WIF-1基因启动子甲基化对星形胶质瘤生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的Wnt/p-catenin信号通路参与了包括星形胶质瘤在内的多种肿瘤的发生发展过程。WIF-1是Wnt/β-catenin信号通路的拮抗因子,有研究发现由于其启动子的甲基化导致WIF-1表达减少甚至缺失,Wnt信号通路异常活化,从而引起肿瘤的发生发展。但是,上述变化机制在星形胶质瘤中尚未见报道。因此,本研究拟分析星形胶质瘤中WIF-1的表达情况和启动子甲基化状态,以及WIF-1启动子甲基化对星形胶质瘤细胞的生物学行为影响,从而确定启动子甲基化是否是星形胶质瘤中WIF-1表达沉默的主要机制,并证明WIF-1在星形胶质瘤的发生发展中起重要作用。
     研究方法首先,用免疫组化、半定量的RT-PCR和甲基化特异性PCR检测了35例星形胶质瘤和4例正常脑组织中WIF-1的表达情况和启动子甲基化状态,分析了WIF-1的表达和启动子甲基化状态的关系;然后,用去甲基化药物5-氮-2'-脱氧胞苷处理胶质母细胞瘤来源的U251细胞系和3例原代肿瘤细胞,分析药物作用前后WIF-1的表达和启动子甲基化状态;最后,我们将WIF-1的表达载体稳定转染U251细胞系,通过细胞增殖实验、克隆形成实验和流式细胞术(FCM)分析WIF-1基因对U251细胞系生物学行为的影响。
     结果与正常脑组织相比,星形胶质瘤中WIF-1 mRNA和蛋白的表达明显降低。35例星形胶质瘤中,20例(57.14%)发现WIF-1基因启动子甲基化。统计分析发现WIF-1基因启动子甲基化与其表达下降明显相关。U251细胞系和3例原代肿瘤细胞被去甲基化药物5-氮-2'-脱氧胞苷处理后,WIF-1基因表达恢复。将WIF-1的表达载体转染U251细胞系后,细胞的生长和克隆形成明显受抑制,G0/G1期细胞增多,S期和G2/M期细胞减少。
     结论在星形胶质瘤中,WIF-1基因启动子甲基化是其表达下降的重要原因,并且导致了肿瘤细胞生物学行为的改变。WIF-1基因启动子甲基化可能是星形胶质瘤发生发展的重要原因。
Background:Wnt/β-catenin pathway may play a major role in the tumorigenesis and tumor progression in many tumor types including astrocytomas.Wnt inhibitory factor-1(WIF-1) acts as a Wnt-antagonists and tumor suppressor, but hypermethylation of WIF-1 gene promoter and low expression activate Wnt signaling aberrantly and induce the development of various human tumors. With this work we intended to investigate the relation between expression and promoter methylation status of WIF-1 gene in human astrocytomas, and illuminate the impact of WIF-1 gene in astrocytomas with WIF-1 silencing.
     Methods:Firstly,we analysed expression and methylation status of WIF-1 in 35 astrocytomas and 4 normal brain tissues by immunohistochemistry, semiquantitative RT-PCR and methylation specific PCR. The relationship between methylation and expression of the genes was analyzed. Secondly, U251 cell lines and primary-culture cells derived from 3 patients with glioblastoma were treated with demethylating agent,5-aza-2'-deoxycytidine (5-aza-CdR), to further examine the role of methylation in silencing of WIF-1. Finally, we restored the expression of WIF-1 by transfer with a pReceiver-M03-WIF1 vector into U251 cell lines lacking WIF-1 expression and analysed the effects of WIF-1 on U251 cell lines by cell proliferation, colony formation, and Flowcytometry(FCM).
