细小病毒H-1感染对人肝癌细胞系QGY-7703基因表达影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细小病毒是一组无囊膜,线状,裂解性的DNA病毒,它们对转化细胞具有杀伤效应而对相应的非转化细胞则无害,是基因治疗的候选载体。因此揭示细小病毒-宿主相互作用的机制尤为重要。前人的研究已识别了不少在细小病毒生活史中必需的或有助于病毒增殖的细胞因子,也认识了病毒蛋白在宿主细胞中的部分作用。但细小病毒对宿主细胞分子的全面影响至今尚未被认识。
     肝癌是中国和南亚地区最常见的疾病之一。几株肝癌细胞系和细小病毒H-1的相互关系已在以往的工作中进行过研究,其中肝癌细胞系QGY-7703是研究最为深入的一个。为了了解细小病毒感染后细胞在转录水平上的全面反应以及病毒可能的细胞靶因子,以QGY-7703-H-1作为一个模型系统,采用了能同时监测上千基因表达变化的基因芯片技术,以期识别和细小病毒-宿主相互作用机制有关的细胞靶因子基因及其可能参与的途径。
     细小病毒的复制紧紧依赖于和增殖及分化有关的细胞因子,尤其是和细胞周期S-期有关的因子。反过来,病毒的增殖又使细胞周期停滞在S/G2期。为了提高细胞群中表达病毒基因组细胞的比例同时减少病毒对细胞周期的干扰使样品产生的差异,采用同步化的细胞进行实验。试验了血清饥饿法,异亮氨酸饥饿法,药物阻断法,以及异亮氨酸饥饿结合药物阻断等多种方法,发现草氨酸处理法既简便又能获得所需的高度同步化的细胞群。草氨酸处理使细胞周期被阻滞在G1末期,药物释放后细胞能同步化地经过一个周期。
     细胞在该药物存在下被病毒感染。对感染后不同时间的同步化细胞的死亡率,病毒的复制情况进行了监测,结果表明在细胞周期阻滞释放后,NS1蛋白及其mRNA的量随时间的增加而增加,细胞死亡率在释放12小时之前很低但之后也随时间而增加。细胞仍同步地处于同一细胞周期阶段,NS1表达较高,而细胞死亡率仍较低的两个时间点(释放后6小时和12小时)被选择进行芯片实验。
     用代表22,000个人类基因的寡聚核苷酸芯片(Genechip Human Genome U133A,Aflymetrix)对这两个时间点的基因表达谱进行了研究。为了保证实验结果的可靠性,对实验样品的质量主要是实验不同阶段RNA的完整性进行了多步骤的监测,表明各个步骤样品均具有很高的质量。芯片实验的重复次数为两次,两次独立而重复芯片实验在6小时时间点的相关系数(coefficient correlation)分别为0.994(病毒感染1vs病毒感染2)和0.994(对照1vs对照2),在12小时时间点的相关系数分别为0.980(病毒感染1vs病毒感染2)和0.975(对照1vs对照2),
Autonomous parvoviruses are nonenveloped, linear-stranded, lytic DNA viruses which are cytotoxic to neoplastic cells while innocuous to their non-transformed counterparts, thus become a candidate of choice as vehicles in gene therapy. It is therefore of special importance to uncover the mechanism underlying parvovirus-host cell interaction. Previous studies have identified dozens of cellular factors which are necessary and helpful in viral life cycle and the some roles of viral proteins on the host cell have also been determined. However, the global impact of parvovirus infection on the host cell has not been investigated by far. Liver cancer is one of the most common cancer in China and southern Asia, the relationship between several hepatoma cell lines and parvovirus H-l have been investigated in the previous works, among them human hepatocellular carcinoma cell line QGY-7703 is the most well-studied one. In order to gain insight into the global cellular response at the transcriptional level and the possible cellular targets after parvovirus infection, QGY-7703-H-l was used as a model system and DNA microarray technology which simultaneously measure the transcript abundance of thousands of genes was employed to identify the target genes and pathways which underlie the mechanism of parvovirus-host interaction.The replication of parvovirus is strongly dependent on cellular factors associated with proliferation and differentiation, especially those related to the S-phase of the cell cycle. Conversely, the multiplication of virus can induce cell cycle arrest at S/G2 phase. With the aim of enhancing the fraction of cells expressing the viral genome as well as reducing the differences between samples under comparison due to virus interference with the cell cycle, synchronized cells were used to perform the experiments. Several approaches including serum starvation, isoleucine depletion, drug treatment and isoleucine plus drug treatment were tried to find the best method and optimal condition for synchronizing cells. Mimosine was found suitable to yield a highly synchronized QGY-7703 cell population. Cells were arrested at late Gl phase after drug treatment and proceed synchronously during at least one cycle. The cells were infected in the presence of this drug. The morality of cells and the replication of virus in synchronized cells after infection were monitored. The results show that after release from the cell cycle arrest cells NS1 protein and its mRNA increase over time,
