IGF-Ⅰ、Ⅱ及其受体IGF-IR、IIR在牛早期胚胎中的表达和作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素样生长因子(insulin-like growth factor,IGF)和一些与它相关的成分构成了一个复杂的生长因子家族,它们对早期胚胎发育的调节起着重要的作用。本研究主要通过RT-PCR方法和免疫荧光标记检测了IGF-Ⅰ、Ⅱ和IGF-ⅠR、ⅡR在牛卵母细胞、早期胚胎中的表达情况;在成熟培养液和发育培养液中添加不同剂量的IGF-Ⅰ、Ⅱ,观察其对卵母细胞和胚胎发育的影响;采用RNAi的方法进一步探讨了IGF-ⅠR在牛早期胚胎发育中的作用。
     一、IGF-Ⅰ、Ⅱ和IGF-ⅠR、ⅡR mRNA在牛卵母细胞和早期胚胎中的表达
     通过RT-PCR的方法检测了IGF-Ⅰ、Ⅱ和IGF-ⅠR、ⅡR mRNA在卵母细胞、早期胚胎中的表达情况。结果显示在卵母细胞和早期胚胎中均检测到IGF-Ⅱ和IGF-ⅠR、ⅡR mRNA的表达;但是始终未检测到IGF-ⅠmRNA的表达。
     二、IGF-Ⅱ和IGF-ⅠR、ⅡR在牛卵母细胞和早期胚胎中的表达
     本研究首次对IGFs蛋白在牛卵母细胞和早期胚胎中的表达进行了定位。通过免疫荧光标记和激光共聚焦观察检测IGF-Ⅱ和IGF-ⅠR、ⅡR蛋白在卵母细胞、早期胚胎中的表达情况。结果表明IGF-Ⅱ和IGF-ⅠR、ⅡR的表达情况基本一致:它们在卵母细胞和二细胞期胚胎中主要集中在细胞边缘如膜及膜下区域;并且存在于COC的颗粒细胞中,以及8细胞期胚胎和桑椹胚的整个卵裂球细胞质中;在囊胚的滋养层细胞中可以检测到这些蛋白,但是在内细胞团中没有检测到。
     三、IGF-Ⅱ对牛卵母细胞成熟的影响
     本研究首次观察了在牛卵母细胞成熟培养液中添加IGF-Ⅱ对胚胎发育的影响。将采集到的COCs随机平均分成五组,分别成熟培养于含有0(对照)、10、20、50、100 ng/ml IGF-Ⅱ的M199+0.6%BSA的成熟培养液中,经过成熟培养、受精和发育培养后,统计胚胎的发育率和囊胚凋亡细胞数。结果表明各添加组与对照组之间对卵裂率的影响没有显著差异。但是在8细胞胚胎发育率上,20 ng/ml添加组(58.2%)明显高于对照组(44.5%)(P<0.05);而且在囊胚发育率方面,20 ng/ml添加组最高(37.0%),明显高于其他各组(25.0%,33.3%,24.8%,21.2;P<0.05)。20 ng/ml添加组的囊胚细胞数(126)也明显高于对照组(103,P<0.05),但是囊胚细胞中的死细胞比率在各组间没有明显差异。
     四、IGF-Ⅰ和IGF-Ⅱ对胚胎发育的影响
     1.添加IGF-Ⅰ对胚胎发育的影响
     在SOF+PVA培养液中添加不同剂量的IGF-Ⅰ对早期胚胎进行发育培养,培养结果显示,添加0、1、5和10 ng/ml IGF-Ⅰ的8细胞期胚胎发育率和囊胚发育率分别为55.1%、55.1%、62.9%、60.9%和18.9%、19.6%、24.2%、22.7%,结果表明8细胞期胚胎发育率与囊胚发育率在各组之间无显著差异,5 ng/ml组发育效果最好。
     2.IGF-Ⅱ对早期胚胎发育的影响
     本研究首次观察了在发育培养液中添加IGF-Ⅱ对胚胎发育的影响。在SOF+PVA培养液中添加不同剂量的IGF-Ⅱ对早期胚胎进行发育培养,发育数据显示,添加0、50、100和150 ng/ml IGF-Ⅱ的8细胞期胚胎发育率和囊胚发育率分别为63.6%、68.9%、61.3%、63.9%和19.2%、21.7%、30%、25.9%,结果表明8细胞期胚胎发育率在各组之间无显著差异;100 ng/ml组囊胚发育率明显高于对照组,有显著性差异(P<0.05)。
     五、RNAi干涉IGF-ⅠR对胚胎发育的影响
     1.IGF-ⅠR siRNA的设计与干涉效果检测
     本研究首次把siRNA用于牛胚胎发育的研究。利用软件设计siRNA干涉序列,并对合成回来的序列进行干涉效果检测。对未成熟卵母细胞注射IGF-ⅠRsiRNA和对照siRNA,然后在加有成熟抑制剂的M199培养液中培养,分别于培养6小时和24小时后对IGF-ⅠR mRNA进行定量PCR检测。结果显示注射6小时和24小时后IGF-ⅠR mRNA表达量分别降为72%和54%。对受精卵注射IGF-ⅠR siRNA,于培养24小时后检测卵裂胚的mRNA和蛋白表达,发现均有所减少。结果表明,本实验所设计的IGF-ⅠsiRNA具有良好的干涉效果,可以用于IGF-Ⅰ基因敲减的研究。
     2.IGF-ⅠR siRNA注射对早期胚胎发育的影响
     注射IGF-ⅠR siRNA的受精卵经发育培养,于受精后第八天统计发育率和囊胚细胞数;未注射组、注射对照siRNA组、注射IGF-ⅠR siRNA组的8细胞期胚胎发育率、囊胚发育率分别为48.8%、46.7%、38.9%和35.4%、33.0%、23.3%;各组囊胚细胞数分别为:116、81、64。结果表明,各组在8细胞期胚胎发育率方面没有显著差异,但是在囊胚发育率方面注射IGF-ⅠR siRNA组明显低于两对照组,有显著差异(P<0.05);在囊胚细胞数方面,注射后的囊胚细胞数明显低于未注射组(P<0.05),注射对照siRNA组囊胚细胞数明显比注射IGF-ⅠsiRNA组囊胚细胞数多,具有显著差异(P<0.05)。
     研究结果表明,在牛卵母细胞和早期胚胎中有IGF-Ⅱ和IGF-ⅠR、ⅡR mRNA和蛋白的存在,但是无法检测到IGF-ⅠmRNA。在成熟液和发育液中添加IGF-Ⅱ可以提高胚胎发育率,而且在成熟液中添加IGF-Ⅱ可以增加囊胚细胞数,但是对于凋亡细胞数没有影响。通过注射IGF-ⅠR siRNA发现,IGF-ⅠR siRNA显著降低了胚胎发育率和囊胚细胞数。
Insulin-like growth factors and its relatives constitute a family of growth factors that might be implicated and important in growth regulation of early embryos.This study aimed to assess expression and location of insulin-like growth factorⅠ(IGF-Ⅰ), insulin-like growth factorⅡ(IGF-Ⅱ) and their receptors insulin-like growth factor receptor typeⅠ(IGF-ⅠR),insulin-like growth factor receptor typeⅡ(IGF-ⅡR) in bovine oocytes and preimplantation embryos by using RT-PCR and immunofluorescence label technique.IGF-Ⅰ/Ⅱsupplemented in maturation and development medium with different concentration were used to evaluate their effects on oocyte maturation and embryo development.The function of IGF-ⅠR on preimplantation embryo development was further discussed by RNA interference (RNAi).
     1.Expression of IGF-Ⅰ/Ⅱand IGF-ⅠR/ⅡR mRNA in bovine oocyte and preimplantation embryo
     IGF-Ⅰ/Ⅱand IGF-ⅠR/ⅡR mRNA expression in oocytes and preimplantation embryos was detected by using RT-PCR.The results indicated that there was expression of IGF-Ⅱand IGF-ⅠR/ⅡR mRNA in immatured oocytes,matured oocytes and embryos.The IGF-ⅠmRNA was not detected in any stage of embryos and oocytes.
     2.Expressions of IGF-Ⅱand IGF-ⅠR/ⅡR protein in bovine oocytes and preimplantation embryos
     The protein's localization of IGF-Ⅱ,IGF-ⅠR and IGF-ⅡR in bovine preimplantation embryo were first observed in this research.The results showed that expression of IGF-Ⅱand IGF-ⅠR/ⅡR was detected in immatured and matured oocytes,cumulus cells,fertilized oocytes and different stage preimplantation embryos.The expression patterns of IGF-Ⅱand IGF-ⅠR/ⅡR in embryos were similar. They were near the membrane in oocytes and 2-cell stage embryos,and in the whole cell in COC's cumulus,8-cell stage embryos and morula,and they can be observed in trophectoderm(TE) cells but not in inner cell mass(ICM) at the blastocyts stage.