     Results:Significant downregulation of WIF-1 mRNA and protein expression was observed in astrocytoma tissues compared with normal brain tissues. WIF-1 gene aberrant methylation was observed in 20(57.14%) of 35 tumor samples. Hypermethylation in the WIF-1 promoter region correlated with downregulation of WIF-1 expression in astrocytoma tissues. Moreover, treatment with demethylating 5-aza-2'-deoxycytidine restored WIF-1 expression in U251 cell lines and primary-culture cells derived from 3 patients with glioblastoma. Transfection of the WIF-1 gene into U251 cell lines resulted in a significant inhibition on cell proliferation and colony formation and an increased fraction of cells in the G0/G1-phase and subsequent decrease in S-phase and G2/M-phase.
     Conclusion:Our results demonstrate that the WIF-1 gene is frequently down-regulated or silenced in astrocytomas by aberrant promoter methylation and that this epigenetic alteration is involved in glioma cell proliferation and cell cycle. This may be an important mechanism in astrocytoma carcinogenesis.
引文
[1]Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol,2007,114(2):97-109.
    [2]Collins VP. Brain tumours:classification and genes. J Neurol Neurosurg Psychiatry,2004,75 Suppl 2:ii2-11.
    [3]Vladimirova V, Mikeska T, Waha A, et al. Aberrant methylation and reduced expression of LHX9 in malignant gliomas of childhood. Neoplasia, 2009,11(7):700-11.
    [4]Blanc JL, Wager M, Guilhot J, et al. Correlation of clinical features and methylation status of MGMT gene promoter in glioblastomas. J Neurooncol, 2004,68(3):275-83.
    [5]Schmidt EE, Ichimura K, Messerle KR, et al. Infrequent methylation of CDKN2A(MTS1/pl6) and rare mutation of both CDKN2A and CDKN2B(MTS2/pl5) in primary astrocytic tumours. Br J Cancer, 1997,75(1):2-8.
    [6]Wiencke JK, Zheng S, Jelluma N, et al. Methylation of the PTEN promoter defines low-grade gliomas and secondary glioblastoma. Neuro Oncol, 2007,9(3):271-9.
    [7]Wemmert S, Bettscheider M, Alt S, et al. p15 promoter methylation-a novel prognostic marker in glioblastoma patients. Int J Oncol,2009,34(6):1743-8.
    [8]Clevers H. Wnt/beta-catenin signaling in'development and disease. Cell, 2006,127(3):469-80.
    [9]Hsieh JC, Kodjabachian L, Rebbert ML, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature,1999,398(6726):431-6.
    [10]Batra S, Shi Y, Kuchenbecker KM, et al. Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma. Biochem Biophys Res Commun,2006,342(4):1228-32.
    [11]Mazieres J, He B, You L, et al. Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res,2004,64(14):4717-20.
    [12]Lin YC, You L, Xu Z, et al. Wnt inhibitory factor-1 gene transfer inhibits melanoma cell growth. Hum Gene Ther,2007,18(4):379-86.
    [13]Kansara M, Tsang M, Kodjabachian L, et al. Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest,2009,119(4):837-51.
    [14]Wissmann C, Wild PJ, Kaiser S, et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol, 2003,201(2):204-12.
    [15]Chan SL, Cui Y, van HA, et al. The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas. Lab Invest, 2007,87(7):644-50.
    [16]Pu P, Zhang Z, Kang C, et al. Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther, 2009,16(4):351-61.
    [17]Yu JM, Jun ES, Jung JS, et al. Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett,2007,257(2):172-81.
    [18]Sareddy GR, Challa S, Panigrahi M, et al. Wnt/beta-catenin/Tcf signaling pathway activation in malignant progression of rat gliomas induced by transplacental N-ethyl-N-nitrosourea exposure. Neurochem Res, 2009,34(7):1278-88.
    [19]Sareddy GR, Panigrahi M, Challa S, et al. Activation of Wnt/beta-catenin/Tcf signaling pathway in human astrocytomas. Neurochem Int,2009,55(5):307-17.
    [20]Joki T, Heese O, Nikas DC, et al. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res,2000,60(17):4926-31.
    [21]Liepinsh E, Banyai L, Patthy L, et al. NMR structure of the WIF domain of the human Wnt-inhibitory factor-1. J Mol Biol,2006,357(3):942-50.