    cell morality is low before 12h postrelease but increase over time after this time point. Two time points (6hrs and 12hrs postrelease) at which cells are synchronously in the same cell cycle stage, the NS1 expression is high and the morality is still low were selected for further study.The gene expression profiles at these time points were measured respectively using oligonucleotide microarray (Genechip Human Genome U133A, Affymetrix) that represent 22,000 human genes. In order to improve the reliability of the experiments, the quality of the samples, mainly the integrity of RNA at various steps in the experiment was monitored, the results demonstrated high quality of the samples. The experiment was performed in duplicates. The coefficient correlations of the two repeated but independent experiment are 0.994 (virus 1 vs virus 2) and 0.994 (control 1 vs control 2)at 6h postrelease; 0.980(virus 1 vs virus 2) and 0.975(control 1 vs control 2) at 12h postrelease. No significant difference at mRNA level were observed between H-l and mock-infected cells, although the NS1 positive cells was above 60%; 12h after release, the mRNA level of 38 genes changed in infected cells compared with uninfected cultures by the factor of 2.5, among which 29 genes are down-regulated and 9 up-regulated. Classification of these candidates into functional clusters identified mainly genes related to transcriptional regulation, signaling transduction and apoptosis, concerning many important pathways. Owing to the use of synchronized cell and the choice of earlier time points, the amount of genes whose expression are regulated is small, and the genes which are related to the traverse of cell cycle were not detected. Furthermore, the genes involved in immune reaction were also not found.10 of these genes were selected for confirmation by real-time RT-PCR (lightcycler). Using RNA sample either from microarray experiments or from independent experiments, the modulation of gene expression of all of them has been verified and the folds changes are rather close to each other, attesting the high reproducibility and reliability of microarray experiments. The results also showed that at 6h after release, the expression of these genes has been influenced, but to an extent that is below the standards set for selecting genes in microarray experiments, suggesting that NS1 is required to surpass a threshold in order to exert observable effect of virus. Changes of mRNA level of 7 of these verified genes after infection in a time course way were then followed by real-time RT-PCR and the results showed that MYC, DUSP2, DKK1, CEBPD, ARHB, and ID3 which are down-regulated at
引文
1. Ahn, J. K., B. J. Gavin, G. Kumar, and D. C. Ward. 1989. Transcriptional analysis of minute virus of mice P4 promoter mutants. J Virol 63:5425-39.
    2. Alcami, A., and U. H. Koszinowski. 2000. Viral mechanisms of immune evasion. Trends Microbiol 8:410-8.
    3. Anouja, F., R. Wattiez, S. Mousset, and P. Caillet-Fauquet. 1997. The cytotoxicity of the parvovirus minute virus of mice nonstructural protein NS1 is related to changes in the synthesis and phosphorylation of cell proteins. J Virol 71:4671-8.
    4. Bashir, T., R. Horlein, J. Rommelaere, and K. Willwand. 2000. Cyclin A activates the DNA polymerase delta -dependent elongation machinery in vitro: A parvovirus DNA replication model. Proc Natl Acad Sci U S A 97:5522-7.