     3.Effects of IGF-Ⅱon bovine oocyte maturation
     The effect of IGF-Ⅱsupplemented in maturation medium on embryo development was observed first in this research.COCs were cultured in M199+ 0.6%BSA supplemented with 0,10,20,50 and 100ng/ml IGF-Ⅱrespectively for maturation.After in vitro fertilization and culture,the rates of embryo development and the dead cells in blastocysts were counted.The results indicated that there was no significant difference in cleavage rates between treated groups and control. There was a significant difference in 8-cell stage embryo development rates between 20ng/ml treatment(58.2%) and control(44.5%,P<0.05).And the best blastocyst development rate was obtained in 20ng/ml treatment(37.0%) compared with others(25.0%,33.3%,24.8%,21.2;P<0.05).Cell number of blastocysts in 20 ng/ml treatment(126) was significant higher than that in control(103,P<0.05). There was no significant difference on the rates of dead cells in blastocysts in different treatments.
     4.Effects of IGF-Ⅰand IGF-Ⅱon bovine preimplantation development
     4.1 Effects of IGF-Ⅰon bovine preimplantation embryo development
     Embryos derived from IVF were cultured in SOF+PVA added with 0,1,5,10 ng/ml IGF-Ⅰrespectively.The results showed that the rates of 8-cell stage embryos and blastocyst were 55.1%,55.1%,62.9%,60.9%and 18.9%,19.6%,24.2%,22.7% respectively.There was no siginificant difference between different treatments.The best development rate was observed in 5ng/ml treatment.
     4.2 Effects of IGF-Ⅱon bovine preimplantation embryo development
     The effect of IGF-Ⅱsupplemented in developmental culture medium on embryo development was observed first in this research.Embryos derived from IVF were cultured in SOF+PVA added with 0,50,100,150ng/ml IGF-Ⅱrespectively.The rates of 8-cell stage embryo and blastocyst were 63.6%,68.9%,61.3%,63.9%and 19.2%, 21.7%,30%,25.9%respectively.There was no significant difference on rates of 8-cell stage embryo between different treatments.The rate of blastocysts in 100 ng/ml treatment was higher than that in control(P<0.05).
     5.Effects of IGF-ⅠR siRNA injection on bovine preimplantation embryo development
     5.1 IGF-ⅠR siRNA design and effect detection
     As the first time,siRNA was used on bovine embryo development in this research.IGF-ⅠR siRNA designed by software was used to detect the interference effect.Immatured oocytes were injected with IGF-ⅠR siRNA or control siRNA,and then cultured in M199 added with maturation inhibitor.After 6 and 24hours,the IGF-ⅠR mRNA was detected by real-time PCR.The result showed that the IGF-ⅠR mRNA reduced to 72%and 54%.The mRNA and protein reduced both in cleavage embryos injected with IGF-ⅠR siRNA 24hours later.
     4.2Effects of IGF-ⅠR siRNA injection on preimplantation embryo development
     The fertilized oocytes with no injection(control) or injected with control siRNA and IGF-ⅠR siRNA were cultured in culture medium respectively.The rates of 8-cell stage embryo and blastocyst in the all treatments were 48.8%,46.7%, 38.9%and 35.4%,33.0%,23.3%respectively;and the cell number of blastocysts were 116,81,64 respectively.The results showed that there was no significant difference on 8-cell satge embryo rates among them.Blastocyst rates of IGF-ⅠR siRNA injected treatment was siginificant lower than that of other two treatments (P<0.05).Cell number of blastocysts in no injected treatment was significant higher than that of injected treatment(P<0.05),and it was significant higher in injected IGF-ⅠsiRNA treatment than that of injected control siRNA treatment.
     The results in this research suggested that the expression of IGF-Ⅱand IGFIR/ⅡR mRNA and protein were detected in bovine oocytes and preimplantation embryos.But IGF-ⅠmRNA could not be detected.Added IGF-Ⅱin maturation and culture medium could improve the rates of embryo development.The cell number of blastocyst was higher when IGF-Ⅱwas added in maturation medium,but there was no difference on the rate of dead cell in blastocyst.Embryo development rates and cell number in blastocysts were decreased by IGF-ⅠR siRNA injection.
引文
[1]Biggers,J.D.,J.E.Bell,and D.J.Benos.Mammalian blastocyst:Transport functions in a developing epithelium.Am.J.Physiol.1988,255:C419-C432
    [2]Paria,B.C.and S.K.Dey.Preimplantation embryo development in vitro:Cooperative interactions among embryos and role of growth factors.Proc.Natl.Acad.Sci.1990,87:4756-4760
    [3]Kelly,S.J.Studies of the developmental potential of 4- and eight-cell stage mouse blastomeres.Ⅰ.Exp.Zool.1977,200:365-376
    [4] Pedersen, R.A. Potency, lineage, and allocation in preimplantation mouse embryo. In Experimental approaches to mammalian embryonic development (ed. J. Rossant and R.A.Pedersen), 1986. pp. 3--33. Cambridge University Press, Cambridge,England
    [5] Buehr, M. and A. McLaren. Size regulation in chimaeric mouse embryos. J. Embryol. Exp.Morphol. 1974,31:229-234
    [6] Lewis, N.E. and J. Rossant. Mechanism of size regulation in mouse embryo aggregates. J.Embryol. Exp. Morphol. 1982,72: 169-181
    [7] Bowman P, Mclaren A.Cleavage rate of mouse embryos in vivo and in vitro.J Embryo Exp Mor Phol. 1970, 24:203
    [8] Baserga R, Rubin R. Cell cycle and growth control. Crit Rev Eukaryot Gene Expr. 1993, 3:47-61
    [9] Zhou J, Kumar TR, Matzuk MM, Bondy C. Insulin-like growth factor I regulates gonadotropin responsiveness in the murine ovary. Mol Endocrinol 1997, 11:1924-1933
    [10] Boulware SD, Tamborlane WV, Matthews LS, Sherwin RS. Diffuse effects of insulin-like growth factor 1 on glucose, lipid, and amino acid metabolism. Am J Physiol. 1992,262:130-133
    [11] Pos Z, Wiener Z, Pocza P, etc. Histamine suppresses fibulin-5 and insulin-like growth factor-II receptor expression in melanoma. Cancer Res. 2008 Mar 15;68(6): 1997-2005
    [12] Pantaleon, M., H. Jericho, et al. The role of insulin-like growth factor II and its receptor in mouse preimplantation development. Reprod Fertil Dev. 2003,15(1-2): 37-45
    [13] Guo L, Zhao YY, Zhao YY, etc. Toxic effects of TCDD on osteogenesis through altering IGFBP-6 gene expression in osteoblasts. Biol Pharm Bull. 2007 Nov;30(11):2018-26
    [14] Moore K, Kramer JM, Rodriguez-Sallaberry CJ, etc. Insulin-like growth factor (IGF) family genes are aberrantly expressed in bovine conceptuses produced in vitro or by nuclear transfer.Theriogenology. 2007 Sep 15;68(5):717-27
    [15] Fire A, Xu S, Montgomery MK, etc. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806-l 1
    [16] Zamore PD. Ancient pathways programmed by small RNAs. Science. 2002 May 17;296(5571):1265-9
    [17] Zamore PD, Tuschl T, Sharp PA, etc. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals.Cell.2000 Mar 31;101(1):25-33
    [18]Bernstein E,Caudy AA,Hammond SM,etc.Role for a bidentate ribonuclease in the initiation step of RNA interference.Nature.2001 Jan 18;409(6818):363-6
    [19]Hannon GJ.RNA interference.Nature.2002 Jul 11;418(6894):244-51
    [1]Zhou J,Kumar TR,Matzuk MM,Bondy C.Insulin-like growth factor Ⅰ regulates gonadotropin responsiveness in the murine ovary.Mol Endocrinol.1997,11:1924-1933
    [2]Boulware SD,Tamborlane WV,Matthews LS,Sherwin RS.Diffuse effects of insulin-like growth factor 1 on glucose,lipid,and amino acid metabolism.Am J Physiol.1992,262:130-133
    [3]Madhi EY,Resnick CE,DErocle AJ,et al.Insulin like growth factors as intra ovrian regulators of granulose cell growth and function[J].Endocr Rev.1985,6(3):400-420
    [4]Salmon WD,Daughaday WH.A hormon ally controlled serum factor which stimulates sulfate in corporation by cartilage in vitro.J Lab Cli Med,1957,49:825-836
    [5]Stewart CEH,Rotwein P.Growth,differentiation and survival:multiple physiological function for insulin-like growth factors.Physiol.Rev,1996,76:1005-1026
    [6]Rosenbium,IY,Mattson BA,Heyner S.Stage specific insulin binding in mouse preimplantation embryos.Dev Biol.1986,116:261
    [7]Heyner S,Smith RM,Schulta GA.Temporally regulated expression of insulin and insulin-like growth factors and their receptors in early mammalian development.Bioessays.1989,11:171
