M. Costa. On the Gaussian interference channel. IEEE Transactions on Information Theory,, May 1985, 31(5):607-615
    [23] A. H(?)st-Madsen. On the capacity of wireless relaying. Proc. IEEE Vehicular Technology Conference, Vancouver, B. C, Canada, September 2002, vol.3:1333-1337
    [24] A. H(?)st-Madsen. On the capacity of cooperative diversity in slow fading channels. Allerton Conference on Communications, Control, and Computing, Monticello, IL, October 2002
    [25] M. Valenti, B. Zhao. Distributed turbo codes: Towards the capacity of the relay channel. IEEE Vehicular Technology Conference, Orlando, FL, October 2003,
    [26] B. Zhao, M. Valenti. Some new adaptive protocols for the wireless relay channel. Proc.Allerton Conference on Communications, Control, and Computing, Monticello, IL, October2003,Vol(1):345-349
    [27] J. N. Laneman, G. W. Wornell. Energy-effcient antenna sharing and relaying for wireless networks. Proc. IEEE Wireless Communcations and Networking Conference, Chicago,September 2000, 7-12
    [28] J. N. Laneman, D. N. C. Tse, G W. Wornell. Cooperative diversity in wireless networks:efficient protocols and outage behavior. IEEE Trans. Inf. Theory, Dec. 2004,vol.50:3062-3080
    [29] J. N. Laneman, G W. Wornell, D. N. C. Tse. An e_cient protocol for realizing cooperative diversity in wireless networks. Proc. IEEE International Symposium on Information Theory(ISIT),Washington, D. C., June 2001,294
    [30] A. Sendonaris. Advanced techniques for next-generation wireless systems: [Ph.D.dissertation]. Rice University, May 1999
    [31] A. Sendonaris, E. Erkip, B. Aazhang. Increasing uplink capacity via user cooperation diversity. Proc. IEEE International Symposium on Information Theory (ISIT), Cambridge,MA,August 1998, Vol.1:156
    [32] A. Sendonaris, E. Erkip, B. Aazhang. User cooperation diversity Part I: System description. IEEE Transactions on Communications, November 2003,51(11): 1927-1938
    [33] A. Sendonaris, E. Erkip, B. Aazhang. User cooperation diversity Part II: Implementation aspects and performance analysis. IEEE Transactions on Communications, November 2003,51(11):1939-1948
    [34] B. Wang, J. Zhang, A. Host-Madsen. On the capacity of MIMO relay channels. IEEE Trans.Inf. Theory, 2005, 51(1):29-43
    [35] A. El Gamal, S. Zahedi. Capacity of a class of relay channels with orthogonal components.IEEE Trans. Inf. Theory, 2005, vol.51(5): 1815-1817
    [36] A. Host-Madsen, J. Zhang. Capacity bounds and power allocation for wireless relay channels.IEEE Trans. Inf. Theory, 2005, 51(6):2020-2040
    [37] G Kramer, M. Gastpar, P. Gupta. Cooperative strategies and capacity theorems for relay networks. IEEE Trans. Inf. Theory, 2005, 51(9):3037-3063
    [38] Y. Liang, V. V. Veeravalli. Gaussian orthogonal relay channels: optimal resource allocation and capacity. IEEE Trans. Inf. Theory, 2005, 51(9):3284-3289
    [39] Y. Liang, V. V. Veeravalli. Cooperative relay broadcast channels. IEEE Trans. Inf. Theory,2007, 53(3):900-928
    [40] A. S. Avestimehr, D. N. C. Tse. Outage capacity of the fading relay channel in the low-SNR regime. IEEE Trans. Inf. Theory, 2007, 53(4):1401-1415
    [41] J. Wagner, B. Rankov, A. Wittneben. On the asymptotic capacity of the Rayleigh fading amplify-and-forward MIMO relay channel. Proc. IEEE ISIT, Nice, France, June 24-29,2007,Vol.1:2711-2715
    [42] Y. Jing, B. Hassibi. Distributed space-times coding in wireless relay networks. IEEE Trans.Wireless Commun., 2006, 5(12):3524-3536
