FSH对子宫内膜的影响和调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分FSH促排卵对人子宫内膜AQPs和容受因子的影响
     目的:验证FSHR在人子宫内膜组织和内膜细胞系Ishikawa细胞的表达,探讨FSH促排卵对人子宫内膜形态、FSHR、AQPs和内膜容受因子表达的影响。
     材料与方法:收集促排卵(COS)妇女着床窗期子宫内膜15例、同期对照内膜40例,采用化学发光法检测血清FSH和E2水平;采用RT-PCR产物纯化克隆测序、蛋白免疫印记、免疫组织化学、细胞免疫荧光等方法全面验证人子宫内膜组织和细胞FSHR的表达。电镜观察两组子宫内膜形态和超微结构;蛋白免疫印记方法检测两组子宫内膜FSHR、水通道蛋白(AQP1、AQP2、AQP8)、内膜容受因子(Integrinβ3、LIF)、细胞紧密连接相关蛋白(Claudin4)的表达与改变。
     结果:人子宫内膜组织和子宫内膜细胞系Ishikawa细胞表达FSHR mRNA和蛋白,RT-PCR产物序列与NCBI数据库BLAST比对吻合率100%;蛋白表达主要定位于细胞膜和细胞浆COS妇女血清FSH和E2水平显著高于对照组。扫描电镜下见对照组内膜腔上皮排列有序、胞饮突形成,COS组内膜腔上皮细胞排列分布紊乱、未见明显胞饮突;透视电镜见COS组内膜上皮细胞凋亡增加,细胞紧密连接未见明显改变。COS组内膜组织FSHR蛋白表达显著上调,AQP1、AQP2、AQP8、Integrinβ3、LIF蛋白表达显著下调,Claudin4表达无显著改变。
     结论:FSHR表达于人子宫内膜组织和子宫内膜细胞系Ishikawa细胞。促排卵妇女血清FSH和E显著升高,内膜FSHR表达上调、AQP1、AQP2、AQP8、Integrinβ3、LIF蛋白表达下调,并致内膜腔上皮形态改变、凋亡增加。FSH可能通过FSHR直接调节育龄期子宫内膜形态和功能。
     第二部分FSH影响育龄期子宫内膜容受性的调控机制
     目的:以动物模型和体外模型为基础,研究FSH对育龄期子宫内膜容受性、胚胎着床的影响及可能机制。
     材料与方法:建立FSH促排卵小鼠动物模型,检测外源性FSH刺激对小鼠血FSH/E2水平、子宫内膜AQPs和着床容受因子、妊娠率和活产率的影响,创新性建立小鼠囊胚粘附模型、检测FSH/E2、PCMB (AQP抑制剂)预处理子宫内膜细胞对囊胚粘附着床的影响;同时进行体外细胞实验,采用RT-Real time PCR检测FSH/E2对AQPs、integrinB3、LIF等容受因子目的基因表达水平;采用ssiRNA干扰技术和JAr滋养细胞球粘附模型,检测AQP2/AQP8siRNA干扰后内膜容受因子的表达改变和JAr滋养细胞球粘附率的改变。
     结果:FSH促排卵组小鼠血FSH/E2水平显著增高,内膜AQP3、AQP2蛋白表达呈下调趋势、FSHR呈微弱上调趋势,妊娠率和活产率显著低于对照组。小鼠囊胚粘附模型实验显示,体外FSH、FSH/E及PCMB预处理子宫内膜细胞均导致囊胚48h和72h粘附率显著下降。E2对IK细胞AQP2和AQP8 mRNA呈浓度依赖性上调作用,FSH (0、1、3、10、30 IU/L)对IK细胞AQP2、AQP8和LIF mRNA呈浓度依赖性和时间依赖性下调作用,其中以10IU/L和301U/L浓度FSH在作用48hr时的下调作用最为显著。AQP2siRNA干扰后IK细胞着床因子LIF和Integrinβ3表达显著下调,OLFM1表达显著上调;AQP8siRNA干扰后LIF表达显著下调,OLFM1表达显著上调。子宫内膜细胞AQP8siRNA和AQP2siRNA干扰后,JAr滋养细胞团粘附率均显著下降。
     结论:超生理水平FSH通过下调育龄期子宫内膜AQPs、干扰内膜容受因子表达,进而影响子宫内膜对胚胎的容受性、不利于胚胎着床。
     第三部分长期高FSH刺激对围绝经期子宫内膜萎缩的影响
     目的:通过在体组织、动物模型和体外细胞模型,探讨绝经后高FSH水平在子宫内膜功能及萎缩中所起的作用及其机制。
     材料与方法:采用化学发光法检测围绝经期和绝经后不同年龄段妇女血清FSH、LH、E2变化动态,免疫组织化学方法检测绝经后妇女和育龄期妇女子宫内膜FSHR、Ki67、AQP1、AQP2、AQP8蛋白表达。采用MTT法检测FSH对人原代培养子宫内膜腺上皮细胞和Ishikawa细胞增殖的影响,流式细胞仪检测FSH对Ishikawa细胞周期的影响,Real time PCR检测高浓度FSH对子宫内膜细胞AQP2和AQP8表达的影响、并检测AC激动剂和拮抗剂对FSH作用的影响。建立手术去势动物模型、药物去势动物模型和假手术(对照)动物模型,通过RIA方法检测血FSH和E2水平,采用透视电镜观察子宫内膜细胞形态和凋亡指征、Western blotting检测子宫内膜增殖和凋亡相关指标。
     结果:绝经后妇女血清FSH水平随年龄从41-50岁年龄段到61-70年龄段呈逐步上升,从61-70年龄段到71-80年龄段无显著上升。血清E2水平呈现与FSH同步的反向变化。与育龄期内膜相比,绝经后子宫内膜FSHR、AQP2和AQP1蛋白表达无显著改变,Ki67表达显著下降, AQP8蛋白间质表达较育龄期增高、腺体表达较育龄期降低。FSH对原代子宫内膜腺上皮细胞呈浓度依赖性的抑制增殖作用,但对Ishikawa细胞增殖和细胞周期无明显影响。高浓度FSH(50IU/L、100IU/L、200IU/L、400IU/L)呈浓度依赖性显著上调Ishikawa细胞AQP2 mRNA的表达,该上调作用可部分被SQ22536所拮抗。Forskolin可上调Ishikawa细胞AQP2 mRNA的表达。动物模型实验方面,成功建立了手术去势(OVX,高FSH、低E2)、药物去势(GnRHa,低FSH、低E2)和假手术对照组(SHAM, FSH和E2水平如常)小鼠。OVX组小鼠子宫萎缩明显、透视电镜下见大片凋亡细胞和散在凋亡小体,而GnRHa组小鼠子宫大小、萎缩度及细胞凋亡现象介于SHAM组和OVX组之间。与SHAM组相比,GnRHa组小鼠子宫C-FOS、C-JUN、Bcl-2蛋白表达量呈下降趋势。与SHAM组和GnRHa组相比,OVX组小鼠子宫C-FOS、C-JUN、Bcl-2蛋白表达显著下降,而Caspase3蛋白的表达显著增高。
     结论:绝经后循环高FSH水平可通过腺苷酸环化酶通路上调子宫内膜AQP2,抑制子宫内膜增殖、促进子宫内膜细胞凋亡,协同低E调节子宫内膜生理性萎缩。
Part I The effects of FSH treatment on AQPs and receptive factors in human endometrium
     Objective:To identify whether FSHR expresses in human endometrium and Ishikawa cells, the endometrial adenocarcinoma cell line. To observe the human endometrial morphological and functional changes, as well as endometrial expression of FSHR, AQPs and endometrial receptive factors after controlled ovarian stimulation (COS) using FSH treatment.