    [8]Rappolee DA,Sturm KS,Schultz GA,et al.The expression of growth factor ligand and receptors in preimplantation embryos.In Heyner S,Wiley LM(eds),Early embryo development and paracrine relationships.UCLS Symposia on molecular and cellular Biology,New Series 117,New York:AR Liss,1990:11-25
    [9]旭日干,张锁链,薛晓先等.屠宰母牛卵巢卵母细胞的体外受精于早期发生.[J]内蒙古大学学报(自然科学版),1989,20:407-414
    [10]Brackett BG,Oliphant G.Capacitation of rabbit spermatozoa in vitro.[J]Bio reprod,1975,12:260-274
    [11]Tervit HR,Wittingham DG,Rowson LEA.Successful culture in vitro of sheep and cattle ova[J]Rrprod fert,1972,30:493-497
    [12]Schultz,G.A.,A.Hogan,et al.Insulin,insulin-like growth factors and glucose transporters:temporal patterns of gene expression in early murine and bovine embryos.Reprod Fertil Dev,1992,4(4):361-71
    [13]Watson,A.J.,A.Hogan,et al.Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo. Mol Reprod Dev. 1992. 31(2): 87-95
    [14] Yoshida, Y., M. Miyamura, et al. Expression of growth factor ligand and their receptor mRNAs in bovine ova during in vitro maturation and after fertilization in vitro. J Vet Med Sci.1998,60(5): 549-54
    [15] Lonergan, P., A. Gutierrez-Adan, et al. Relationship between time of first cleavage and the expression of IGF-I growth factor, its receptor, and two housekeeping genes in bovine two-cell embryos and blastocysts produced in vitro. Mol Reprod Dev. 2000. 57(2): 146-52
    [16] Winger, Q. A., P. de los Rios, et al. Bovine oviductal and embryonic insulin-like growth factor binding proteins: possible regulators of "embryotrophic" insulin-like growth factor circuits. Biol Reprod. 1997. 56(6): 1415-23
    [17] Watson, A. J., M. E. Westhusin, et al. IGF paracrine and autocrine interactions between conceptus and oviduct. J Reprod Fertil Suppl. 1999. 54: 303-15
    [18] Yaseen, M. A., C. Wrenzycki, et al. Changes in the relative abundance of mRNA transcripts for insulin-like growth factor (IGF-I and IGF-II) ligands and their receptors (IGF-IR/IGF-IIR) in preimplantation bovine embryos derived from different in vitro systems. Reproduction.2001. 122(4): 601-10
    [19] Moore, K., J. M. Kramer, et al. Insulin-like growth factor (IGF) family genes are aberrantly expressed in bovine conceptuses produced in vitro or by nuclear transfer. Theriogenology.2007. 68(5): 717-27
    [20] Warzych, E., C. Wrenzycki, et al. Maturation medium supplements affect transcript level of apoptosis and cell survival related genes in bovine blastocysts produced in vitro. Mol Reprod Dev. 2007. 74(3): 280-9
    [21] Watson, A. J., P. H. Watson, et al. A growth factor phenotype map for ovine preimplantation development. Biol Reprod. 1994. 50(4): 725-33
    [22] Niemann, H. and C. Wrenzycki. Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology. 2000. 53(1): 21-34
    [23] Bertolini, M., S. W. Beam, et al. Growth, development, and gene expression by in vivo- and in vitro-produced day 7 and 16 bovine embryos. Mol Reprod Dev. 2002. 63(3): 318-28
    [24] Lazzari, G., C. Wrenzycki, et al. Cellular and molecular deviations in bovine in vitro-produced embryos are related to the large offspring syndrome. Biol Reprod. 2002. 67(3):767-75
    [25] Harvey, M. B. and P. L. Kaye. IGF-2 receptors are first expressed at the 2-cell stage of mouse development. Development. 1991. 111(4): 1057-60
    [26] Rappolee, D. A., K. S. Sturm, et al. Insulin-like growth factor II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos. Genes Dev. 1992. 6(6):939-952
    [27] Pantaleon, M., H. Jericho, et al. The role of insulin-like growth factor II and its receptor in mouse preimplantation development. Reprod Fertil Dev. 2003. 15(1-2): 37-45
    [28] Dechiara TM, Efstratiadis A, Robertson EJ. Parental imprinting of the mouse insulin-like growth factor-2 gene [J]. Cell, 1991,64: 849-849
    [29] Spanos S, Becker DL, Winston RM, et al. Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biology of Reproduction.2000,63: 1413-1420
    [30] Kowalik A, Liu HC, He ZY, et al. Expression of the insulin like growth factor-1 gene and its receptor in preimplantation mouse embryos; is it a marker of embryo viability?[J] Mol Hum Peprod, 1999,5(9): 861-865
    [1] Motlik J, Fulka J. Factors affecting meiotic competence in pig oocytes. Theriogenology, 1986,25:87-96
    
    [2] Thibault C,Szollosi D,Gerard M.Mammalian oocyte maturation. Reprod Nutr Dev 1987,27:85-896
    [3] HammondJM, Hsu C-J, MondscheinJS, Canning SF. Paracrine and autocrine functions of growth factors in the ovarian follicle. J Anim Sci 1988, 66(suppl 2):21-31
    [4] Carson RS, Zhang Z, Hutchinson LA, Herington AC, FindlayJK. Growth factors in ovarian function. J Reprod Fertil 1989; 85:735-746
    [5] Matsui, M, Y. Takahashi, et al. Stimulation of the development of bovine embryos by insulin and insulin-like growth factor-I (IGF-I) is mediated through the IGF-I receptor.Theriogenology. 1997,48(4): 605-16
    [6] Palma, G. A., M. Muller, et al. Effect of insulin-like growth factor I (IGF-I) at high concentrations on blastocyst development of bovine embryos produced in vitro. J Reprod Fertil, 1997,110(2): 347-53
    [7] Pawshe, C. H., K. B. Rao, et al. Effect of insulin-like growth factor I and its interaction with gonadotropins on in vitro maturation and embryonic development, cell proliferation, and biosynthetic activity of cumulus-oocyte complexes and granulosa cells in buffalo. Mol Reprod 1998, Dev, 49(3): 277-85
    [8] Doherty, A. S., G. L. Temeles, et al. Temporal pattern of IGF-I expression during mouse preimplantation embryogenesis. Mol Reprod. 1994. Dev 37(1): 21-6
    [9] Herrler, A., C. A. Krusche, et al. Insulin and insulin-like growth factor-I promote rabbit blastocyst development and prevent apoptosis. Biol Reprod. 1998. 59(6): 1302-10
    [10] Lighten, A. D., G. E. Moore, et al. Routine addition of human insulin-like growth factor-I ligand could benefit clinical in-vitro fertilization culture. Hum Reprod. 1998 13(11): 3144-50
    
    [11] Byrne AT, Southgate J, Brison DR, etc. Effects of insulin-like growth factors I and II on tumour-necrosis-factor-alpha-induced apoptosis in early murine embryos. Reprod Fertil Dev.2002, 14(1-2): 79-83
    
    [12] Platonov ES, Penkov LI, New DA. Effects of growth factors FGF2 and IGF2 on the development of parthenogenetic mouse embryos in utero and in vitro. Ontogenez. 2002 Jan-Feb, 33(1): 60-7
    [13] Gomez MC, Catt JW, Gillan L. Effect of culture,incubation and acrosome reaction of fresh and frozen-thawed ram spermatozoa for in vitro fertilization and intracytoplasmic sperm injection. Reprod Fertil Dev. 1997,9(7): 665-673
    [14] Kane MT, Morgan PM & Coonan C. Peptide growth factors and preimplantation development. Human Reproduction Update 1997, 3137-157
    [15] Kaye PL. Preimplantation growth factor physiology. Reviews of Reproduction. 1997,2121-127
    [16] Bowman P& McLaren A. Cleavage rate of mouse embryos in vivo and in vitro. Journal of Embryology and Experimental Morphology. 1970, 24:203-207
    [17] Harlow GM & Quinn P. Development of preimplantation mouse embryos in vivo and in vitro. Australian Journalof Biological Science. 1982, 35: 187-193
    [18 ] Brison DR & Schultz RM Apoptosis during mouse blastocystformation: evidence for a role for survival factors including transforming growth factor alpha. Biology of Reproduction.1997,56: 1088-1096
    [19] O'Neill C. Autocrine mediators are required to act on the embryo by the 2-cell stage to promote normal development and survival of mouse preimplantation embryos in vitro.Biology of Reproduction. 1998,58: 1303-1309
    [20] Dechiara TM, Efstratiadis A, Robertson EJ. Parental imprinting of the mouse insulin-like growth factor-2 gene [J]. Cell. 1991, 64: 849-849
    [21] Geisthovel F, Morettr Rozas I M, Asch RH. et al .Expression of Insulin-like growth factor II(I G F-II)messenger rib nucleic acid(mRNA), but not IGF- I mRNA in human preovulatory granulosacells.Hum Reprod. 1989,4 :899-903