    [22]Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci,2003,116(Pt13):2627-34.
    [23]Ai L, Tao Q, Zhong S, et al. Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer. Carcinogenesis,2006,27(7):1341-8.
    [24]Urakami S, Shiina H, Enokida H, et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res,2006,12(2):383-91.
    [25]Utsuki S, Sato Y, Oka H, et al. Relationship between the expression of E-, N-cadherins and beta-catenin and tumor grade in astrocytomas. J Neurooncol, 2002,57(3):187-92.
    [26]Yano H, Hara A, Shinoda J, et al. Immunohistochemical analysis of beta-catenin in N-ethyl-N-nitrosourea-induced rat gliomas:implications in regulation of angiogenesis. Neurol Res,2000,22(5):527-32.
    [27]Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science,2001,293(5532):1068-70.
    [28]Reguart N, He B, Xu Z, et al. Cloning and characterization of the promoter of human Wnt inhibitory factor-1. Biochem Biophys Res Commun, 2004,323(1):229-34.
    [29]Promoter methylation and mRNA expression of DKK-3 and WIF-1 in hepatocellular carcinoma. World Journal of Gastroenterology, 2009,(21):2595-2601.
    [30]Veeck J, Wild PJ, Fuchs T, et al. Prognostic relevance of Wnt-inhibitory factor-1 (WIF1) and Dickkopf-3 (DKK3) promoter methylation in human breast cancer. BMC Cancer,2009,9:217.
    [31]Taniguchi H, Yamamoto H, Hirata T, et al. Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene, 2005,24(53):7946-52.
    [32]Chim CS, Fung TK, Wong KF, et al. Infrequent Wnt inhibitory factor-1 (Wif-1) methylation in chronic lymphocytic leukemia. Leuk Res,2006,30(9):1135-9.
    [33]Urakami S, Shiina H, Enokida H, et al. Combination analysis of hypermethylated Wnt-antagonist family genes as a novel epigenetic biomarker panel for bladder cancer detection. Clin Cancer Res,2006,12(7 Pt 1):2109-16.
    [34]Weaver KD, Grossman SA, Herman JG. Methylated tumor-specific DNA as a plasma biomarker in patients with glioma. Cancer Invest,2006,24(1):35-40.
    [35]Ehrlich M. DNA methylation in cancer:too much, but also too little. Oncogene, 2002,21(35):5400-13.
    [36]Yu J, Zhang H, Gu J, et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer,2004,4:65.
    [37]Chiang PK, Gordon RK, Tal J, et al. S-Adenosylmethionine and methylation. FASEB J,1996,10(4):471-80.
    [38]Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet,2002,3(6):415-28.
    [39]Merlo A, Herman JG, Mao L, et al.5'CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med,1995,1(7):686-92.
    [40]Christman JK.5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation:mechanistic studies and their implications for cancer therapy. Oncogene,2002,21(35):5483-95.
    [41]Griffiths EA, Gore SD. DNA methyltransferase inhibitors:class effect or unique agents. Leuk Lymphoma,2008,49(4):650-1.
    [42]Lin YC, You L, Xu Z, et al. Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun, 2006,341(2):635-40.
    [43]张祖萍,武明花,唐海林,等.5-Aza-CdR对胶质瘤细胞生长及LRRC4基因异常甲基化的影响.生物化学与生物物理进展,2009,36(7):904-909.
    [44]Momparler RL, Ayoub J. Potential of 5-aza-2'-deoxycytidine (Decitabine) a potent inhibitor of DNA methylation for therapy of advanced non-small cell lung cancer. Lung Cancer,2001,34 Suppl 4:S111-5.
    [45]Momparler RL, Bouffard DY, Momparler LF, et al. Pilot phase Ⅰ-II study on 5-aza-2'-deoxycytidine (Decitabine) in patients with metastatic lung cancer. Anticancer Drugs,1997,8(4):358-68.