     Patients and methods:We collected 15 endometrial samples in implantation window after COS, and 40 samples in implantation window of natural cycle as control group. We measured the serum FSH and E2 with chemoluminescence, detected FSHR expression in human endometrial tissue and Ishikawa cells with a few methods, including sequencing RT-PCR product, Western blotting, immunohistochemistry and immunofluorescence. Endometrial ultrastructure was investigated with electron microscopy. We observe the changes of endometrial FSHR, AQPs(AQPl, AQP2, AQP 8), endometrial receptive factors (Integrinβ3、LIF) and Claudin4, a tight-junction associated protein with Western blotting.
     Results:We identified FSHR mRNA and protein in endometrial tissue and Ishikawa cells, and make 100% matchup between FSHR RT-PCR product sequence and BLAST results from NCBI. Protein mainly expressed on cellular membrane and cytoplasma. The serum FSH and E2 level from COS group is much higher than those of control group. With scanning electron microscope, we observed that endometrial luminal epithelium were arranged well, with pinopode seen in the control group, in contrast, endometrial luminal epithelium was deranged, without any pinopode in the COS group. With the transmission electron microscope, apoptosis of endometrial epithelium increased. No significant difference of tight-junction was observed. The Western blotting result shows that FSHR expression was up-regulated significantly while expression of AQP1, AQP2, AQP8, Integrinβ3, LIF were down-regulated significantly in the COS group, and Claudin4 did not change much in the COS group.
     Conclusion:FSHR is expressed in human endometrial tissue and Ishikawa cells. Compared with control group, women of COS group exhibited elevated serum FSH and E2 level, up-regulation of FSHR expression in endometrium, down-regulation of AQP1, AQP2, AQP8, Integrinβ3 and LIF expression, as well as alternation of endometrial luminal epithelium morphology and apoptosis. FSH may regulate the morphology aspect and function of child-bearing period endometrium directly through FSHR.
     Part II The mechanism of FSH affecting child-bearing period endometrium receptivity
     Objective:To investigate the effect and mechanism of FSH on child-bearing period endometrium receptivity.
     Patients and methods:We set up the OS mouse model by injecting exogenous rFSH, and assessed the influence of exogenous rFSH on serum FSH/E2 level, endometrial AQPs, receptive factors, pregnancy rate and live birth rate. We constructed the mouse blastocyst-adhesion model, and assessed the effect of FSH/E2, PCMB (AQP inhibitor) pre-treatment on blastocyst adhesion and implantation. We measured AQPs, receptive factors (integrinβ3, LIF) gene expression level after FSH/E2 treatment by RT-Real time quantitative PCR based on in vitro cell experiment. Assessing expression of endometrial receptive factors and JAr adhesion rate after AQP2/AQP8siRNA interfering.
     Results:In the OS group, serum FSH/E2 level elevated significantly, endometrial expression of AQP2, AQP3 protein expression was down-regulated and FSHR was slightly up-regulated, the pregnant rate and live birth rate decreased drastically. The results from the mouse blastocyst adhesion model showed that in vitro FSH, FSH/E2 and PCMB treatment on endometrium cells lead to decreased blastocyst adhesion rate at 48hr and 72hr. In Ishikawa cells, E2 display a concentration-dependent up-regulation on expression of AQP2 and AQP8 mRNA, while FSH (0,1,3,10,30 IU/L) display a concentration-dependent and time-dependent down-regulation on AQP2, AQP8 and LIF mRNA, especially 10IU/L and 30IU/L at 48hr. After AQP2siRNA interfering, the expression of LIF and IntegrinB3 were up-regulated and OLFM1 was up-regulated. After AQP8siRNA interfering, the expression of LIF was down-regulated and OLFM1 was up-regulated. The JAr adhesion rate decreased after either AQP8 siRNA or AQP2siRNA interfering.
     Conclusion:Superphysiological FSH level disturb endometrium receptivity and embryo implantation through the down-regulation expression of endometrium AQPs and receptive factors.
     Part III The effects of high serum FSH on menopausal uterine endometrial atropy.
     Objective:To investigate the effect and mechanism of high FSH level during the post-menopause period on endometrial function and atrophy.
     Patients and methods:We measured serum FSH, LH and E2 dynamic level with chemoluminescence, and detect endometrial protein expression of FSHR, Ki67, AQP1, AQP2 and AQP8 with immunohistochemistry of pre-menopausal group and post-menopausal group. We assessed the effect of FSH on proliferation of human primary cultured endometrial glandular epithelium and Ishikawa cells with MTT assay, on cell cycles of Ishikawa cells with flow cytometry, and on endometrial expression of AQP2 and AQP8 mRNA with Real time quantitative PCR, and also assessed the influence of AC activator and inhibitor on FSH-associated effect. We constructed surgery castrated (OVX), drug castrated (GnRHa) animal model as well as SHAM group, measured their serum FSH and E2 level using RIA assay, and observed morphology aspect and apoptosis signs of endometrial cells via transmission electron microscope. We also detected the expression level of factors related to endometrial proliferation and apoptosis using Real time PCR and Western blotting.
     Results:The serum FSH level in post-menopausal women increased with aging from 41-50yrs to 61-70yrs, but 71-80 yrs group did not display a higher FSH level than 61-70yrs group, however, the serum E2 showed the exact opposite trend. Compared with FSHR, AQP2, and AQP1 protein expression of child-bearing period endometrium, those of post-menopausal endometrium did not change significantly, while expression of Ki67 decreased in post-menopausal group. AQP8 protein expression increased in endometrial interstitium, but decreased in endometrial gland in post-menopausal group. FSH displayed a concentration-dependent inhibition on the proliferation of primary endometrial gland epithelium, but not on that of Ishikawa cells. High concentration FSH (50IU/L,100IU/L,200IU/L,400IU/L) up-regulated the expression of AQP2 mRNA in Ishikawa cells as a concentration-dependent way, however, it can be partly antagonized by SQ22536, an AC inhibitor. Forskolin, an AC activator, treatment led to increased expression of AQP2 mRNA in Ishikawa cells. We constructed surgery castrated group(OVX, high FSH, low E2), drug castrated (GnRHa, low FSH、low E2) and sham group(SHAM, normal FSH and E2). The uterus of Mice in OVX group developed atrophy, and was observed plenty of apoptosis cells and few apoptosis body in the transmission electron scope. The extent of morphological and ultrastructural changes of GnRHa group lay between OVX group and SHAM group. The protein expression of C-FOS, C-JUN and Bcl-2 decreased in the GnRHa group, compared those in SHAM group. The protein expression of C-FOS, C-JUN and Bcl-2 decreased drastically while Caspase3 increased in OVX group, compared with SHAM group and GnRHa group.