    [22] Hernandez ER, Hurwitz A, vera A, et al Expression of the genes encoding the Insulin-like growth factor and their receptors in the human ovary.J clin Endocrinol Metab. 1992,74 :419-425
    [23] Voutilainen R, Miller WL. Corrdinatetrophic hormone regulation of mRNAs fox insulin71ike growth factor II and the choles-terol side-chairrcleavage enzyme, P450sse, in human steroidogenic tissues. Proc NatlAcad Sci USA. 1987, 84 :1590-1594
    [24] Wang, T. H., C. L. Chang, et al. Insulin-like growth factor-II (IGF-II), IGF-binding protein-3 (IGFBP-3), and IGFBP-4 in follicular fluid are associated with oocyte maturation and embryo development. Fertil Steril 2006. 86(5): 1392-401
    [25] Harvey, M. B. and P. L. Kaye. IGF-2 stimulates growth and metabolism of early mouse embryos. Mech Dev 1992. 38(3): 169-73
    [26] Warzych, E., C. Wrenzycki, et al. Maturation medium supplements affect transcript level of apoptosis and cell survival related genes in bovine blastocysts produced in vitro. Mol Reprod Dev. 2007, 74(3): 280-9
    [27] Narula, A., M. Taneja, et al. Morphological development, cell number, and allocation of cells to trophectoderm and inner cell mass of in vitro fertilized and parthenogenetically developed buffalo embryos: the effect of IGF-I. Mol Reprod Dev. 1996,44(3): 343-51
    [28] Palma, G. A., M. Muller, et al. Effect of insulin-like growth factor I (IGF-I) at high concentrations on blastocyst development of bovine embryos produced in vitro. J Reprod Fertil. 1997, 110(2): 347-53
    [29] Sirisathien, S. and B. G. Brackett. TUNEL analyses of bovine blastocysts after culture with EGF and IGF-I. Mol Reprod Dev. 2003,65(1): 51-6
    [30] Doherty, A. S., G. L. Temeles, et al. Temporal pattern of IGF-I expression during mouse preimplantation embryogenesis. Mol Reprod Dev. 1994,37(1): 21-6
    [31] Xia, P., F. R. Tekpetey, et al. Effect of IGF-I on pig oocyte maturation, fertilization, and early embryonic development in vitro, and on granulosa and cumulus cell biosynthetic activity.Mol Reprod Dev. 1994, 38(4): 373-9
    [32] Herrler, A., C. A. Krusche, et al. Insulin and insulin-like growth factor-I promote rabbit blastocyst development and prevent apoptosis. Biol Reprod. 1998, 59(6): 1302-10
    [33] Lighten, A. D., G. E. Moore, et al. Routine addition of human insulin-like growth factor-I ligand could benefit clinical in-vitro fertilization culture. Hum Reprod. 1998, 13(11): 3144-50
    [34] Spanos, S., D. L. Becker, et al. Anti-apoptotic action of insulin-like growth factor-I during human preimplantation embryo development. Biol Reprod. 2000, 63(5): 1413-20
    [35] Rappolee, D. A., K. S. Sturm, et al. Insulin-like growth factor II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos. Genes Dev. 1992, 6(6):939-52
    [36] Chi, M. M., A. L. Schlein, et al. High insulin-like growth factor 1 (IGF-1) and insulin concentrations trigger apoptosis in the mouse blastocyst via down-regulation of the IGF-1 receptor. Endocrinology. 2000,141(12): 4784-92
    [37] Byrne, A. T., J. Southgate, et al. Regulation of apoptosis in the bovine blastocyst by insulin and the insulin-like growth factor (IGF) superfamily. Mol Reprod Dev. 2002, 62(4): 489-95
    [38] Pantaleon, M., H. Jericho, et al. The role of insulin-like growth factor II and its receptor in mouse preimplantation development. Reprod Fertil Dev. 2003,15(1-2): 37-45
    [39] Armstrong, D. G., T. G. McEvoy, et al. Effect of dietary energy and protein on bovine follicular dynamics and embryo production in vitro: associations with the ovarian insulin-like growth factor system. Biol Reprod. 2001,64(6): 1624-32
    [40] Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, Broadbent PJ, Robinson JJ, Wilmut I & Sinclair KD.Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nature Genetics. 2001, 27: 153-154
    [1]Smith RM,Garside WT,Aghayan M,et al.Mouse preimplantation embryos exhibit receptoe-mediated binding and transcytosis of maternal insulin-like growth factor 1.Biol Reprod,1993,49..1-12
    [2]Doherty AS,Temeles GL,Schultz RM.Temporal pattern of IGF-Ⅰ expression during mouse preimplantation embryo genesis Mol Reprod Dev,1994,37:21-26
    [3]Harvey MB,Kaye PL.Insulin-like growth factor-lstimulates growth of mouse preimplantation embryos in vitro.Mol Reprod Dev,1992b,31:195-199
    [4]Rappolee DA,Sturm KS,Behrendtsen O,et al.Insulin-like growth factors-Ⅱ acts through an endogenous growth pathway regulated by imprinting in early mouse embryos.Gene Dev.1992,6:939-952
    [5]Wood TL,Richert MM,Stull MA,etal.The insulin-like growth factors(IGF)and IGF binding proteins in postnatal developmentof murine mammary glands.JMammary Gland Biol Neoplasia,2000,5(1):31-42
    [6]Fire A,Xu S,Montgomery MK,Kostas SA et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature,1998,391:806-811
    [7](美)G.J.汉农.RNAi-基因沉默指南.化学工业出版社.2004.220页。
    [8]Wianny F,Zernicka-Goetz M.Specific interference with gene function by double-stranded RNA in early mouse development.Nat Cell Biol,2000,2:70-75
    [9]Svoboda P,Stein P,Hayashi H,Schultz RM.Selective reduction of dormantmaternal mRNAs in mouse oocytes by RNA interference.Development,2000,127:4147-4156
    [10]Svoboda P,Stein P,Schultz RM.RNAi in mouse oocytes and preimplantation embryos:Effectiveness of hairpin dsRNA.Biochem Biophys Res Commun,2001,287:1099-1104
    [11]Grabarek JB,Plusa B,Glover DM,Zernicka-Goetz M.Efficient delivery of dsRNA into zona-enclosed mouse oocytes and preimplantation embryos by by electroporation.Genesis,2002,32:269-276
    [12]Lefebvre C,Terret ME,Djiane A,et al..Meiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein(MISS),a new MAPK substrate.J Cell Biol,2002,157:603-613
    [13]Stein P,Svoboda P,Anger M,et al.RNAi:Mammalian oocytes do it without RNA-dependent RNA polymerase. RNA, 2003a, 9:187-192
    [14] Stein P, Svoboda P, Schultz RM..Transgenic RNAi in mouse oocytes: A simple and fast approach to study gene function. Dev Biol,2003b, 256:187-193
    [15] Xu Z, Williams CJ, Kopf GS, et al. Maturation-associated increase in IP3 receptor type 1:Role in conferring increased IP3 sensitivity and Ca2~+ oscillatory behavior inmouse eggs. Dev Biol, 2003, 254:163-171
    [16] Cabot RA, Prather RS. Cleavage stage porcine embryosmay have differing developmental requirements for karyopherins alpha2 and alpha3. Mol Reprod Dev, 2003,64:292-301
    [17] Tesfaye, D., Lonergan, P., Hoelker, M., et al.Suppression of Connexin 43 and E-Cadherin Transcripts in In Vitro Derived Bovine Embryos Following Culture In Vitro or In Vivo in the Homologous Bovine Oviduct.Mol Reprod Dev, 2007.DOI: 10.1002.20678
    [18] Paradis, F., Vigneault, C., Robert, C.,et al.RNA Interference as a Tool to Study Gene Function in Bovine Oocytes. Mol Reprod Dev, 2005, 70:111-121
    [19] Nganvongpanit, K., M(?)0ller, H., Rings, F.,et al.Targeted Suppression of E-Cadherin Gene Expression in Bovine Preimplantation Embryo by RNA Interference Technology Using Double-Stranded RNA. Mol Reprod Dev, 2006, 73:153-163
    [20] M. W Pfaffl, T. Mircheva Georgieva, I. penchev Georgiev, et al. Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor,insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species. Domest Anim Endocrinol. 2002,22(2): 91-102
    [21] Coussens PM & Nobis W. Bioinformatics and high throughput approach to create genomic resources for the study of bovine immunobiology. Veterinary Immunology and Immunopathology. 2002, 86: 229-244
    
    [22] Bass BL. RNA interference. The short answer. Nature, 2001, May 24; 411(6836): 428-9
    [23] Paddison PJ, Caudy AA, Harmon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1443-8
    [24] Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol. 2000 Feb;2(2):70-5
    [25] Yang S, Tutton S, Pierce E, Yoon K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol. 2001 Nov; 21(22): 7807-16
    [26]Hannon GJ.RNAi:A Guide to Gene Silencing,New York:Cold Spring Harbor Laboratory Press,2003,322
    [27]Shu-ichi Kobayashi,Miki Sakatani,Shuji Kobayashi,etc.Gene silencing of cyclooxygenase-2 mRNA by RNA interference in bovine cumulus-granulosa cells.Journal of Reproduction and Development.2007,Oct.