    [46]Thibault A, Figg WD, Bergan RC, et al. A phase II study of 5-aza-2'deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori,1998,84(1):87-9.
    [47]He B, Reguart N, You L, et al. Blockade of Wnt-1 signaling induces apoptosis in human colorectal cancer cells containing downstream mutations. Oncogene, 2005,24(18):3054-8.
    [48]Hu YA, Gu X, Liu J, et al. Expression pattern of Wnt inhibitor factor 1(Wifl) during the development in mouse CNS. Gene Expr Patterns,2008,8(7-8):515-22.
    [49]Turashvili G, Bouchal J, Burkadze G, et al. Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology,2006,73(5):213-23.
    [50]Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol,2005,64:479-89.
    [1]曾益新.肿瘤学.第2版.北京:人民卫生出版社.
    [2]Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 1982,31(1):99-109.
    [3]Bejsovec A. Wnt pathway activation:new relations and locations. Cell, 2005,120(1):11-4.
    [4]Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature, 2005,434(7035):843-50.
    [5]Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol,2004,20:781-810.
    [6]Johnson ML, Rajamannan N. Diseases of Wnt signaling. Rev Endocr Metab Disord,2006,7(1-2):41-9.
    [7]Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol,1998,14:59-88.
    [8]Moon RT, Bowerman B, Boutros M, et al. The promise and perils of Wnt signaling through beta-catenin. Science,2002,296(5573):1644-6.
    [9]Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev, 2000,11(4):273-82.
    [10]Mlodzik M. Planar cell polarization:do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation. Trends Genet, 2002,18(11):564-71.
    [11]Kuhl M, Sheldahl LC, Park M, et al. The Wnt/Ca2+ pathway:a new vertebrate Wnt signaling pathway takes shape. Trends Genet,2000,16(7):279-83.
    [12]Ille F, Sommer L. Wnt signaling:multiple functions in neural development. Cell Mol Life Sci,2005,62(10):1100-8.
    [13]Zechner D, Fujita Y, Hulsken J, et al. beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol,2003,258(2):406-18.
    [14]Saint-Jeannet JP, He X, Varmus HE, et al. Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc Natl Acad Sci U S A,1997,94(25):13713-8.
    [15]Hari L, Brault V, Kleber M, et al. Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol,2002,159(5):867-80.
    [16]Brott BK, Sokol SY. Regulation of Wnt/LRP signaling by distinct domains of Dickkopf proteins. Mol Cell Biol,2002,22(17):6100-10.
    [17]Giles RH, van EJH, Clevers H. Caught up in a Wnt storm:Wnt signaling in cancer. Biochim Biophys Acta,2003,1653(1):1-24.
    [18]Taketo MM. Shutting down Wnt signal-activated cancer. Nat Genet, 2004,36(4):320-2.
    [19]Mazieres J, He B, You L, et al. Wnt signaling in lung cancer. Cancer Lett, 2005,222(1):1-10.
    [20]Sareddy GR, Challa S, Panigrahi M, et al. Wnt/beta-catenin/Tcf signaling pathway activation in malignant progression of rat gliomas induced by transplacental N-ethyl-N-nitrosourea exposure. Neurochem Res, 2009,34(7):1278-88.
    [21]Sareddy GR, Panigrahi M, Challa S, et al. Activation of Wnt/beta-catenin/Tcf signaling pathway in human astrocytomas. Neurochem Int,2009,55(5):307-17.
    [22]Howng SL, Wu CH, Cheng TS, et al. Differential expression of Wnt genes, beta-catenin and E-cadherin in human brain tumors. Cancer Lett, 2002,183(1):95-101.
    [23]Clements WM, Lowy AM, Groden J. Adenomatous polyposis coli/beta-catenin interaction and downstream targets:altered gene expression in gastrointestinal tumors. Clin Colorectal Cancer,2003,3(2):113-20.
    [24]Pu P, Zhang Z, Kang C, et al. Downregulation of Wnt2 and beta-catenin by siRNA suppresses malignant glioma cell growth. Cancer Gene Ther, 2009,16(4):351-61.