    5. Beidler, D. R., M. Tewari, P. D. Friesen, G. Poirier, and V. M. Dixit. 1995. The baculovirus p35 protein inhibits Fas- and tumor necrosis factor-induced apoptosis. J Biol Chem 270:16526-8.
    6. Biggin, M. D. 2001. To bind or not to bind. Nat Genet 28:303-4.
    7. Bodendorf, U., C. Cziepluch, J. C. Jauniaux, J. Rommelaere, and N. Salome. 1999. Nuclear export factor CRM1 interacts with nonstructural proteins NS2 from parvovirus minute virus of mice. J Virol 73:7769-79.
    8. Bolt, G., K. Berg, and M. Blixenkrone-Moller. 2002. Measles virus-induced modulation of host-cell gene expression. J Gen Virol 83:1157-65.
    9. Brandenburger, A., D. Legendre, B. Avalosse, and J. Rommelaere. 1990. NS-1 and NS-2 proteins may act synergistically in the cytopathogenicity of parvovirus MVMp. Virology 174:576-84.
    10. Brockhaus, K., S. Plaza, D. J. Pintel, J. Rommelaere, and N. Salome. 1996. Nonstructural proteins NS2 of minute virus of mice associate in vivo with 14-3-3 protein family members. J Virol 70:7527-34.
    11. Bustin, S. A. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169-93.
    12. Caillet-Fauquet, P., M. Perros, A. Brandenburger, P. Spegelaere, and J. Rommelaere. 1990. Programmed killing of human cells by means of an inducible clone of parvoviral genes encoding non-structural proteins. Embo J
     9:2989-95.
    13. Chen, Y. Q., F. de Foresta, J. Hertoghs, B. L. Avalosse, J. J. Cornells, and J. Rommelaere. 1986. Selective killing of simian virus 40-transformed human fibroblasts by parvovirus H-1. Cancer Res 46:3574-9.
    14. Christensen, J., S. F. Cotmore, and P. Tattersall. 1997. Parvovirus initiation factor PIF: a novel human DNA-binding factor which coordinately recognizes two ACGT motifs. J Virol 71:5733-41.
    15. Corbeil, J., D. Sheeter, D. Genini, S. Rought, L. Leoni, P. Du, M. Ferguson, D. R. Masys, J. B. Welsh, J. L. Fink, R. Sasik, D. Huang, J. Drenkow, D. D. Richman, and T. Gingeras. 2001. Temporal gene regulation during HIV-1 infection of human CD4+ T cells. Genome Res 11:1198-204.
    16. Cornells, J. J., P. Becquart, N. Duponchel, N. Salome, B. L. Avalosse, M. Namba, and J. Rommelaere. 1988. Transformation of human fibroblasts by ionizing radiation, a chemical carcinogen, or simian virus 40 correlates with an increase in susceptibility to the autonomous parvoviruses H-l virus and minute virus of mice. J Virol 62:1679-86.
    17. Cornells, J. J., Y. Q. Chen, N. Spruyt, N. Duponchel, S. F. Cotmore, P. Tattersall, and J. Rommelaere. 1990. Susceptibility of human cells to killing by the parvoviruses H-1 and minute virus of mice correlates with viral transcription. J Virol 64:2537-44.
    18. Cornells, J. J., N. Spruyt, P. Spegelaere, E. Guetta, T. Darawshi, S. F. Cotmore, J. Tal, and J. Rommelaere. 1988. Sensitization of transformed rat fibroblasts to killing by parvovirus minute virus of mice correlates with an increase in viral gene expression. J Virol 62:3438-44.
    19. Cotmore, S. F., J. Christensen, J. P. Nuesch, and P. Tattersall. 1995. The NS1 polypeptide of the murine parvovirus minute virus of mice binds to DNA sequences containing the motif [ACCA]2-3. J Virol 69:1652-60.
    20. Cotmore, S. F., A. M. D'Abramo, Jr., L. F. Carbonell, J. Bratton, and P. Tattersall. 1997. The NS2 polypeptide of parvovirus MVM is required for capsid assembly in murine cells. Virology 231:267-80.