    [28]Adashi,E.Y.,C.E.Resnick,et al.Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function.Endocr Rev.1985,6(3):400-20
    [29]Kamada,S.,T.Kubota,et al.Effects of insulin-like growth factor-Ⅱ on proliferation and differentiation of ovarian granulosa cells.Horm Res.1992,37(4-5):141-9
    [30]Doherty,A.S.,G.L.Temeles,et al.Temporal pattern of IGF-Ⅰ expression during mouse preimplantation embryogenesis.Mol Reprod Dev.1994,37(1):21-6
    [31]Xia,P.,F.R.Tekpetey,et al.Effect of IGF-Ⅰ on pig oocyte maturation,fertilization,and early embryonic development in vitro,and on granulosa and cumulus cell biosynthetic activity.Mol Reprod Dev.1994,38(4):373-9
    [32]Herrler,A.,C.A.Krusche,et al.Insulin and insulin-like growth factor-Ⅰ promote rabbit blastocyst development and prevent apoptosis.Biol Reprod.1998,59(6):1302-10
    [33]Lighten,A.D.,G.E.Moore,et al.Routine addition of human insulin-like growth factor-Ⅰligand could benefit clinical in-vitro fertilization culture.Hum Reprod.1998,13(11):3144-50
    [34]Spanos,S.,D.L.Becker,et al.Anti-apoptotic action of insulin-like growth factor-Ⅰ during human preimplantation embryo development.Biol Reprod.2000,63(5):1413-20
    [35]Harvey,M.B.and P.L.Kaye.IGF-2 stimulates growth and metabolism of early mouse embryos.Mech Dev.1992,38(3):169-73
    [36]Byrne AT,Southgate J,Brison DR,etc.Effects of insulin-like growth factors Ⅰ and Ⅱ on tumour-necrosis-factor-alpha-induced apoptosis in early murine embryos.Reprod Fertil Dev.2002;14(1-2):79-83
    [37]Byrne,A.Y.,J.Southgate,et al.Regulation of apoptosis in the bovine blastocyst by insulin and the insulin-like growth factor(IGF) superfamily.Mol Reprod Dev.2002,62(4):489-95
    [38]Insulin-like growth factor Ⅱ acts through an endogenous growth pathway regulated by imprinting in early mouse embryos.Rappolee DA,Sturm KS,Behrendtsen O,Schultz GA,
    [39]Kim S,Lee SH,Kim JH,ect.Anti-apoptotic effect of insulin-like growth factor(IGF)-Ⅰ and its receptor in porcine preimplantation embryos derived from in vitro fertilization and somatic cell nuclear transfer. Mol Reprod Dev. 2006, Dec; 73(12): 1523-30
    [1]Salmon WD,Daughaday WH.A hormon ally controlled serum factor which stimulates sulfate in corporation by cartilage in vitro.J Lab Cli Med,1957,49:825-836
    [2]Froech ER.Antibody suppressible and nonsupressible insulin like activities in human serum and their physiologic significance.An insulin assay with adipose tissue of increased precision and specificity.J Clin Invest,1963,42:1816-1834
    [3]Pierson RW,Jr.The partial purification from calf serum of a fraction with multiplication stimulating activity for chicken firoblasts in cell culture and with nonsupressibla insulin like activity.J Cell Physiol,1972,79:319-329
    [4]Daughaday WH,Hallk.Somatomedin:a proposed designation for the sulfation factor[J].Nature,1972,253:107
    [5] Rinderknecht E, Humkel RE. Polypeptides with nonsupressible insulin like and cell growth promoting activities in human serum: isolation, chemical characterization and some biological properties of forms 1 and 2.[J] Proc Natl Acad Sci USA, 1976, 73: 2365-2369
    [6] Brissenden J, Ullrich A, Francke U. Human chromosomal mapping of genes for insulin like growth factorl and 2 and epidermal growth factor[J]. Nature, 1984, 310: 781-784
    [7] Rinderknecht E, Humkel RE. Primary structure of human insulin like factor 2[J]. FEBSLett,1978,89: 283-286
    [8] Rinderknecht E, Humkel RE. The amino acid sequence of human insulin like growth factor 1 and its structural homology with proinsulin. J Biol Chem, 1978, 253(8): 2769-2776
    [9] Jasminka Pavelic, Tanja Matijevic, Jelena Knezevic. Biological & physiological aspects of action of insulin-like growth factor peptide family. Indian J Med Res. 2007, April, 125:511-522
    [10] Stewart CEH, Rotwein P. Growth , differentiation and survival: multiple physiological function for insulin-like growth factors. Physiol. Rev, 1996,76: 1005-1026
    [11] Armstrong DG, Mc Evoy TG, Baxter G, et al. Effect of dietary energy and protein on bovine follicular dynamics and embryo production in vitro: associations with the ovarian insulin like growth factor system. Biol Reprod, 2001,64: 1624-1632
    [12] Rinderknecht E, Humkel RE. Primary structure of human insulin like factor 2[J]. FEBSLett,1978,89: 283-286
    [13] Rinderknecht E, Humkel RE. The amino acid sequence of human insulin like growth factor 1 and its structural homology with proinsulin. J Biol Chem, 1978,253(8): 2769-2776
    [14] Brissenden J, Ullrich A, Francke U. Human chromosomal mapping of genes for insulin like growth factorl and 2 and epidermal growth factor[J]. Nature, 1984, 310: 781-784。
    [15] Brissenden J, Ullrich A, Francke U. Human chromosomal mapping of genes for insulin like growth factorl and 2 and epidermal growth factor[J]. Nature, 1982, 296: 252-255
    [16] James VT, Leslie BR, James S, et al. Localization of insulin-like growth factor genes to human chromosomes 11 and 12[J]. Nature, 1984, 310(30): 784-786
    [17] Rinderknecht, E.; Humbel, R. E. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 1978, 253: 2769-2776
    [18] Li, C. H.; Yamashiro, D.; Gospodarowicz, D.; Kaplan, S. L.; Van Vliet, G.: Total synthesis of insulin-like growth factor I (somatomedin C). Proc. Nat. Acad. Sci. 1983, 80: 2216-2220
    [19] Dechiara TM, Efstratiadis A, Robertson EJ. Parental imprinting of the mouse insulin-like growth factor-2 gene[J]. Cell. 1991,64: 849-849
    [20] Gerard N, Monget P. Intra follicular insulin-like growth factor binding protein levels in equine ovarian follicles during preovulatory maturation and regression. Bio Reprod. 1998,58: 1508-1514
    [21] Florini JR, Ewton DZ, Falen ST, et al. Biphasic concentration dependency of stimulation of myoblast differentiation by some tomedins[J]. Am J Physiol, 1986, 250: 6771-6778
    [22] Nissley P, Kiess W and Sklar M. Developmental expression of the IGF- II /mannose 6-phosphate receptor. Mol Reprod.Dev, 1993, 35: 408-413
    [23] Sara VR, Hall K. Insulin-like growth factors and their binding protein. Physiological Reviews, 1990,70: 591-614
    [24] Leroith D, Werner H, Beitner-Johnson D, Roberts CT. Molecular and cellular aspects of the insulin-like growth factor 1 receptor. Endocr Rev. 1995, 16: 143-163
    [25] Jones, JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocrine Reviews. 1995, 16: 3
    [26] Morgan DO, Edman JC, Standring DN, Fried VA, Smith MC, Roth RA, Rutter WJ.Insulin-llike factor Has a multifunctional binding protein. Nature, 1987,329: 301-307。
    [27] Liu JP, Baker J, Perkins AS, et al. Mice carrying null mutations of the gene encoding insulin-like growth factor-1 and type 1 IGF receptor. Cell, 1993,75: 59-72
    [28] Kubota T, Kamada S, Ohara M, et al. Insulin like growth factor IIin follicular fluid of the patients with in vitro fertilization and embryo transfer. Fertil Steril, 1993, 59: 844-849
    [29] Adashi EY, Resnick CE, Rosenfeld RG. Insulin-like growth factor-1 and IGF-II hormonal action in cultured rat granulose cells: mediation via type 1 but not type II receptor.Endocrinology. 1990,126: 216-222
    [30] Andrea M, Barbara V, Shi QX, et al. Insulin-like growth factor II stimulates cell proliferation through the insulin receptor. Proc. Natl. Acad. Sci. USA,1997, 94: 3777-3782
    [31] Louvi A, Accili D, Efstratiadis A. Growth-promoting interaction of IGF-II with the insulin receptor during mouse embryonic development. Dev Biol. 1997, 189: 33-48
    [32] Morrione A, Valentinis B, Xu SQ, et al. Insulin-like growth factor-II stimulates cell proliferation through the insulin receptor. Proc Natl Acad Sci USA. 1997,94: 3777-3782
    [33] Brinkman.A. Isolation and characterization of a cDNAencoding the low molecuiar weight insulin-like growth factorbinding protein(IGFBP)-1, Embo. J, 1988, 7: 2417
    [34] Brown. AL, Chiariotti L, Orlowski CC, etc. Nucleotide sequence and expressionof a cDNA clone encoding a fetal rat binding protein for insulin-like growth factors. J. Biol. Chem, 1989,Mar,264: 2148-54
    [35] Conover CA, Ronk M, Lombana F, et.al. Structure and biological characterization of bovine insulin-like growth factors binding protein-3. Endocrinology. 1990, Dec, 127: 2795-803
    [36] Kiefer MC, Masiarz FR, Bauer DM, etc. Identification and molecular clone of two 30kd isolated from adult human serum. J. Biol. Chem. 1991, May, 266: 9043-9