    [43] Y. Jing, B. Hassibi. Cooperative diversity in wireless relay networks with multiple-antenna nodes. Proc. IEEE ISIT, Adelaide, Australia, Sep. 2005, 815-819
    [44] Y. Jing, H. Jafarkhani. Using orthogonal and quasi-orthogonal designs in wireless relay networks. Proc. IEEE GLOBECOM, Dec. 2006, 1-5
    [45] F. Oggier, B. Hassibi. An algebraic family of distributed space-time codes for wireless relay networks. Proc. IEEE ISIT, Seattle, USA, July 9-14, 2006, 538-541
    [46] F. Oggier, B. Hassibi. A coding scheme for wireless networks with multiple antenna nodes and no channel information. Proc. IEEE ICASSP, Apr. 2007,413-416
    [47] Y. Chang, Y. Hua. Diversity analysis of orthogonal space-time modulation for distributed wireless relays. Proc. IEEE ICASSP2004, May 2004, 561-564
    [48] S. Yang, J. C. Belfiore. Optimal space-time codes for the M1M0 amplify-and-forward cooperative channel. IEEE Trans. Inf. Theory, 2007,53(2):647-663
    [49] A. Murugan, K. Azarian, H. El Gamal. Cooperative lattice coding and decoding. IEEE J.Select. Areas Commun., 2007, 25(2):268-279
    [50] Y. Ding, J. Zhang, M. Wong. The amplify-and-forward half-duplex cooperative system: pairwise error probability and precoder design. IEEE Trans. Signal Processing, 2007,55(2):605-617
    [51] G Wang, Y. Zhang, M. Amin. Differential distributed space-time modulation for cooperative networks. IEEE Trans. Wireless Commun., 2006, 5(11):3097-3108
    [52] S. Yiu, R. Schober, L. Lampe. Distributed space-time block coding. IEEE Trans. Commun.,2006,54(7):1195-1206
    [53] H. Mheidat, M. Uysal, N. Al-Dhah. Equalization techniques for distributed space-time block codes with amplify-and-forward relaying. IEEE Trans. Signal Processing, 2007,55(5):1839-1852
    [54] E. Lindskog, A. Paulraj. A transmit diversity scheme for channels with intersymbol interference,. IEEE. Int. Conf. Commun., New Orleans, LA, 2002,Vol(1):307-311
    [55] N. Al-Dhahir. Single carrier frequency domain equalization for space time block coded transmissions over frequency selective fading channels. IEEE Commun. Lett., 2001,5(7):304-306
    [56] Z. Liu, G. B. Giannakis, A. Scaglione, S. Barbarossa. Block precoding and transmit-antenna diversity for decoding and equalization of unknown multipath channels. 33rd Asilomar Conf.Signals,Syst., Comput., Pacific Grove, CA, Nov. 1999,40-45
    [57] G. Susinder Rajan, B. Sundar Rajan. A non-orthogonal distributed space-time coded protocol- part Ⅰ: signal model and design criteria. Proc. IEEE Inf. Theory Workshop, Chengdu, China,2006, 385-389
    [58] G. Susinder Rajan, B. Sundar Rajan. A non-orthogonal distributed space-time coded protocol- part Ⅱ: code construction and DM-G tradeoff. Proc. IEEE Inf. Theory Workshop, Chengdu,China, 2006,488-492
    [59] P. A. Anghel, M. Kaveh. On the performance of distributed spacetime coding systems with one and two non-generative relays. IEEE Trans. Wireless Commun., 2006, vol.5(3):682-692
    [60] M. C. Ju, H. K. Song, I. M. Kim. Performance analysis of distributed Alamouti's code for cooperative diversity networks. Canadian Conference on Electrical and Computer Engineering, 2008,61-64
    [61] M. Janani, A. Hedayat, T. E. Hunter, A. Nosratinia. Coded cooperation in wireless communications: Space-time transmission and iterative decoding. IEEE Trans. Signal Process., 2004, 52(2):362-371
    [62] A. Stefanov, E. Erkip. Cooperative coding for wireless networks. IEEE Trans. Commun.,2004, 52(9): 1470-1476
    [63] T. E. Hunter, A. Nosratinia. Cooperation diversity through coding. Proc. IEEE ISIT,Lausanne, Switzerland, 2002, 220