     Conclusion:High serum FSH after menopause can up-regulate uterine endometrial AQP2 partly through AC pathway, inhibit the endometrial proliferation, and promote apoptosis of endometrial cells, and eventurally regulate the physiological atrophy of uterine endometrium, directly or coordinating with low serum E2.
引文
1. Achermann JC, Jameson JL. Fertility and infertility:genetic contributions from the hypothalamic-pituitary-gonadal axis. Mol Endocrinol 1999;13:812-8.
    2. Plant TM. Hypothalamic control of the pituitary-gonadal axis in higher primates: key advances over the last two decades. J Neuroendocrinol 2008;20:719-26.
    3. Young EA. The role of gonadal steroids in hypothalamic-pituitary-adrenal axis regulation. Crit Rev Neurobiol 1995;9:371-81.
    4. Bogerd J. Ligand-selective determinants in gonadotropin receptors. Mol Cell Endocrinol 2007;260-262:144-52.
    5. Braun T, Schofield PR, Sprengel R. Amino-terminal leucine-rich repeats in gonadotropin receptors determine hormone selectivity. EMBO J 1991;10:1885-90.
    6. Dias JA, Cohen BD, Lindau-Shepard B, Nechamen CA, Peterson AJ, Schmidt A. Molecular, structural, and cellular biology of follitropin and follitropin receptor. Vitam Horm 2002;64:249-322.
    7. Lagerstrom MC, Schioth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008;7:339-57.
    8. Sun L, Peng Y, Sharrow AC, et al. FSH directly regulates bone mass. Cell 2006;125:247-60.
    9. Haugen MJ, Johnson AL. Bone morphogenetic protein 2 inhibits FSH responsiveness in hen granulosa cells. Reproduction 2010; 140:551-8.
    10. Rendina D, Gianfrancesco F, De Filippo G, et al. FSHR gene polymorphisms influence bone mineral density and bone turnover in postmenopausal women. Eur J Endocrinol 2010;163:165-72.
    11. Liu S, Cheng Y, Xu W, Bian Z. Protective effects of follicle-stimulating hormone inhibitor on alveolar bone loss resulting from experimental periapical lesions in ovariectomized rats. J Endod 2010;36:658-63.
    12. Liu S, Cheng Y, Fan M, Chen D, Bian Z. FSH aggravates periodontitis-related bone loss in ovariectomized rats. J Dent Res 2010;89:366-71.
    13. Zaidi S, Zhu LL, Mali R, et al. Regulation of FSH receptor promoter activation in the osteoclast. Biochem Biophys Res Commun 2007;361:910-5.
    14. Ben-Josef E, Yang SY, Ji TH, et al. Hormone-refractory prostate cancer cells express functional follicle-stimulating hormone receptor (FSHR). J Urol 1999;161:970-6.
    15. Mariani S, Salvatori L, Basciani S, et al. Expression and cellular localization of follicle-stimulating hormone receptor in normal human prostate, benign prostatic hyperplasia and prostate cancer. J Urol 2006;175:2072-7; discussion 7.
    16. Zheng W, Magid MS; Kramer EE, Chen YT. Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol 1996;148:47-53.
    17. La Marca A, Carducci Artenisio A, Stabile G, Rivasi F, Volpe A. Evidence for cycle-dependent expression of follicle-stimulating hormone receptor in human endometrium. Gynecol Endocrinol 2005;21:303-6.
    18. Macklon NS, van der Gaast MH, Hamilton A, Fauser BC, Giudice LC. The impact of ovarian stimulation with recombinant FSH in combination with GnRH antagonist on the endometrial transcriptome in the window of implantation. Reprod Sci 2008;15:357-65.
    19. Haouzi D, Assou S, Dechanet C, et al. Controlled ovarian hyperstimulation for in vitro fertilization alters endometrial receptivity in humans:protocol effects. Biol Reprod 2010;82:679-86.
    20. Horcajadas JA, Minguez P, Dopazo J, et al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J Clin Endocrinol Metab 2008;93:4500-10.
    21. Liu Y, Lee KF, Ng EH, Yeung WS, Ho PC. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles. Fertil Steril 2008;90:2152-64.
    22. Liu Y, Kodithuwakku SP, Ng PY, et al. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study. Hum Reprod 2010;25:479-90.
    23. Devroey P, Bourgain C, Macklon NS, Fauser BC. Reproductive biology and IVF; ovarian stimulation and endometrial receptivity. Trends Endocrinol Metab 2004;15:84-90.
    24. Johannisson E, Landgren BM, Rohr HP, Diczfalusy E. Endometrial morphology and peripheral hormone levels in women with regular menstrual cycles. Fertil Steril 1987;48:401-8.
    25. Jablonski EM, McConnell NA, Hughes FM, Jr., Huet-Hudson YM. Estrogen regulation of aquaporins in the mouse uterus:potential roles in uterine water movement. Biol Reprod 2003;69:1481-7.
    26. Horcajadas JA, Riesewijk A, Dominguez F, Cervero A, Pellicer A, Simon C. Determinants of endometrial receptivity. Ann N Y Acad Sci 2004;1034:166-75.
    27. Finn CA, McLaren A. A study of the early stages of implantation in mice. J Reprod Fertil 1967;13:259-67.
    28. Psychoyos A. Hormonal control of ovoimplantation. Vitam Horm 1973;31:201-56.
    29. Agre P, Sasaki S, Chrispeels MJ. Aquaporins:a family of water channel proteins. Am J Physiol 1993;265:F461.
    30. Agre P, Kozono D. Aquaporin water channels:molecular mechanisms for human diseases. FEBS Lett 2003;555:72-8.
    31. Mobasheri A, Marples D. Expression of the AQP-1 water channel in normal human tissues:a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 2004;286:C529-37.
    32. Deen PM, Verdijk MA, Knoers NV, et al. Requirement of human renal water-channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 1994;264:92-5.
    33. Agre P. Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed Engl 2004;43:4278-90.
    34. Nielsen S, Chou CL, Marples D, Christensen El, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci USA 1995;92:1013-7.
    35. Richard C, Gao J, Brown N, Reese J. Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 2003;144:1533-41.
    36 He RH. Sheng JZ. Luo O. et al. Aquaporin-2 expression in human endometrium correlates with serum ovarian steroid hormones. Life Sci 2006;79:423-9.