    [37] Shimasaki S, Shimonaka M, Zhang HP, etc. Identification of five different insulin-like growth factor binding proteins (IGFBPs) from adult rat serum and molecular cloning of a novel IGFBP-5 in rat and human. J. Biol. Chem. 1991, Jun 5;266(16):10646-53
    [38] Shimaki, S, et al, Isolation and Molecular Clone ofinsulin-like growth factor binding protein-6, Mol. Endocrinology, 1991, 5: 938
    [39] Goswami.R.G,et al,Functional Analysis of Glucocorticoid and Insulin Response Sequences in the Rat Insulin-Like Groth Factors-Binding Proteins-1 Promoter, Endocrinology, 1994, 3134:736
    [40] Mccuker. R. H. et al. Insulin-Like Groth Factors-Binding to cell monola.ers is directIN modulated by- the addition of insulin-like growth factor bindingproteins. Endocrinology.1991. 129:939
    [41] Goswami.rg, et al. Functional Analysis of Glucocorticoid and Insulin Response Sequences in the Rat Insulin-Like Groth Factors-Binding Proteins-I Promoter, Endocrinology,1994.3134:736
    [42] Cubbage. M. L, et al. Insulin-Like Groth Factors-Binding Proteins-3. J. Biol. Chem. 1990.265:12642
    [43] Swisshelm K, Ryan K, Tsuchiya K, et al. Enhanced expression of an insulin growth factor-like binding protein(ma(!25)in senes cent human mammary epithelial cells and induced expression with retinoic acid. Proc Natl Acad Sci USA, 1995,9:4472
    [44] Burger AM, Zhang X, Li H, et al. Down-regulation of TlA12/mac25, a novel insulin-like growth factor binding protein related gene, is associated with disease progression in breast carcinomas. Oncogene, 1998,16:2459
    [45] Murphy M, Pykett MJ, Harnish P, et al. Identification and characterization of genes differentially expressed in meningiomas . Cell Growth Differ, 1993,4:715
    [46] Landberg G, Ostlund H, Nielsen NH, et al. Down-regulation of the potential suppressor gene IGFBP-rP1 in human breast cancer is associated with inactivation of the retinoblastoma protein, cyclin E overexpression and increased proliferation in estrogen receptor negative tumors. Oncogene, 2001, 20: 3497
    [47] Oh Y, Nagalla SR, Yamanaka Y, et al. Synthesis and characterization of insulin-like growth factor-binding protein (IGFBP)- 7 . J Biol Chem, 1996, 271: 30322
    [48] W.S.Chick,et al,The InsuliLike Growth Factors,Annu. Rev. physiol,1993,55:131
    [49] Boisclair. Y. R, et al, Three Clustered SpI Sites Are Required for Efficient Transcription of the TATA-less Promoter of the Gene for Insulin-Like Groth Factors-Binding Proteins-2 from the Rat, J. BIOl. Chem,1993, 268: 24892
    [50] Cubbage. M.L, et.al, Insulin-Like Groth Factors-Binding Proteins-3, J. Biol. Chem, 1990,265:12642
    [51] Rajaram S, Baylink DJ, Mohan S. Insulin-like growth factor binding proteins in serum and other biological fluids: regulation and functions. Endocr Rev, 1997,18: 891-831
    [52] Han VK, D' Ercole AJ, Lund PK. Cellular localization of somatomedin (insulin like growth factor) messenger RNA in the human fetus. Science, 1987,236: 193-197
    [53] Firth SM, Baxter RC. Characterisation of recombinant glycosylation variants of insulin-like growth factor binding protein-3. J Endocrinol, 1999,160: 379-387
    [54] Coverley JA, Baxter RC. Regulation of insulin like growth factor binding protein-3 phosphorylation by IGF-I. Endocrinology, 1995,136: 5778-5781
    [55] Lalou C, Lassarre C, Binoux M. A proteolytic fragment of insulin-like growth factor binding protein-3 that fails to bind IGFs inhibits the mitogenic effects of IGF-I and insulin.Endocrinology, 1996,137: 3206-3212
    [56] Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endoci Rev, 1995,16: 3-34
    [57] Clemmons DR. IGF binding proteins and their functions. Mol Reprod Dev. 1993, 35: 368-375
    [58] Cerro JA, Pintar JE. Insulin-like growth factor binding protein gein expression in the rat uterus and placenta. Dev Biol, 1997,184 (2): 278-295
    [59] Rajah R, Katz L, Nunn S, Solberg P, Beers T, Cohen P. Insulin-like growth factor binding protein (IGFBP) protease: functional regulators of cell growth. Prog Growth Factor Res. 1995,6: 273-284
    [60] Giudice LC, Conover CA, Bale, et al. Identification and regulation of the IGFBP 4 protease and its physiological inhibitor in human trophoblasts and endometrial stroma: evidence for paracrine regulation of IGF2 bioavailability in the placental bed during human implantation, J Clin Endocrinol Metab, 2002,87(5): 2359-2366
    [61] Webb R, Gosden RG, Telfer EE, Moor RM. Factors affecting folliculogenesis in ruminants.Anim Sci. 1999, 68:257-284
    [62] Giudice LC. Insulin-like growth factors and ovarian follicular development. Endocr Rev 1992, 13:641-669
    [63] Adam C.L, et al. IGF-1 stimulation of luteinizing hormone secretion, IGF-binding proteins (IGFBPs) and expression of m RNAs for IGFs, IGF receptors and IGFBPs in the ovine pituitary gland. J. Endocri, 2000, 166: 247-254
    [64] Angervo M, Koistinen R, Suikkari AM, et al. Insulin-like growth factor binding protein 1 inhibits the DNA amplification induced by insulin-like growth factor 1 in human granuloseluteal cells. Hum Reprod, 1994, 6: 770-773
    [65] Wood AM, Lambert A, Hoopet MA et al. Exogenous steroid sand the control of oestradiol secretion by human granulose lutein cells by follicle stimulating hormone and insulin-like growth factor 1. Hum Reprod, 1994, 9: 19-23
    [66] DiBloasio AM, Vigano P, Ferrari A. Insulin like growth factor 2 stimulates human granulosaluteal cell proliferation in vitro. Fertil Steril, 1994,61: 483-487
    [67] Takashi, Minegishi, et al. A role of insulin-like growth factor-1 for follicle-stimulating hormone receptor expression in rat granulose cells. Bio Reprod, 2000, 62: 325-333
    [68] Huang CT, Weitsman SR, Dykes BN. Stem cell factor and insulin like growth factor 1 stimulate luteinizing hormone independent differentiation of rat ovarian theca cells. Biol Reprod, 2001, 64:451-456
    [69]Hillier SG,Yong EL,Illingworth PJ,et al.Effect of recombinant activinonandrogen synthesis in cultured human theca cells.Mol Cell Endocrind,1991,75(2):1-6
    [70]蔡华蕾,蔡涛.胰岛素样生长因子系统与卵巢内分泌.国外医学妇产科学分册,2001:28(5):271-273
    [71]陈丹青,石一复.胰岛素样生长因子与卵泡发育.国外医学妇产科学分册.1999;26(5):270-272
    [72]Wang HS,Chard T.IGF and IGF-binding proteins in the regulation of human ovarian and endometrial function[J].JEndocrinology,1999,161(1):1-13
    [73]Wandji SA,Wood TL,Crawford J,et al.Expression of mouse ovarian insulin-like growth factor system components during follicular development and atresia[J].Endocrinology,1998,139(12):5205-5214
    [74]Wathes DC,Reynolds TS,Robinsor RS,et al.Role of the insulin-like growth factor system in uterine function and placental development in ruminants[J].J Dainy Science,1998,81(6):1778-1789
    [75]Perks CM,Peters AR,Wathes DC,et al.Follicular and luteal expression of insulin-like growth factor Ⅰ and Ⅱ and the type 1 IGF receptor in the bovine ovary[J].JReprod Fertil,1999,116(1):157-165
    [76]Yuan W,Bao B,Garverick HA,etal.Follicular dominance in cattle is associated with divergent patterns of ovarian gene expression for insulin-like growth factor(IGF)-Ⅰ,IGF- Ⅱ,and IGF binding protein-2 in dominant and subordinate follicles[J].Domest Anim Endocrinol,1998,15(1):55-63
    [77]Sekar N,Lavoie HA,Veldhuis JD.Concerted regulation of steroidogenic acute regulatory gene expression by luteining hormone and insulin(or insulin like growth factor 1) in primary cultures of porcine granulose lute cells.Endocrinology,2000,141:3983-3992
    [78]Kubota T,Kanada S,Ohara M,et al.Insulin-like growth factor Ⅱ in follicular fluid of the patients within vitro fertilization and embryotransfer.Fertil Steril,1993;59:844-849
    [79]Masom HD,Cwyfan-Hughes SC,HeinrichG,et al.Insulin-like growth factor(ICF) Ⅰ and Ⅱ,I GF-Bps,and IGF-Bp proteases are produced by theca and stroma of normal and polycystic ovaries.J Ctin Endocrinol Metab,1996:81:276-84
    [80]Owe n EJ,Torresani T,West C,et al.Serum and Follicular fluid insulin like growth factors I and II during growth hormone co-treatment for in-vitro fertilization and embryotransfer. Clin Endocrino(oxf, 1991 Oct;35 (4):327-334
    [81] Thierry Van Oessel HJ, Chandrasekher Y, YapOW, et al .Serum and follicular fluid levels of IGF I (IGF-I), I GF -II, and IGF-Bp -1 and -3 duringthe normal menstrual cycle. J Clin Endocrinol Metab, 1996 Mar;91(3): 1224-31