    [64] T. E. Hunter, A. Nosratinia. Coded cooperation under slow fading, fast fading, and power control. Proc. Asilomar Conf. Signals, Syst. and Comp., 2002, Vol.l:118-122
    [65] T. E. Hunter, A. Nosratinia. Diversity through coded cooperation. IEEE Trans. Wireless Commun., 2006, 5(2):283-289
    [66] T. Hunter, S. Sanayei, A. Nosratinia. Outage analysis of coded cooperation. IEEE Trans. Inf.Theory, 2006, 52(2):375-391
    [67] R. Ahlswede, N. Cai, S.-Y. R. Li, R. W. Yeung. Network information flow. IEEE Trans. on Inform. Theory, 2000, 46(7):1204-1216
    [68] Y. D. Chen, S. Kishore, J. Li. Wireless diversity through network coding. Proc. WCNC, 2006,vol.3:1681-1686
    [69] X. Lei, E. F. Tomas, K. Jorg, etal. A network coding approach to cooperative diversity. IEEE Transactions on Information Theory, 2007, 53(10):3714-3721
    [70] I. Maric, R. D. Yates. Bandwidth and power allocation for cooperative strategies in Gaussian relay networks. Proc. IEEE Asilomar Conf. Signals, Systems and Computers, 2004,vol.2:1907-1911
    [71] T. Ng, W. Yu. Joint optimization of relay strategies and resource allocation in cooperative cellular networks. IEEE J. Select. Areas Commun., 2007, 25(2):328-229
    [72] X. M. Deng, A. M. Haimovich. Power allocation for cooperative relaying in wireless networks. IEEE Commun. Lett., 2005, 9(ll):994-996
    [73] S Serbetli, A Yener. Relay assisted F/TDMA ad hoc networks: node classification, power allocation and relaying strategies. IEEE Trans. Wireless Commun., 2008, 56 (6): 937-947
    [74] G Li, H. Liu. Resource allocation for OFDMA relay networks with fairness constraints.IEEE J. Select. Areas Commun., 2006,24(11):2061-2069
    [75] I. Hammerstrom, A. Wittneben. On the optimal power allocation for nonregenerative OFDM relay links. Proc. IEEE ICC, Turkey, 2006,4463-4468
    [76] S. Savazzi, U. Spagnolini. Energy aware power allocation, strategies for multihop-cooperative transmission schemes. IEEE J. Sel. Areas Commun., 2007,25(2):318-327
    [77] R. Annavajjlal, P. C. Cosman, L. B. Milstein. Statistical channel knowledge-based optimum power allocation for relaying protocols in the high SNR regime. IEEE J. Sel. Areas Commun., 2007, 25(2):292-305
    [78] L. Dai, W. Chen, K. B. Letaief, Z. Cao. A fair multiuser cooperation protocol for increasing the throughput in energy-constrained ad-hoc networks. Proc. IEEE ICC, Istanbul, Turkey, 2006,3633-3638
    [79] W. Chen, L. Dai, K. B. Letaief, Z. Cao. Fair and efficient resource allocation for cooperative diversity in ad-hoc wireless networks. Proc. IEEE WCNC, Hong Kong, 2007,4096-4101
    [80] Y. Li, B. Vucetic, Z. Zhou, M. Dohler. Distributed adaptive power allocation for wireless relay networks. IEEE Trans. Wireless Commun., 2007, 6(3):948-958
    [81] J. Luo, R. S. Blum. L. J. Cimini, L. J. Greenstein. Decode-and-forward cooperative diversity with power allocation in wireless networks. IEEE Trans. Wireless Commun., 2007,6(3):793-799
    [82] J. Tang, X. Zhang. Cross-layer resource allocation over wireless relay networks for quality of service provisioning. IEEE J. Sel. Areas Commun., 2007, 25(5):645-656
    [83] I. Hammerstrom, A. Wittnenben. Power allocation schemes for amplify-and-forward MIMO-OFDM relay links. IEEE Trans. Wireless Commun., 2007, 6(8):2798-2802
    [84] N. Ahmed, M. Khojastepour, B. Aazhang. Outage minimization and optimal power control for the fading relay channel. Proc. IEEE Inf. Theory Workshop, San Antonio, TX, 2004,458-462
    [85] N. Ahmed, M. Khojastepour, A. Sabharwal, B. Aazhang. Outage minimization with limited feedback for the fading relay channel. IEEE Trans. Commun., 2006, 54(4):659-669