    37. Hildenbrand A, Lalitkumar L, Nielsen S, Gemzell-Danielsson K, Stavreus-Evers A. Expression of aquaporin 2 in human endometrium. Fertil Steril 2006;86:1452-8.
    38. Davies S, Bax CM, Chatzaki E, Chard T, Iles RK. Regulation of endometrial cance cell growth by luteinizing hormone (LH) and follicle stimulating hormone (FSH). Br J Cancer 2000;83:1730-4.
    39. Danilovich N, Roy I, Sairam MR. Emergence of uterine pathology during accelerated biological aging in FSH receptor-haploinsufficient mice. Endocrinology 2002; 143:3618-27.
    40. Abel MH, Huhtaniemi I, Pakarinen P, Kumar TR, Charlton HM. Age-related uterine and ovarian hypertrophy in FSH receptor knockout and FSHbeta subunit knockout mice. Reproduction 2003;125:165-73.
    41. Rannikki AS, Zhang FP, Huhtaniemi IT. Ontogeny of follicle-stimulating hormone receptor gene expression in the rat testis and ovary. Mol Cell Endocrinol 1995;107:199-208.
    42. Dankbar B, Brinkworth MH, Schlatt S, Weinbauer GF, Nieschlag E, Gromoll J. Ubiquitous expression of the androgen receptor and testis-specific expression of the FSH receptor in the cynomolgus monkey (Macaca fascicularis) revealed by a ribonuclease protection assay. J Steroid Biochem Mol Biol 1995;55:35-41.
    43. Richards JS, Ireland JJ, Rao MC, Bernath GA, Midgley AR, Jr., Reichert LE, Jr. Ovarian follicular development in the rat:hormone receptor regulation by estradiol, follicle stimulating hormone and luteinizing hormone. Endocrinology 1976;99:1562-70.
    44. Sokka T, Huhtaniemi I. Ontogeny of gonadotrophin receptors and gonadotrophin-stimulated cyclic AMP production in the neonatal rat ovary. J Endocrinol 1990; 127:297-303.
    45. Van Vaerenbergh I, Mclntire R, Van Lommel L, Devroey P, Giudice L, Bourgain C. Gene expression during successful implantation in a natural cycle. Fertil Steril 2010;93:268 e15-8.
    46. Lee KY, DeMayo FJ. Animal models of implantation. Reproduction 2004;128:679-95.
    47. Aghajanova L. Leukemia inhibitory factor and human embryo implantation. Ann N Y Acad Sci 2004;1034:176-83.
    48. Kimber SJ. Leukaemia inhibitory factor in implantation and uterine biology. Reproduction 2005;130:131-45.
    49. Sherwin JR, Freeman TC, Stephens RJ, et al. Identification of genes regulated by leukemia-inhibitory factor in the mouse uterus at the time of implantation. Mol Endocrinol 2004;18:2185-95.
    50. Rossi M, Sharkey AM, Vigano P, et al. Identification of genes regulated by interleukin-lbeta in human endometrial stromal cells. Reproduction 2005;130:721-9.
    51. Gonzalez RR, Rueda BR, Ramos MP, Littell RD, Glasser S, Leavis PC. Leptin-induced increase in leukemia inhibitory factor and its receptor by human endometrium is partially mediated by interleukin 1 receptor signaling. Endocrinology 2004; 145:3850-7.
    52. Skrzypczak J, Wirstlein P, Mikolajczyk M. [Is glycodelin an important marker of endometrial receptivity?]. Ginekol Pol 2005;76:770-81.
    53. Kunert-Keil C, Wiehmeier E, Jeschke U, Giebel J. Immunolocalization of glycodelin in the genital tract of rats. J Mol Histol 2005;36:111-7.
    54. Yeung WS, Lee KF, Koistinen R, et al. Roles of glycodelin in modulating sperm function. Mol Cell Endocrinol 2006;250:149-56.
    55. von Wolff M, Wang X, Gabius HJ, Strowitzki T. Galectin fingerprinting in human endometrium and decidua during the menstrual cycle and in early_gestation. Mol Hum Reprod 2005; 11:189-94.
    56. Kim JJ, Fazleabas AT. Uterine receptivity and implantation:the regulation and action of insulin-like growth factor binding protein-1 (IGFBP-1), HOXA10 and forkhead transcription factor-1 (FOXO-1) in the baboon endometrium. Reprod Biol Endocrinol 2004;2:34.
    57. Daftary GS, Taylor HS. Pleiotropic effects of Hoxa10 on the functional development of peri-implantation endometrium. Mol Reprod Dev 2004;67:8-14.
    58. Vassart G, Pardo L, Costagliola S. A molecular dissection of the glycoprotein hormone receptors. Trends Biochem Sci 2004;29:119-26.
    59. Radu A, Pichon C, Camparo P, et al. Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med 2010;363:1621-30.
    60. Feng C, Sun CC, Wang TT, He RH, Sheng JZ, Huang HF. Decreased expression of endometrial vessel AQPl and endometrial epithelium AQP2 related to anovulatory uterine bleeding in premenopausal women. Menopause 2008;15:648-54.
    1. Peters HP, Robben JH, Deen PM, Wetzels JF. Water in health and disease:new aspects of disturbances in water metabolism. Neth J Med 2007;65:325-32.
    2. Verkman AS. More than just water channels:unexpected cellular roles of aquaporins. J Cell Sci 2005;118:3225-32.
    3. King LS, Choi M, Fernandez PC, Cartron JP, Agre P. Defective urinary-concentrating ability due to a complete deficiency of aquaporin-1. N Engl J Med 2001;345:175-9.
    4. Deen PM, Verdijk MA, Knoers NV, et al. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 1994;264:92-5.
    5. Chao HT, Lee SY, Lee HM, Liao TL, Wei YH, Kao SH. Repeated ovarian stimulations induce oxidative damage and mitochondrial DNA mutations in mouse ovaries. Ann N Y Acad Sci 2005; 1042:148-56.
    6. Johannisson E, Landgren BM, Rohr HP, Diczfalusy E. Endometrial morphology and peripheral hormone levels in women with regular menstrual cycles. Fertil Steril 1987;48:401-8.
    7. Jablonski EM, McConnell NA, Hughes FM, Jr., Huet-Hudson YM. Estrogen regulation of aquaporins in the mouse uterus:potential roles in uterine water movement. Biol Reprod 2003;69:1481-7.
    8. Agre P, Sasaki S, Chrispeels MJ. Aquaporins:a family of water channel proteins. Am J Physiol 1993;265:F461.
    9. Agre P, Kozono D. Aquaporin water channels:molecular mechanisms for human diseases. FEBS Lett 2003;555:72-8.
    10. Mobasheri A, Marples D. Expression of the AQP-1 water channel in normal human tissues:a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 2004;286:C529-37.
    11. Agre P. Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed Engl 2004;43:4278-90.
    12. Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci US A1995;92:1013-7.