    [82] Poretsky L, Nicholas A, Rosenwaks CZ, et al. The insulin related ovarian regulatory system in health and disease. Endocrine Rev, 1999,20: 535-582
    [83] Rivera CM, Chandrasekher YA, Evans AC. Apotential role for insulin like growth factor binding protein 4 proteolysis in the establishment of ovarian follicular dominance in cattle.Biol Reprod, 2001,65: 102-111
    [84] Rivera CM, Fortune JE. Development of codominant folliclesin cattle is associated with follicle stimulating hormone dependent insulin like growth factor binding protein -4 protease.Biol Reprod, 2001,65: 112-118
    [85] Murphy LJ. Insulin like growth factor binding proteins: functional diversity or redundancy? J Mol Endocrinology. 1998, 21: 97-107
    [86] Rechler MM, demons DR. Regulatory action of insulin-like growth factor binding proteins.TEM, 1998,9:76-183
    [87] Salmon WD, Daughaday WH. A hormon ally controlled serum factor which stimulates sulfate in corporation by cartilage in vitro. J Lab Cli Med, 1957,49: 825-836
    [88] Whitney CE. Et al. Insulin-like growth factor(IGF)-I, IGF-1 receptor, and IGF binding protein-3 messenger ribonucleic acids and protein in corpora lutea from prostaglandiF2-treated giltsBiol Reprod, 1999, 61: 1527-1534
    [89] Liu HC, He ZY, Tang YX, et al. Simultaneous detection of multiple gene expression in mouse and human individual preimplantation embryos[J]. Fertil Steril, 1997,67(4): 733 -741
    [90] Amato G, Izzo A, Tucker A, et al.Insulin-like growth factor binding protein-3 reduction in follicular fluid in spontaneous and stimulated cycles. Fertil Steril, 1998 Jul; 70(1): 141-144
    [91] Rosenbium, IY, Mattson BA, Heyner S. Stage specific insulin binding in mouse preimplantation embryos. Dev Biol, 1986, 116: 261
    [92] Heyner S, Smith RM, Schulta GA. Temporally regulated expression of insulin and insulin-like growth factors and their receptors in early mammalian development. Bioessays, 1989,11: 171
    [93] Aberdeen GW, Pepe GJ, Albrecht ED. Developmental expression of and effect of beta methasoneon the messenger ribonucleic acid levels foe peptide growth factors in the baboon fetal adrenal gland. J Endoct, 1999,163(1): 123-130
    [94] Rappolee DA, Sturm KS, Schultz GA, et al. The expression of growth factor ligand and receptors in preimplantation embryos. In Early embryo development and paracrine relationships. UCLS Symposia on molecular and cellular Biology, New Series 117, New York: AR Liss, 1990: 11-25
    [95] Zhang X, Kidder GM, Watson AJ, Schultz GA, Armstrong DT. Possible roles of insulin and insulin-like growth factors in rat preimplantation development: investigation of gene expression by reverse transcription-polymerase chain reaction. J Reprod Fertil, 1994, 100:375
    [96] Doherty AS, Temeles GL, Schultz RM. Temporal pattern of IGF-1 expression during mouse preimplantation embryo genesis Mol Reprod Dev, 1994, 37: 21-26
    [97] Osgerby JC, Wathes DC, Howard D, et al. The effect of maternal under nutrition on ovine fetal growth. J Endocr, 2002,173(1): 131-141
    [98] Lee Chang I, Goldatein O, Han Vitor KM, et al. IGF- II and IGF binding protein (IGFBP-1,IGFBP-3) gene expression in fetal rhesus monkey tissues during the second and third trimesters. Pediatr Res, 2001,49(3): 379-387
    [99] Goodyer Cynthia G, Figueiredo Rilene MO, Krackovitch Stephanie. Characterization of the growth hormonr receptor in human dermal fibroblasts and liver during development. Am J Physiol, 2001,281(6 Part1): 1213-1220
    [100] Schultz GA, Hogan A, Watson AJ, Smith RM, Heyner S. Insulin-like growth factors and glucose transporters: temporal patterns of gene expression in early murine and bovine embryos. Reprod Fertil Dev, 1992, 4:361
    [101] Claire E H, Stewart H, Peter Rotwei N. Growth, differentiation and survival: multiple physiological functions for insulin-lik egrowth factors [J]. Physiol Rev, 1996, 76: 1005—1026
    [102] Villar A J. Developmenta lregulation of genomic im-printing during game to genesis . Dev Biol, 1995,172(1): 264-271
    [103] Feil R, Khosla S, Cappai P, et al. Genomic imprinting in ruminants: allele-sprcific gene expression in parth enogenetic sheep . Mamm Genome, 1998, 9 (10): 831-834
    [104] Riesewijk A M, Xu Y Q, Schepens M T, et al. Ab-sence of an obvious molecular imprinting mechanism in a human fetus with monoallelic IGF2R expression . Biochem Biophys Res Commun, 1998, 245(1): 272-277
    [105] Xu RJ, Wang T. Gastrointestinal absorption of insulin like growth factor 1 in neonatal pigs.J Pediatra Gastroenterol Nutr, 1996, 23: 430-437
    [106] Smith RM, Garside WT, Aghayan M, et al. Mouse preimplantation embryos exhibit receptoe-mediated binding and transcytosis of maternal insulin-like growth factor 1. Biol Reprod, 1993,49: 1-12
    [107] Harvey MB, Kaye PL. Insulin-like growth factor-1 stimulates growth of mouse preimplantation embryos in vitro. Mol Reprod Dev, 1992b, 31: 195-199
    [108] Rappolee DA, Sturm KS, Behrendtsen O, et al. Insulin-like growth factors-II acts through an endogenous growth pathway regulated by imprinting in early mouse embryos. Gene Dev.1992,6: 939-952
    [109] Wood TL, Richert MM, Stull MA, etal. The insulin-like growth factors(IGF)and IGF binding proteins in postnatal developmentof murine mammary glands.JMammary Gland Biol Neoplasia,2000,5(1): 31 -42
    [110] Kowalik A, Liu HC, He ZY, et al. Expression of the insulin like growth factor-1 gene and its receptor in preimplantation mouse embryos; is it a marker of embryo viability? Mol Hum Peprod, 1999,5(9): 861-865
    [111] Woods KA, Cumacho-Hubner C, Savage MO, et al. Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene. N Engl J Med, 1996.335: 1363-1367
    [112] Robinson RS,Menn GE,Godd TS,et al.The expression of the IGF system in the bovine uterus throughout the oestrous cycle and early pre grancy.J Endocrinol,2000,165(2): 231-243
    [113] Meikle A,Sahlin L,Ferrais A,et al.Endometrial mRNA expression of receptor alpha,progesterone receptor and insulin-like growth factor-I (IGF-I)throughout the bovine oestrous cycle.Anim Reprod sci.2001.68:45-56
    [114] Roy RN,Gerulath AH,Cecutti A,et al.Discordant expression of Insulin-like growth factors and their receptor messenger ribonucleic acids in endometrial carcinomas relative to normal endometrium.Mol Cell Endocrinol,1999,153(1-2):19-27
    [115]Rutanen EM.Insulin-like growth factor and insulin-like growth factor binding proteins in the endometrium.Effect of intrauterine levonorgestrel delivery.Hum Reprod,2000,15[Suppl 3]:173-184
    [116]Wang HS,Chard T.IGF and IGF-binding proteins in the regulation of human ovarian and endometrial function[J].JEndocrinology,1999,161(1):1-13
    [117]Henemyre C,Markoff E.Expression of insulin-like growth factor binding protein-4,insulin-like growth factor-Ⅰ receptor and Insulin-like growth factor-Ⅰ in the mouse uterus throught the estrous cycle.Mol Reprod Dev,1999,52(4):350-359
    [118]Wang HS,Wang TH,Song YK.Elevation of insulin like growth factor-binding protein-ImRNA expression following hormone replacement therapy.Hum Reprod,15(1):50-54
    [119]Osgerby JC,GaddTS,Wathes DC.Expressinn of insulin-likegrowth factor binding protein-Ⅰ(IGFBP-1) mRNA in the ovine uterus throughout the oestrous cycle and early pregnancy.J Endocrinol,1999,162(2):279-287
    [120]Irwein JC,Suen LF,Martina NA,et al.Role of the IGF system in trophoblast invasion and pre-eclampsia[J].Hum Reprod,1 999,14[Suppl12]:90-96
    [121]Fowle DJ,Nicolaides KH,Miell JP.Insulin-like growth factor binding protein-1(IGFBP-1):a multifunctional role in the human female reproductive tract[J].Hum Reprod Update,2000,6(5):495-504
    [122]Corleta H,Capp E,Strowitzki T,et al.Cycle modulation of insulin-like growth factor-binding protein Ⅰ in human endometrium.Braz J Med Biol Res,2000,3(11):1387-1391
    [123]Andrade PM,Silva ID,Borra RC,et al.Estrogen and selective estrogen receptor modulator regulation of insulin-like growth factor binding protein 5 in the rat uterus.Gynecol Endocrinol,2002,16(4):265-270
    [124]Cadd TS,Osgerby JC,Wathes DC.Regulation of insulin-like growth factor binding protein-6expression in the reproductive tract throughout the estrous cycle and during the development of the placenta in the ewe.Biol Reprod,2002,67(6):1756-1762
    [125]Rajaram S,Baylink DJ,Mohan S,et al.Insulin-like growth factor-bind- ing proteins in serum and other biologcal fluids:regulation and functions.Endocr Rev,1997,18(6);801-831