    [86] D. Gunduz, E. Erkip. Opportunistic cooperation and power control strategies for delay-limited capacity. Conference on Information Sciences and Systems.2005,100-105
    [87] D. Gunduz, E. Erkip. Outage minimization by opportunistic cooperation. Proc. WirelessCom,Symp. Inf. Theory, Maui, HI, 2005, 67-71
    [88] A. Ribeiro, X. Cai, G B. Giannakis. Symbol error probabilities for general cooperative links.IEEE Trans. Wireless Commun., 2005,4(5): 1264-1273
    [89] P A ANGHEL, M. KAVEH. Exact symbol error probability of a cooperative network in a Rayleigh-fading environment. IEEE Trans on Wireless Commun., 2004, 3(5): 1416-1421
    [90] M. Yukse, E. Erkip. Diversity in relaying protocols with amplify-and-forward. GlobeCom,2003, Vol.4:2025-2029
    [91] C. Deqiang, J. N. Laneman. Modulation and demodulation for cooperative diversity in wireless systems. IEEE Trans. on Wireless Commun., 2006, 5(7):1785-1794
    [92] W. Tairan, C. Alfoso, B. Georgios, High-performance Cooperative Demodulation with Decode-and-Forward Relays. IEEE Trans. Commun., 2007, 55(7): 1427-1438
    [93] A. Khoshnevis, A. Sabharwal. Performance of quantized power control in multiple antenna systems. Proc. IEEE Int. Conf. Commun. Paris, France, Jun. 2004, 803-807
    [94] P. Robertson, E. Villebrun, P. Hoeher. A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. Proc. ICC, June 1995, vol.2:1009-1013
    [95] V. Tarokh, N. Seshardi, A. R. Calderbank. Space-time codes for high data rate wireless communication: Performance criteria and code construction. IEEE Trans. Inform. Theory,1998,44(3):744-765
    [96] V. Tarokh, H. Jafarkhani, A. R. Calderbank. Space-time block codes from orthogonal designs. IEEE Trans. Inform. Theory, 1999,45(7):1456-1467
    [97] S. B. Wicker. Error Control Systems for Digital Communcation and Storage. Englewood Cliffs, NJ: Prentice-Hall, 1995, 85-96
    [98] M. K. Simon, M.-S. Alouini. Digital Communication over Fading Channels: A Unified Approach to Performance Analysis. New York: Wiley, 2000,157-190
    [99] Q. Liu, S. Zhou, G. B. Giannakis. Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications,2004, 3 (5): 1746-1755
    [100] S. Benedetto,G Montorsi. Unveiling turbo codes: Some results on parallel concatenated coding schemes. IEEE Trans. Inform. Theory, 1996,42(3):409-428
    [101] M. O. Hasna, M.-S. Alouin. A performance study of dual-hop transmissions with fixed gain relays. Proc. ICASSP, 2003, Vol.4:189-192
    [102] M. O. Hasna, M.-S. Alouini. A performance study of dual-hop transmissions with fixed gain relays. IEEE Trans. Wireless Commun., 2004, 3(11):1963-1968
    [103] L. Zheng, D. N. C. Tse. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 2003,49(5): 1073-1096
    [104] Boulle k, Belfiore J. Modulation schemes design for the Rayleigh fading channel. Proc. CISS.NJ-USA: Princeton Press, 1992,46-53
    [105] Giraud X, Boutillon E, Belfiore J. Algebraic tools to build modulation schemes for fading channels. IEEE Trans. Inf. Theory, 1997,43(3):938-952
    [106] Boutros J, Viterbo E. Signal space diversity: a power-and bandwidth-efficient diversity technique for Rayleigh fading channel. IEEE Trans. Inf. Theory, 1998,44(7): 1453-1467
    [107] Yabo Li, Xiang-Gen Xia, Genyuan Wang. Simple iterative methods to exploit the signal-space diversity. IEEE Trans. COMMUN., 2005, 53(l):32-38
    [108] S. Bhashyam, A. Sabharwal, B. Aazhang. Feedback gain in multiple antenna systems.IEEE Trans. Commun, 2002, 50(5):795-798

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700