    21. Cotmore, S. F., and P. Tattersall. 1987. The autonomously replicating parvoviruses of vertebrates. Adv Virus Res 33:91-174.
    22. Cziepluch, C, E. Kordes, R. Poirey, A. Grewenig, J. Rommelaere, and J. C. Jauniaux. 1998. Identification of a novel cellular TPR-containing protein,
     SGT, that interacts with the nonstructural protein NS1 of parvovirus H-1. J Virol 72:4149-56.
    23. Dai, Y., B. Gold, J. K. Vishwanatha, and S. L. Rhode. 1994. Mimosine inhibits viral DNA synthesis through ribonucleotide reductase. Virology 205:210-6.
    24. De Beeck, A. O., J. Sobczak-Thepot, H. Sirma, F. Bourgain, C. Brechot, and P. Caillet-Fauquet. 2001. NS1- and minute virus of mice-induced cell cycle arrest: involvement of p53 and p21(cipl). J Virol 75:11071-8.
    25. Deleu, L., F. Fuks, D. Spitkovsky, R. Horlein, S. Faisst, and J. Rommelaere. 1998. Opposite transcriptional effects of cyclic AMP-responsive elements in confluent or p27KIP-overexpressing cells versus serum-starved or growing cells. Mol Cell Biol 18:409-19.
    26. Dettwiler, S., J. Rommelaere, and J. P. Nuesch. 1999. DNA unwinding functions of minute virus of mice NS1 protein are modulated specifically by the lambda isoform of protein kinase C. J Virol 73:7410-20.
    27. Dupont, F., B. Avalosse, A. Karim, N. Mine, M. Bosseler, A. Maron, A. V. Van den Broeke, G. E. Ghanem, A. Burny, and M. Zeicher. 2000. Tumor-selective gene transduction and cell killing with an oncotropic autonomous parvovirus-based vector. Gene Ther 7:790-6.
    28. Eichwald, V., L. Daeffler, M. Klein, J. Rommelaere, and N. Salome. 2002. The NS2 proteins of parvovirus minute virus of mice are required for efficient nuclear egress of progeny virions in mouse cells. J Virol 76:10307-19.
    29. Evan, G. I., and K. H. Vousden. 2001. Proliferation, cell cycle and apoptosis in cancer. Nature 411:342-8.
    30. Faisst, S., M. Perros, L. Deleu, N. Spruyt, and J. Rommelaere. 1994. Mapping of upstream regulatory elements in the P4 promoter of parvovirus minute virus of mice. Virology 202:466-70.
    31. Faisst, S. R., S. Faisst, C. Grangette, J. R. Schlehofer, and J. Rommelaere. 1993. NF kappa B upstream regulatory sequences of the HIV-1 LTR are involved in the inhibition of HIV-1 promoter activity by the NS proteins of autonomous parvoviruses H-1 and MVMp. Virology 197:770-3.
    32. Fuks, F., L. Deleu, C. Dinsart, J. Rommelaere, and S. Faisst. 1996. ras oncogene-dependent activation of the P4 promoter of minute virus of mice through a proximal P4 element interacting with the Ets family of transcription
     factors. J Virol 70:1331-9.
    33. Geiss, G. K., M. C. An, R. E. Bumgarner, E. Hammersmark, D. Cunningham, and M. G. Katze. 2001. Global impact of influenza virus on cellular pathways is mediated by both replication-dependent and -independent events. J Virol 75:4321-31.
    34. Giese, N. A., Z. Raykov, L. DeMartino, A. Vecchi, S. Sozzani, C. Dinsart, J. J. Cornelis, and J. Rommelaere. 2002. Suppression of metastatic hemangiosarcoma by a parvovirus MVMp vector transducing the IP-10 chemokine into immunocompetent mice. Cancer Gene Ther 9:432-42.
    35. Goldmacher, V. S., L. M. Bartle, A. Skaletskaya, C. A. Dionne, N. L. Kedersha, C. A. Vater, J. W. Han, R. J. Lutz, S. Watanabe, E. D. Cahir McFarland, E. D. Kieff, E. S. Mocarski, and T. Chittenden. 1999. A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96:12536-41.