    13. Richard C, Gao J, Brown N, Reese J. Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 2003;144:1533-41.
    14. He RH, Sheng JZ, Luo Q, et al. Aquaporin-2 expression in human endometrium correlates with serum ovarian steroid hormones. Life Sci 2006;79:423-9.
    15. Lindsay LA, Murphy CR. Aquaporin-1 increases in the rat myometrium during early pregnancy. J Mol Histol 2004;35:75-9.
    16. Lindsay LA, Murphy CR. Redistribution of aquaporins in uterine epithelial cells at the time of implantation in the rat. Acta Histochem 2004;106:299-307.
    17. Liu Y, Kodithuwakku SP, Ng PY, et al. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study. Hum Reprod 2010;25:479-90.
    18. Uchida H, Maruyama T, Nagashima T, Asada H, Yoshimura Y. Histone deacetylase inhibitors induce differentiation of human endometrial adenocarcinoma cells through up-regulation of glycodelin. Endocrinology 2005;146:5365-73.
    19. Uchida H, Maruyama T, Ohta K, et al. Histone deacetylase inhibitor-induced glycodelin enhances the initial step of implantation. Hum Reprod 2007;22:2615-22.
    20. Wang H, Dey SK. Roadmap to embryo implantation:clues from mouse models. Nat Rev Genet 2006;7:185-99.
    21. Zhao M, Chang C, Liu Z, Chen LM, Chen Q. Treatment with low-dose aspirin increased the level LIF and integrin beta3 expression in mice during the implantation window. Placenta 2010;31:1101-5.
    22. Li L, Xu BF, Chen QJ, Sun XX. Effects of hydrosalpinx on pinopodes, leukaemia inhibitory factor, integrin beta3 and MUC1 expression in the peri-implantation endometrium. Eur J Obstet Gynecol Reprod Biol 2010;151:171-5.
    23. Lei CX, Zhang W, Zhou JP, Liu YK. Interactions between galectin-3 and integrinbeta3 in regulating endometrial cell proliferation and adhesion. Hum Reprod 2009;24:2879-89.
    24. Kimber SJ. Leukaemia inhibitory factor in implantation and uterine biology. Reproduction 2005;130:131-45.
    25. Ji C, Cao C, Lu S, et al. Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells. Cancer Chemother Pharmacol 2008;62:857-65.
    26. Papadopoulos MC, Saadoun S, Verkman AS. Aquaporins and cell migration. Pflugers Arch 2008;456:693-700.
    27. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 2005;434:786-92.
    28. Haouzi D, Assou S, Dechanet C, et al. Controlled ovarian hyperstimulation for in vitro fertilization alters endometrial receptivity in humans:protocol effects. Biol Reprod 2010;82:679-86.
    29. Haouzi D, Assou S, Mahmoud K, et al. Gene expression profile of human endometrial receptivity:comparison between natural and stimulated cycles for the same patients. Hum Reprod 2009;24:1436-45.
    30. Zhang SY, Lin XN, Song T, Tong XM, Shu J, Huang HF. [Gene expression profiles of peri-implantation endometrium in natural and superovulation cycles]. Zhonghua Yi Xue Za Zhi 2008;88:2343-6.
    31. van der Gaast MH, Classen-Linke I, Krusche CA, et al. Impact of ovarian stimulation on mid-luteal endometrial tissue and secretion markers of receptivity. Reprod Biomed Online 2008;17:553-63.
    32. Van Vaerenbergh I, Mclntire R, Van Lommel L, Devroey P, Giudice L, Bourgain C. Gene expression during successful implantation in a natural cycle. Fertil Steril 2010;93:268 e15-8.
    1. Achermann JC, Jameson JL. Fertility and infertility:genetic contributions from the hypothalamic-pituitary-gonadal axis. Mol Endocrinol 1999;13:812-8.
    2. Plant TM. Hypothalamic control of the pituitary-gonadal axis in higher primates: key advances over the last two decades. J Neuroendocrinol 2008;20:719-26.
    3. Young EA. The role of gonadal steroids in hypothalamic-pituitary-adrenal axis regulation. Crit Rev Neurobiol 1995;9:371-81.
    4. Sun L, Peng Y, Sharrow AC, et al. FSH directly regulates bone mass. Cell 2006;125:247-60.
    5. Radu A, Pichon C, Camparo P, et al. Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med 2010;363:1621-30.
    6. Danilovich N, Roy I, Sairam MR. Emergence of uterine pathology during accelerated biological aging in FSH receptor-haploinsufficient mice. Endocrinology 2002;143:3618-27.
    7. Abel MH, Huhtaniemi I, Pakarinen P, Kumar TR, Charlton HM. Age-related uterine and ovarian hypertrophy in FSH receptor knockout and FSHbeta subunit knockout mice. Reproduction 2003;125:165-73.
    8. Iqbal J, Zaidi M. Understanding estrogen action during menopause. Endocrinology 2009;150:3443-5.
    9. Rendina D, Gianfrancesco F, De Filippo G, et al. FSHR gene polymorphisms influence bone mineral density and bone turnover in postmenopausal women. Eur J Endocrinol 2010;163:165-72.
    10. Liu S, Cheng Y, Xu W, Bian Z. Protective effects of follicle-stimulating hormone inhibitor on alveolar bone loss resulting from experimental periapical lesions in ovariectomized rats. J Endod 2010;36:658-63.
    11. Liu S, Cheng Y, Fan M, Chen D, Bian Z. FSH aggravates periodontitis-related bone loss in ovariectomized rats. J Dent Res 2010;89:366-71.
    12. Ben-Josef E, Yang SY, Ji TH, et al. Hormone-refractory prostate cancer cells express functional follicle-stimulating hormone receptor (FSHR). J Urol 1999;161:970-6.
    13. Mariani S, Salvatori L, Basciani S, et al. Expression and cellular localization of follicle-stimulating hormone receptor in normal human prostate, benign prostatic hyperplasia and prostate cancer. J Urol 2006;175:2072-7; discussion 7.
    14. Zheng W, Magid MS, Kramer EE, Chen YT. Follicle-stimulating hormone receptor is expressed in human ovarian surface epithelium and fallopian tube. Am J Pathol 1996;148:47-53.
    15. La Marca A, Carducci Artenisio A, Stabile G, Rivasi F, Volpe A. Evidence for cycle-dependent expression of follicle-stimulating hormone receptor in human endometrium. Gynecol Endocrinol 2005;21:303-6.
    16. Germeyer A, von Wolff M, Jauckus J, Strowitzki T, Sharma T, Grazul-Bilska AT. Changes in cell proliferation, but not in vascularisation are characteristic for human endometrium in different reproductive failures--a pilot study. Reprod Biol Endocrinol 2010;8:67.
    17. Qu F, Wang FF, Lu XE, et al. Altered aquaporin expression in women with polycystic ovary syndrome:hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Hum Reprod 2010;25:1441-50.
    18. Piketty V, Kara E, Guillou F, Reiter E, Crepieux P. Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin-and dynamin-mediated FSH receptor internalization. Reprod Biol Endocrinol 2006;4:33.