    [126] Lee PD, Giudice LC, Conover CA, et al. Insulin-like growth factor binding protein-1:recent findings and new directions. Proc Soc Exp Biol Med, 1997, 216(3):319-357
    [127] Wathes DC, Reynolds TS, Robinson RS, et al. Role of the insulin-like growth factor system in uterine function and placental development in ruminants. JDairy Sci, 1998,81(6):1778-1789
    [128] Osgerby JC, Gadd TS, Wathes DC. Expression of insulin-like growth factor binding protein-1 (IGFBP-1 ) m RNA in the ovine uterus throughoutthe oestrous cycle and early pregnancy[J]. JEndocrinol 1999, 62 (2 ): 279-287
    [129] Liu HC, He ZY, Mele CA, et al. Human endometrial stromal cells improve embryo quality by enhancing the expression of insulin-like growth factors and their receptors in concultured human preimplantation embryos. Fertil Steril, 1999, 71(2):361-367
    [130] Giudice LC, Irwin JC. Roles of the insulinlike growth factor family in nonpregnant human endometrium and at the decidual: trophoblast inter face. Semin Reprod Endocrinol,1999,17(1):13-21
    [131] Lee CY. Green ML. Simmen RCM. et al. Protcolysis of insulin-like growth factor-binding proteins (1GFBPs) within the pig uterine lumen associated with peri-implantation conceptus development. J Reprod Fertil. 1998, 112(2):369-377
    [132] Tabibzadeh S, Babaknia A. The signals and molecular pathways involved in implantation, a symbiotic interaction between blastocyst and endometrium involving adhesion and invasion.Hum Reprod, 1995, 10: 1579-1620
    [133] Stewart CL.Leukaemia inhibitory factor and the regulation of pre-implantation development of the mammalian embryo. M of Reprod Dev, 1994, 39: 233-238
    [134] Harvey MB, Leco KJ, A rcellana-Panlilio MY, et al. Roles of growth factors during perrim plantation development. Hum Reprod, 1995,10:712-718
    [135] Loke YW, King A. Human implantation: cell biology and immunology. Cambridge:Cambridge University Press, 1995. 180-224
    
    [136] Denker H W. Implantation: a cell biological paradox. J Exp Zool, 1993, 266: 541-558
    [137] Sutherland AE, Calarco PG, Damsky CH. Developmental regulation of integrin expression at the time of in plantation in the mouse embryo. Development, 1993, 119: 1175-1186
    [138] Aplin JD, Lacey H, Haigh T, et al. Growth factor-extracellular matrix synergy in the control of trophoblast invasion. Biochem SocTrans,2000;28(2):199-202
    [139] Slater M, Murphy CR. Differential expression of insulin-like growth factors in the uterine epithelium and extracellular matrix during early pregnancy. Matrix Biol, 1999; 18(6): 579-584
    [140] Han VK, Bassett N, Walton J, et al. The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface. J Clin Endocrinol M etab, 1996; 81 (7):2680-2693
    [141] Hamilton GS, Lysiak JJ, Han K, et al. Autocrine-paracrine regulation of human trophoblast invasiveness by insulin-like growth factor (IGF)-II and IGF-binding protein (IGFBP)-1. Exp Cell Res, 1998;244(1):147-156
    [142] Irwin JC, Suen LF, Martina NA, et al. Role of the IGF system in trophoblast invasion and pre-eclampsia. Hum Reprod. Hum Reprod, 1999;14 (Suppl 2):90-96
    [143] Irving J A, Lala PK. Functional role of cell surface integrins on human trophoblast cell migration: regulation by TGF-beta, IGF-II, and IGFBP-1. Exp Cell Res, 1995, 217: 419-427
    [144] Martina NA, Kim E, Chitkara U, et al. Gestational age-dependent expression of insulin-like growth factor-binding protein-1 (IGFBP-1) phosphoisoforms in human extraembryonic cavities,maternal serum, and decidua suggests decidua as the primary source of IGFBP-1 in these fluids during early pregnancy. J Clin Endocrinol Metab,1997;82(6): 1894-1898
    [145] Gibson JM, Aplin JD, White A, et al. Regulation of IGF bioavailability in pregnancy. Mol Hum Reprod, 2001;7(1):79-87
    [146] Puscheck EE, Pregament E, Patel-Y, et al. Insulin receptor substrate-1 is expressed at high levels in all cells of the peri-implantation mouse embryo. Mol Reprod Dev,1998;49(4):386-393
    [147] HanVK.The expression of insulin-like growth factor and IGF-binding protein(IGFBP)genes in the human placenta and membranes: evidence for IGF-IGFBP interaction at the feto-maternal inter-face[J]. J Clin Endocrinol Metab, 1996, 81(7): 2680-2693
    [148] Gardner RL,Suire S,Zaina S,etal. Insulin-like growthfactor-2 regulation of conceptus composition: effects of trophectoderm and inner cell mass genotypes in the mouse [J]. Biol Reprod, 1999, 60: 190-195
    [149] Franceslopez M,Dikkes P,Zurakowski D,et al. Insulin-like growth factor 2 affects the appearance and glycogen content of glycogencells in the murine placenta[J]. Endocrinol. 1996,137:2100-2108
    [150] Rebourcet R. Differential distribution of binding sites for 125-I-insulin-like growth factor 2 on tro-phoblast membranes of human termplacenta [J]. Biol Reprod, 1998, 58(1):37-44
    [151] Silerkhodr TM. Dose-related effects of IGF1 on plancental prostanoidrelease [J].Prostanglandins, 1995,491:1-14
    [152] Milio LA, et al. Binding of insulin-like growth factor-1 to human trophoblast cell during differentiation in vitro. Bio Reprod, 1994,15: 614
    [153] Han VK, Carter AM. Spatial and temporal patterns of expression of messenger RNA for insulin-like growth factors and their binding proteins in the placenta of human and laboratory animals[J]. Placenta,2000,21(4): 289-305
    [154] Constancia M, Hemberger M, Hugher J, et al. Placental specific IGF-II is a major modulator of placental and fetal growth. Nature (London), 2002,417(6892): 945-948
    [155] Yu H, Rohan T. Role of insulin like growth factors family in cancer development and progression. J Natl Cancer Inst 2000; 92 : 1472-89
    [156] Schernhammer ES, Holly JM, Hunter DJ, Pollak MN, Hankinson SE, Schernhammer ES, et al. Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II. Endocr Relat Cancer 2006; 13 : 583-92
    [157] Pavelic' K, Slijepcevic' M, Pavelic' J, Ivic' J, Audy- Jurkovic' S, Pavelic' ZP, et al. Growth and treatment of Ehrlich tumor in mice with alloxan-induced diabetes. Cancer Res 1979; 39 :1807-13
    [158] Pavelic' K, Ferle-Vidovic' A, Osmak M, Vuk-Pavlovic' S. Synthesis of immunoreactive insulin in vitro by aplastic mammary carcinoma preconditioned in diabetic mice. J Natl Cancer Inst 1981; 67: 687-8
    [159] Pavelic' K, Bolanca M, Vec'ek N, Pavelic' J, Marotti T, Vuk-Pavlovic' S. Carcinomas of the cervix and corpus uteri in humans: stage-dependent blood levels of substance(s) immunologically cross-reactive with insulin. J Natl Cancer Inst 1982; 68 : 891-4
    [160] Pavelic' K, Spaventi S, Gluncic' V, Matejcic' A, Pavic'ic' D, Karapand·a N, et al. The expression and role of insulinlike growth factor II in malignant hemangiopericytomas. J Mol Med 1999; 77 : 865-9
    [161] Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Engl J Med 1980; 303 : 878-80
    [162] Pavelic' K. Aplastic carcinoma in diabetic mice: hyperglycemia-suppressed proliferation rate and insulin synthesis by tumor cells. J Natl Cancer Inst 1979; 62 : 139-41
    [163] Pavelic' K, Cabrijan T, Hrasc'an R, Vrkljan M, Lipovac M, Kapitanovic' S, et al. Molecular pathology of heman giopericytomas accompanied by severe hypoglycemia: oncogenes,tumor-suppressor genes and the insulin-like growth factor family. J Cancer Res Clin Oncol 1998; 124: 307-14
    [164] Pavelic' J, Pavelic' Lj, Karad·a J, Kri·anac' (?), Unusic' J, Spaventi S, et al. Insulin-like growth factor family and combined antisense approach in therapy of lung carcinoma. Mol Med 2002; 8 : 149-57
    [165] Pavelic' K, Kolak T, Kapitanovic' S, Radosevic' S, Spaventi S, Kruslin B, et al. Gastric cancer: the role of insulin-like growth factor 2 (IGF-2) and its receptors (IGF IR and M6-P/IGF-2R). J Pathol 2003; 201 : 430-8
    [166] Pavelic' J, Kri·anac S, Kapitanovic' S, Pavelic' Lj, Samar·ija M, Pavi(?)ic' F, et al. The consequences of insulin-like growth factor/receptors dysfunction in lung cancer. Am J Respir Cell Mol Biol 2005; 32 : 65-71
    [167] Oka Y, Waterland RA, Killian JK, Nolan CM, Jang HS, Tohara K, et al. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan. Hepatology 2002; 35 : 1153-63
    [168] Jamieson TA, Brizel DM, Killian JK, Oka Y, Jang HS, Fu X, et al. M6P/IGF2R loss of heterozygosity in head and neck cancer associated with poor patients prognosis. BMC Cancer 2003; 3 :4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700