    36. Granville, D. J., C. M. Carthy, D. Yang, D. W. Hunt, and B. M. McManus. 1998. Interaction of viral proteins with host cell death machinery. Cell Death Differ 5:653-9.
    37. Gu, Z., S. Plaza, M. Perros, C. Cziepluch, J. Rommelaere, and J. J. Cornelis. 1995. NF-Y controls transcription of the minute virus of mice P4 promoter through interaction with an unusual binding site. J Virol 69:239-46.
    38. Guetta, E., M. Mincberg, S. Mousset, C. Bertinchamps, J. Rommelaere, and J. Tal. 1990. Selective killing of transformed rat cells by minute virus of mice does not require infectious virus production. J Virol 64:458-62.
    39. Haag, A., P. Menten, J. Van Damme, C. Dinsart, J. Rommelaere, and J. J. Cornelis. 2000. Highly efficient transduction and expression of cytokine genes in human tumor cells by means of autonomous parvovirus vectors; generation of antitumor responses in recipient mice. Hum Gene Ther 11:597-609.
    40. Hardt, N., C. Dinsart, S. Spadari, G. Pedrali-Noy, and J. Rommelaere. 1983. Interrelation between viral and cellular DNA synthesis in mouse cells infected with the parvovirus minute virus of mice. J Gen Virol 64 (Pt9): 1991-8.
    41. Horer, M., S. Weger, K. Butz, F. Hoppe-Seyler, C. Geisen, and J. A. Kleinschmidt. 1995. Mutational analysis of adeno-associated virus Rep
     protein-mediated inhibition of heterologous and homologous promoters. J Virol 69:5485-96.
    42. Kanzler, S., and P. R. Galle. 2000. Apoptosis and the liver. Semin Cancer Biol 10:173-84.
    43. Krady, J. K., and D. C. Ward. 1995. Transcriptional activation by the parvoviral nonstructural protein NS-1 is mediated via a direct interaction with Spl.Mol Cell Biol 15:524-33.
    44. Kuntz-Simon, G., T. Bashir, J. Rommelaere, and K. Willwand. 1999. Neoplastic transformation-associated stimulation of the in vitro resolution of concatemer junction fragments from minute virus of mice DNA. J Virol 73:2552-8.
    45. Legendre, D., and J. Rommelaere. 1994. Targeting of promoters for trans activation by a carboxy-terminal domain of the NS-1 protein of the parvovirus minute virus of mice. J Virol 68:7974-85.
    46. Legendre, D., and J. Rommelaere. 1992. Terminal regions of the NS-1 protein of the parvovirus minute virus of mice are involved in cytotoxicity and promoter trans inhibition. J Virol 66:5705-13.
    47. Lieb, J. D., X. Liu, D. Botstein, and P. O. Brown. 2001. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet 28:327-34.
    48. Lorson, C, J. Pearson, L. Burger, and D. J. Pintel. 1998. An Sp1-binding site and TATA element are sufficient to support full transactivation by proximally bound NS1 protein of minute virus of mice. Virology 240:326-37.
    49. Mahr, J. A., and L. R. Gooding. 1999. Immune evasion by adenoviruses. Immunol Rev 168:121-30.
    50. Martin, K. J., J. W. Lillie, and M. R. Green. 1990. Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature 346:147-52.
    51. Martin, K. J., J. W. Lillie, and M. R. Green. 1990. Transcriptional activation by the pseudorabies virus immediate early protein. Genes Dev 4:2376-82.
    52. Moehler, M., B. Blechacz, N. Weiskopf, M. Zeidler, W. Stremmel, J. Rommelaere, P. R. Galle, and J. J. Cornells. 2001. Effective infection, apoptotic cell killing and gene transfer of human hepatoma cells but not
     primary hepatocytes by parvovirus H1 and derived vectors. Cancer Gene Ther 8:158-67.