    19. Tormos C, Javier Chaves F, Garcia MJ, et al. Role of glutathione in the induction of apoptosis and c-fos and c-jun mRNAs by oxidative stress in tumor cells. Cancer Lett 2004;208:103-13.
    20. Flanagan AM, Letai A. BH3 domains define selective inhibitory interactions with BHRF-1 and KSHV BCL-2. Cell Death Differ 2008;15:580-8.
    21. Ikeda T, Kanazawa T, Otsuka S, Ichii O, Hashimoto Y, Kon Y. Expression of caspase family and muscle-and apoptosis-specific genes during skeletal myogenesis in mouse embryo. J Vet Med Sci 2009;71:1161-8.
    22. Hunzicker-Dunn M, Maizels ET. FSH signaling pathways in immature granulosa cells that regulate target gene expression:branching out from protein kinase A. Cell Signal 2006;18:1351-9.
    23. Dias JA, Cohen BD, Lindau-Shepard B, Nechamen CA, Peterson AJ, Schmidt A. Molecular, structural, and cellular biology of follitropin and follitropin receptor. Vitam Horm 2002;64:249-322.
    24. Bogerd J. Ligand-selective determinants in gonadotropin receptors. Mol Cell Endocrinol 2007;260-262:144-52.
    25. Braun T, Schofield PR, Sprengel R. Amino-terminal leucine-rich repeats in gonadotropin receptors determine hormone selectivity. EMBO J 1991; 10:1885-90.
    26. Lagerstrom MC, Schioth HB. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 2008;7:339-57.
    27. Vassart G, Pardo L, Costagliola S. A molecular dissection of the glycoprotein hormone receptors. Trends Biochem Sci 2004;29:119-26.
    28. Dorrington JH, Armstrong DT. Effects of FSH on gonadal functions. Recent Prog Horm Res 1979;35:301-42.
    29. Heindel JJ, Rothenberg R, Robison GA, Steinberger A. LH and FSH stimulation of cyclic AMP in specific cell types isolated from the testes. J Cyclic Nucleotide Res 1975;1:69-79.
    30. Flores JA, Veldhuis JD, Leong DA. Follicle-stimulating hormone evokes an increase in intracellular free calcium ion concentrations in single ovarian (granulosa) cells. Endocrinology 1990;127:3172-9.
    31. Seger R, Hanoch T, Rosenberg R, et al. The ERK signaling cascade inhibits gonadotropin-stimulated steroidogenesis. J Biol Chem 2001;276:13957-64.
    32. Tena-Sempere M, Manna PR, Huhtaniemi I. Molecular cloning of the mouse follicle-stimulating hormone receptor complementary deoxyribonucleic acid:functional expression of alternatively spliced variants and receptor inactivation by a C566T transition in exon 7 of the coding sequence. Biol Reprod 1999;60:1515-27.
    1. Steptoe, P.C.R.G Edwards, Birth after the reimplantation of a human embryo[J]. Lancet,1978.2(8085):p.366.
    2. Cox, G.F., J. Burger, V. Lip, et al., Intracytoplasmic sperm injection may increase the risk of imprinting defects[J]. Am J Hum Genet,2002.71(1):p.162-4.
    3. Edwards, L.J., K.L. Kind, D.T. Armstrong, et al., Effects of recombinant human follicle-stimulating hormone on embryo development in mice[J]. Am J Physiol Endocrinol Metab,2005.288(5):p. E845-51.
    4. Kelley, R.L., K.L. Kind, M. Lane, et al., Recombinant human follicle-stimulating hormone alters maternal ovarian hormone concentrations and the uterus and perturbs fetal development in mice[J]. Am J Physiol Endocrinol Metab,2006.291(4):p. E761-70.
    5. Sato, A., E. Otsu, H. Negishi, et al., Aberrant DNA methylation of imprinted loci in superovulated oocytes[J]. Hum Reprod,2007.22(1):p.26-35.
    6. Baart, E.B., E. Martini, M.J. Eijkemans, et al., Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo:a randomized controlled trial[J]. Hum Reprod,2007.22(4):p.980-8.
    7. Shi, W.T. Haaf, Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure[J]. Mol Reprod Dev,2002.63(3):p. 329-34.
    8. Fauque, P., P. Jouannet, C. Lesaffre, et al., Assisted Reproductive Technology affects developmental kinetics, H19 Imprinting Control Region methylation and H19 gene expression in individual mouse embryos[J]. BMC Dev Biol,2007.7: p.116.
    9. Fortier, A.L., F.L. Lopes, N. Darricarrere, et al., Superovulation alters the expression of imprinted genes in the midgestation mouse placenta[J]. Hum Mol Genet,2008.17(11):p.1653-65.
    10. Market-Velker, B.A., L. Zhang, L.S. Magri, et al., Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner[J]. Hum Mol Genet,2010.19(1):p.36-51.
    11. Borghol, N., J. Lornage, T. Blachere, et al., Epigenetic status of the H19 locus in human oocytes following in vitro maturation [J]. Genomics,2006.87(3):p. 417-26.
    12. Kerjean, A., P. Couvert, T. Heams, et al., In vitro follicular growth affects oocyte imprinting establishment in mice[J]. Eur J Hum Genet,2003.11(7):p.493-6.
    13. Anckaert, E., T. Adriaenssens, S. Romero, et al., Unaltered imprinting establishment of key imprinted genes in mouse oocytes after in vitro follicle culture under variable follicle-stimulating hormone exposure[J]. Int J Dev Biol, 2009.53(4):p.541-8.
    14. Lee, Y.S., K.E. LathamC.A. Vandevoort, Effects of in vitro maturation on gene expression in rhesus monkey oocytes[J]. Physiol Genomics,2008.35(2):p. 145-58.
    15. Palermo, G, H. Joris, P. Devroey, et al., Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte[J]. Lancet,1992.340(8810):p. 17-8.
    16. Devroey, P.A. Van Steirteghem, A review of ten years experience of ICSI[J]. Hum Reprod Update,2004.10(1):p.19-28.
    17. Nikolettos, N., B. AsimakopoulosI.S. Papastefanou, Intracytoplasmic sperm injection--an assisted reproduction technique that should make us cautious about imprinting deregulation[J]. J Soc Gynecol Investig,2006.13(5):p.317-28.
    18. Orstavik, K.H., K. Eiklid, C.B. van der Hagen, et al., Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection[J]. Am J Hum Genet,2003.72(1):p.218-9.
    19. DeBaun, M.R., E.L. NiemitzA.P. Feinberg, Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19[J]. Am J Hum Genet,2003.72(1):p.156-60.
    20. Gicquel, C., V. Gaston, J. Mandelbaum, et al., In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene[J]. Am J Hum Genet,2003.72(5):p.1338-41.