    53. Mossman, K. L., P. F. Macgregor, J. J. Rozmus, A. B. Goryachev, A. M. Edwards, and J. R. Smiley. 2001. Herpes simplex virus triggers and then disarms a host antiviral response. J Virol 75:750-8.
    54. Nuesch, J. P., S. Dettwiler, R. Corbau, and J. Rommelaere. 1998. Replicative functions of minute virus of mice NS1 protein are regulated in vitro by phosphorylation through protein kinase C. J Virol 72:9966-77.
    55. Ohshima, T., M. Iwama, Y. Ueno, F. Sugiyama, T. Nakajima, A. Fukamizu, and K. Yagami. 1998. Induction of apoptosis in vitro and in vivo by H-1 parvovirus infection. J Gen Virol 79 (Pt 12):3067-71.
    56. Ohshima, T., E. Yoshida, T. Nakajima, K. I. Yagami, and A. Fukamizu. 2001. Effects of interaction between parvovirus minute virus of mice NS1 and coactivator CBP on NS1- and p53-transactivation. Int J Mol Med 7:49-54.
    57. Olijslagers, S., A. Y. Dege, C. Dinsart, M. Voorhoeve, J. Rommelaere, M. H. Noteborn, and J. J. Cornelis. 2001. Potentiation of a recombinant oncolytic parvovirus by expression of Apoptin. Cancer Gene Ther 8:958-65.
    58. Op De Beeck, A., F. Anouja, S. Mousset, J. Rommelaere, and P. Caillet-Fauquet. 1995. The nonstructural proteins of the autonomous parvovirus minute virus of mice interfere with the cell cycle, inducing accumulation in G2. Cell Growth Differ 6:781-7.
    59. Op De Beeck, A., and P. Caillet-Fauquet. 1997. The NS1 protein of the autonomous parvovirus minute virus of mice blocks cellular DNA replication: a consequence of lesions to the chromatin? J Virol 71:5323-9.
    60. Perros, M., L. Deleu, J. M. Vanacker, Z. Kherrouche, N. Spruyt, S. Faisst, and J. Rommelaere. 1995. Upstream CREs participate in the basal activity of minute virus of mice promoter P4 and in its stimulation in ras-transformed cells. J Virol 69:5506-15.
    61. Pitti, R. M., S. A. Marsters, D. A. Lawrence, M. Roy, F. C. Kischkel, P. Dowd, A. Huang, C. J. Donahue, S. W. Sherwood, D. T. Baldwin, P. J. Godowski, W. I. Wood, A. L. Gurney, K. J. Hillan, R. L. Cohen, A. D. Goddard, D. Botstein, and A. Ashkenazi. 1998. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature 396:699-703.
    62. Rayet, B., J. A. Lopez-Guerrero, J. Rommelaere, and C. Dinsart. 1998.
     Induction of programmed cell death by parvovirus H-1 in U937 cells: connection with the tumor necrosis factor alpha signalling pathway. J Virol 72:8893-903.
    63. Ren, B., F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings, I. Simon, J. Zeitlinger, J. Schreiber, N. Hannett, E. Kanin, T. L. Volkert, C. J. Wilson, S. P. Bell, and R. A. Young. 2000. Genome-wide location and function of DNA binding proteins. Science 290:2306-9.
    64. Rhode, S. L., 3rd. 1973. Replication process of the parvovirus H-l. I. Kinetics in a parasynchronous cell system. J Virol 11:856-61.
    65. Rhode, S. L., 3rd, and S. M. Richard. 1987. Characterization of the trans-activation-responsive element of the parvovirus H-1 P38 promoter. J Virol 61:2807-15.
    66. Rommelaere, J., and J. J. Cornelis. 1991. Antineoplastic activity of parvoviruses. J Virol Methods 33:233-51.
    67. Ron, D., and J. Tal. 1986. Spontaneous curing of a minute virus of mice carrier state by selection of cells with an intracellular block of viral replication. J Virol 58:26-30.
    68. Russell, S. J., A. Brandenburger, C. L. Flemming, M. K. Collins, and J. Rommelaere. 1992. Transformation-dependent expression of interleukin genes delivered by a recombinant parvovirus. J Virol 66:2821-8.
    69. Salome, N., B. van Hille, N. Duponchel, G. Meneguzzi, F. Cuzin, J. Rommelaere, and J. J. Cornelis. 1990. Sensitization of transformed rat cells to parvovirus MVMp is restricted to specific oncogenes. Oncogene 5:123-30.
    70. Schlehofer, J. R., M. Rentrop, and D. N. Mannel. 1992. Parvoviruses are inefficient in inducing interferon-beta, tumor necrosis factor-alpha, or interleukin-6 in mammalian cells. Med Microbiol Immunol (Berl) 181:153-64.
    71. Shi, Z. Y., C. W. Ma, J. Huang, W. M. Lin, R. C. Dong, and Z. Y. Luo. 1997. [Inhibition of parvovirus H-1 on transplantable human hepatoma and its histological and histobiochemical studies]. Shi Yan Sheng Wu Xue Bao 30:247-59.
    72. Siegl, G., and M. Gautschi. 1973. The multiplication of parvovirus Lu3 in a synchronized culture system. Ⅱ. Biochemical characteristics of virus replication. Arch Gesamte Virusforsch 40:119-27.
    73. Su, Z. Z., Z. Y. Luo, L. P. Guo, J. Z. Li, and Y. L. Liu. 1988. Inhibitory
     effect of parvovirus H-1 on cultured human tumour cells or transformed cells. Sci Sin [B] 31:69-80.
    74. Tattersall, P., and J. Bratton. 1983. Reciprocal productive and restrictive virus-cell interactions of immunosuppressive and prototype strains of minute virus of mice. J Virol 46:944-55.
    75. Toolan, H. W., and N. Ledinko. 1968. Inhibition by H-1 virus of the incidence of tumors produced by adenovirus 12 in hamsters. Virology 35:475-8.
    76. Toolan, H. W., S. L. Rhode, 3rd, and J. F. Gierthy. 1982. Inhibition of 7,12-dimethylbenz(a)anthracene-induced tumors in Syrian hamsters by prior infection with H-1 parvovirus. Cancer Res 42:2552-5.
    77. Van Pachterbeke, C, M. Tuynder, J. P. Cosyn, L. Lespagnard, D. Larsimont, and J. Rommelaere. 1993. Parvovirus H-1 inhibits growth of short-term tumor-derived but not normal mammary tissue cultures. Int J Cancer 55:672-7.
    78. Vanacker, J. M., R. Corbau, G. Adelmant, M. Perros, V. Laudet, and J. Rommelaere. 1996. Transactivation of a cellular promoter by the NS1 protein of the parvovirus minute virus of mice through a putative hormone-responsive element. J Virol 70:2369-77.
    79. Vanacker, J. M., V. Laudet, G. Adelmant, D. Stehelin, and J. Rommelaere. 1993. Interconnection between thyroid hormone signalling pathways and parvovirus cytotoxic functions. J Virol 67:7668-72.
    80. Wang, J. B. 1981. [Establishment and some characteristics of a hepatoma cell line (QGY-7703) (author's transl)]. Zhonghua Zhong Liu Za Zhi 3:241-4.
    81. Wetzel, K., P. Menten, G. Opdenakker, J. Van Damme, H. J. Grone, N. Giese, A. Vecchi, S. Sozzani, J. J. Cornells, J. Rommelaere, and C. Dinsart. 2001. Transduction of human MCP-3 by a parvoviral vector induces leukocyte infiltration and reduces growth of human cervical carcinoma cell xenografts. J Gene Med 3:326-37.
    82. Young, P. J., K. T. Jensen, L. R. Burger, D. J. Pintel, and C. L. Lorson. 2002. Minute virus of mice NS1 interacts with the SMN protein, and they colocalize in novel nuclear bodies induced by parvovirus infection. J Virol 76:3892-904.
    83. Zhu, H., J. P. Cong, G. Mamtora, T. Gingeras, and T. Shenk. 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700