    21. Maher, E.R., L.A. Brueton, S.C. Bowdin, et al., Beckwith-Wiedemann syndrome and assisted reproduction technology (ART)[J]. J Med Genet,2003.40(1):p. 62-4.
    22. Gomes, M.V., J. Huber, R.A. Ferriani, et al., Abnormal methylation at the KvDMRl imprinting control region in clinically normal children conceived by assisted reproductive technologies[J]. Mol Hum Reprod,2009.15(8):p.471-7.
    23. Katari, S., N. Turan, M. Bibikova, et al., DNA methylation and gene expression differences in children conceived in vitro or in vivo[J]. Hum Mol Genet,2009. 18(20):p.3769-78.
    24. Santos, F., L. Hyslop, P. Stojkovic, et al., Evaluation of epigenetic marks in human embryos derived from IVF and ICSI[J]. Hum Reprod,2010.25(9):p. 2387-95.
    25. Li, T., T.H. Vu, G.A. Ulaner, et al., IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch [J]. Mol Hum Reprod,2005.11(9):p.631-40.
    26. Yoshizawa, Y., M. Kato, M. Hirabayashi, et al., Impaired active demethylation of the paternal genome in pronuclear-stage rat zygotes produced by in vitro fertilization or intracytoplasmic sperm injection[J]. Mol Reprod Dev,2010. 77(1):p.69-75.
    27. Kanber, D., K. Buiting, M. Zeschnigk, et al., Low frequency of imprinting defects in ICSI children born small for gestational age[J]. Eur J Hum Genet, 2009.17(1):p.22-9.
    28. Fujimoto, A., S.M. Mitalipov, L.L. Clepper, et al., Development of a monkey model for the study of primate genomic imprinting[J]. Mol Hum Reprod,2005. 11(6):p.413-22.
    29. Market-Velker, B.A., A.D. FernandesM.R. Mann, Side-by-Side Comparison of Five Commercial Media Systems in a Mouse Model:Suboptimal In Vitro Culture Interferes with Imprint Maintenance[J]. Biol Reprod,2010.
    30. Doherty, A.S., M.R. Mann, K.D. Tremblay, et al., Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo[J]. Biol Reprod,2000.62(6):p.1526-35.
    31. Khosla, S., W. Dean, D. Brown, et al., Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes [J]. Biol Reprod,2001.64(3):p.918-26.
    32. Fernandez-Gonzalez, R., M.A. Ramirez, A. Bilbao, et al., Suboptimal in vitro culture conditions:an epigenetic origin of long-term health effects[J]. Mol Reprod Dev,2007.74(9):p.1149-56.
    33. Lawrence, L.T.K.H. Moley, Epigenetics and assisted reproductive technologies: human imprinting syndromes[J]. Semin Reprod Med,2008.26(2):p.143-52.
    34. Rivera, R.M., P. Stein, J.R. Weaver, et al., Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development[J]. Hum Mol Genet,2008.17(1):p.1-14.
    35. Milki, A.A., M.D. Hinckley, J.D. Fisch, et al., Comparison of blastocyst transfer with day 3 embryo transfer in similar patient populations[J]. Fertil Steril,2000. 73(1):p.126-9.
    36. Pantos, K., E. Makrakis, M. Chronopoulou, et al., Day 4 versus day 3 embryo transfer:a prospective study of clinical outcomes[J]. Fertil Steril,2008.89(3):p. 573-7.
    37. Montag, M., K. van der Ven, C. Dorn, et al., Extended embryo culture reduces the implantation rate on day 4 and day 5 when only a maximum of three embryos are cultured beyond the pronuclear stage[J]. Eur J Obstet Gynecol Reprod Biol,2006.124(1):p.65-9.
    38. Romundstad, L.B., P.R. Romundstad, A. Sunde, et al., Effects of technology or maternal factors on perinatal outcome after assisted fertilisation:a population-based cohort study[J]. Lancet,2008.372(9640):p.737-43.
    39. Ludwig, M., A. Katalinic, S. Gross, et al., Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples[J]. J Med Genet,2005.42(4):p.289-91.
    40. Paoloni-Giacobino, A., Implications of reproductive technologies for birth and developmental outcomes:imprinting defects and beyond[J]. Expert Rev Mol Med,2006.8(12):p.1-14.
    41. Doornbos, M.E., S.M. Maas, J. McDonnell, et al., Infertility, assisted reproduction technologies and imprinting disturbances:a Dutch study[J]. Hum Reprod,2007.22(9):p.2476-80.
    42. Kobayashi, H., A. Sato, E. Otsu, et al., Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients[J]. Hum Mol Genet,2007.16(21):p. 2542-51.
    43. Marques, CJ., P. Costa, B. Vaz, et al., Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia[J]. Mol Hum Reprod,2008. 14(2):p.67-74.
    44. Boissonnas, C.C., H.E. Abdalaoui, V. Haelewyn, et al., Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men[J]. Eur J Hum Genet,2010.18(1):p.73-80.
    45. Poplinski, A., F. Tuttelmann, D. Kanber, et al., Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1[J]. Int J Androl,2010.33(4):p.642-9.
    46. Hammoud, S.S., J. Purwar, C. Pflueger, et al., Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility [J]. Fertil Steril, 2009.
    47. Marques, C.J., T. Francisco, S. Sousa, et al., Methylation defects of imprinted genes in human testicular spermatozoa[J]. Fertil Steril,2010.94(2):p.585-94.
    48. Kobayashi, H., H. Hiura, R.M. John, et al., DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm [J]. Eur J Hum Genet,2009.17(12):p.1582-91.
    49. Hartmann, S., M. Bergmann, R.M. Bohle, et al., Genetic imprinting during impaired spermatogenesis[J]. Mol Hum Reprod,2006.12(6):p.407-11.
    [1]Simms I, Homer P. Has the incidence of pelvic inflammatory disease following chlamydial infection been overestimated? [J] Int J STD AIDS 2008; 19:285-286.
    [2]Svenstrup HF, Fedder J, Kristoffersen SE, et al. Mycoplasma genitalium, Chlamydia trachomatis, and tubal factor infertility-a prospective study. [J] Fertil Steril 2008;90:513-520.
    [3]Wallace LA, Scoular A, Hart G, et al. What is the excess risk of infertility in women after genital chlamydia infection? A systematic review of the evidence. [J] Sex Transm Infect 2008; 84:171-175.
    [4]Goyaux N, Leke R, Keita N, et al. Ectopic pregnancy in African developing countries. [J] Acta Obstet Gynecol Scand 2003;82:305-312.
    [5]Lim KJ, Odukoya OA, Ajan, et al. The role of T-helper cytokines in human reproduction[J]. [J] Fertil Steril,2000,73(1):136-140.
    [6]Donat H, Kastner T, Weise W, et al. Identification and characterization of immune cells in the ejaculate of infertile and fertile men. [J] Zentrlbl Gynakol,2002, 124(8-9):423-428.
    [7]Peliter MR, Freeman AJ, Muhh, et al. Characterization of the macrophage-timulating activity from ureaplasma urealyticnm. [J] Am J Reprod Immunol.2007,57(3):186—192.
    [8]World Health Organization Task Force on the Prevention and Management of Infertility. Tubal infertility:serologic relationship to past chlamydial and gonococcal infection. [J] Sex Transm Dis 1995;22:71-77.
    [9]Grodstein F, Goldman MB, Cramer DW. Relation of tubal infertility to history of sexually transmitted diseases. [J] Am J Epidemiol 1993;137:577-584.
    [10]Ojo BA, Akanbi AA, Odimayo MS, et al. Endometrial tuberculosis in the Nigerian middle belt:an eight-year review. [J] Trop Doct 2008;38:3-4.
    [11]Sharma JB, Roy KK, Pushparaj M, et al. Laparoscopic findings in female genital tuberculosis. [J] Arch Gynecol Obstet 2008;278:359-364.
    [12]Clark R, Mulligan K, Stamenovic E, et al. Frequency of anovulation and early menopause among women enrolled in selected AIDS clinical trials group studies. [J] J Infect Dis 2001;184:1325-1327.
    [13]杜伟玲论女性生殖道感染现状及对生殖健康的影响[J]科园月刊2008年4月357-358
    [14]Donders GG, Desmyter J, De Wet DH, et al. The association of gonorrhea and syphilis with premature birth and low birth weight. [J] Genitourin Med 1993;69:98-101.
    [15]Elliott B, Brunham RC, Laga M, et al. Maternal gonoccocal infection as a preventable risk factor for low birth weight. [J] J Infect Dis 1990;161:531-536.
    [16]Christian L, Khatry SK, LeClerq SC, et al. Prevalence and risk factors of chlamydia and gonorrhea among rural Nepali women. [J] Sex Transm Infect 2005;81:254-258.
    [17]Nygren P, Fu R, Freeman M, et al. Evidence on the benefits and harms of screening and treating pregnant women who are asymptomatic for bacterial vaginosis: an update review for the US Preventive Services Task Force. [J] Ann Intern Med 2008;148:220-233.
    [18]Swadpanich U, Lumbiganon P, Prasertcharoensook W, et al. Antenatal lower genital tract infection screening and treatment programs for preventing preterm delivery. Cochrane Database Syst Rev 2008:CD006178.
    [19]Delgado AR. Listedosis in pregnancy [J]. [J] J Midwifery Womens Health, 2008,53:255-259
    [20]Swaminathan B, Gemer-Smidt P. The epidemiology of human listeriosis. [J] Microbes Infect,2007,9:1236-1243
    [21]Ireton K. Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells. [J] Cell Microbiol,2007,9:1365-1375
    [22]邓江红,姚开虎,胡惠丽,等.新生儿肺炎死亡病例中B族链球菌的检测.[J]中华儿科杂志,2006,44:850-854.
    [23]时春艳,曲首辉,杨磊,等。妊娠晚期孕妇B族链球菌带菌状况的检测及带菌对妊娠结局的影响。[J]中华妇产科学杂志,2010年1月第45卷第1期,12-16
    [24]Shafii T, Radolf JD, Sanchez PJ, et al. Congenital syphilis. In:Holmes K, Sparling PF, Stamm WE, et al, eds. [M] Sexually Transmitted Infections.4th ed. New York, NY:McGraw Hill,2008:1584.
    [25]杨虹,陈瑞芬,李卓,等.妊娠合并乙肝病毒感染孕妇胎儿窘迫发病原因分析.[J]中华妇产科杂志,2002,37(4):211-213.
    [26]王筱雯,郑九生.乙型肝炎表而抗原阳性孕妇胎儿宫内感染相关凶素分析.[J]中国妇幼保健,2007,22(25):3530-3531.
    [27]Brown KE, Young NS. Parvovirus B19 in human disease. [J] Annu Rev Med 1997;48:59-67.
    [28]Cutts FT, Robertson SE, Diaz-Ortega JL, et al. Control of rubella and congenital rubella syndrome (CRS) in developing countries, part I:burden of disease from CRS. [J] Bull World Health Organ 1997;75:55-68.
    [29]Ross D, Dollard S, Victor M, et al. The epidemiology and prevention of congenital cytomegalovirus infection and disease:activities of the Center for Disease Control and Prevention Workgroup. [J] J Womens Health 2006;15:224-229.
    [30]Sauerbrei A, Wutzler P. Herpes simplex and varicella-zoster virus infections during pregnancy:current concepts of prevention, diagnosis, and therapy. Part 1:herpes simplex virus infections. [J] Med Microbiol Immunol 2007;196:89-94.
    [31]Rawlinson WD, Hall B, Jones CA, et al. Viruses and other infections in stillbirth:what is the evidence and what should we be doing? [J] Pathology 2008;40:149-160.
    [32]Thiebaut R, Leproust S, Chene G, et al. Effectiveness of prenatal treatment for congenital toxoplasmosis:a metaanalysis of individual patients'data. [J] Lancet 2007;369:115-122.
    [33]Desai M, ter Kuile FO, Nosten F, et al. Epidemiology and burden of malaria in pregnancy. [J] Lancet Infect Dis 2007;7:93-104.
    [34]Brabin BJ, Romagosa C, Abdelgalil S, et al. The sick placenta-the role of malaria. [J] Placenta 2004;25:359-378
    [35]Sullivan AD, Nyirenda T, Cullinan T, et al. Malaria infection during pregnancy: intrauterine growth retardation and preterm delivery in Malawi. [J] J Infect Dis 1999;179:1580-1583.
    [36]Rogerson S, Hviid L, Duffy PE, et al. Malaria in pregnancy:pathogenesis and immunity. [J] Lancet Infect Dis 2007;7:105-117.
    [37]Wedad Aboussahoud, Chris Bruce, Sarah Elliott, et al. Activation of Toll-like receptor 5 decreases the attachment of human trophoblast cells to endometrial cells in vitro. [J] Human Reproduction,2010 Vol.25, No.9 pp.2217-2228.
    [38]Paulomi B. Aldo, Melissa J. Mulla, Roberto Romero, et al. Viral ssRNA Induces First Trimester Trophoblast Apoptosis through an Inflammatory Mechanism. [J] American Journal of Reproductive Immunology 64 (2010) 27-37
    [39]Y. Y. GE,L. ZHANG, G. ZHANG, et al. In pregnant mice, the infection of Toxoplasma gondii causes the decrease of CD4+CD25+-regulatory T cells. [J] Parasite Immunology,2008,30,471-481
    [40]Victoria V. Snegovskikh,, Frederick Schatz, Felice Arcuri, et al. Intra-Amniotic Infection Upregulates Decidual Cell Vascular Endothelial Growth Factor (VEGF) and Neuropilin-1 and-2 Expression:Implications for Infection-Related Preterm Birth. [J] Reproductive Sciences Vol.16 No.8 August 2009 767-780

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700