    [25]Yu JM, Jun ES, Jung JS, et al. Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett,2007,257(2):172-81.
    [26]Tulac S, Nayak NR, Kao LC, et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. J Clin Endocrinol Metab,2003,88(8):3860-6.
    [27]Zhang Z, Schittenhelm J, Guo K, et al. Upregulation of frizzled 9 in astrocytomas. Neuropathol Appl Neurobiol,2006,32(6):615-24.
    [28]Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev,2004,18(12):1385-90.
    [29]Tulac S, Nayak NR, Kao LC, et al. Identification, characterization, and regulation of the canonical Wnt signaling pathway in human endometrium. J Clin Endocrinol Metab,2003,88(8):3860-6.
    [30]Nikuseva-Martic T, Beros V, Pecina-Slaus N, et al. Genetic changes of CDH1, APC, and CTNNB1 found in human brain tumors. Pathol Res Pract, 2007,203(11):779-87.
    [31]Lustig B, Behrens J. The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol,2003,129(4):199-221.
    [32]Utsuki S, Sato Y, Oka H, et al. Relationship between the expression of E-, N-cadherins and beta-catenin and tumor grade in astrocytomas. J Neurooncol, 2002,57(3):187-92.
    [33]Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci,2003,116(Pt13):2627-34.
    [34]Rousset R, Mack JA, Wharton KA Jr, et al. Naked cuticle targets dishevelled to antagonize Wnt signal transduction. Genes Dev,2001,15(6):658-71.
    [35]Gonzalez-Sancho JM, Aguilera O, Garcia JM, et al. The Wnt antagonist DICKKOPF-1 gene is a downstream target of beta-catenin/TCF and is downregulated in human colon cancer. Oncogene,2005,24(6):1098-103.
    [36]Christodoulides C, Laudes M, Cawthorn WP, et al. The Wnt antagonist Dickkopf-1 and its receptors are coordinately regulated during early human adipogenesis. J Cell Sci,2006,119(Pt 12):2613-20.
    [37]Shou J, Ali-Osman F, Multani AS, et al. Human Dkk-1, a gene encoding a Wnt antagonist, responds to DNA damage and its overexpression sensitizes brain tumor cells to apoptosis following alkylation damage of DNA. Oncogene, 2002,21(6):878-89.
    [38]Roman-Gomez J, Jimenez-Velasco A, Agirre X, et al. Transcriptional silencing of the Dickkopfs-3 (Dkk-3) gene by CpG hypermethylation in acute lymphoblastic leukaemia. Br J Cancer,2004,91(4):707-13.
    [39]Mizobuchi Y, Matsuzaki K, Kuwayama K, et al. REIC/Dkk-3 induces cell death in human malignant glioma. Neuro Oncol,2008,10(3):244-53.
    [40]Lau YK, Murray LB, Houshmandi SS, et al. Merlin is a potent inhibitor of glioma growth. Cancer Res,2008,68(14):5733-42.
    [41]Suzuki H, Gabrielson E, Chen W, et al. A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet,2002,31(2):141-9.
    [42]Wong SC, Lo SF, Lee KC, et al. Expression of frizzled-related protein and Wnt-signalling molecules in invasive human breast tumours. J Pathol, 2002,196(2):145-53.
    [43]Suzuki H, Watkins DN, Jair KW, et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet, 2004,36(4):417-22.
    [44]Lee AY, He B, You L, et al. Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene, 2004,23(39):6672-6.
    [45]Roth W, Wild-Bode C, Platten M, et al. Secreted Frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene, 2000,19(37):4210-20.
    [46]Hu YA, Gu X, Liu J, et al. Expression pattern of Wnt inhibitor factor 1(Wifl) during the development in mouse CNS. Gene Expr Patterns,2008,8(7-8):515-22.
    [47]Chien AJ, Conrad WH, Moon RT. A Wnt survival guide:from flies to human disease. J Invest Dermatol,2009,129(7):1614-27.
    [48]Batra S, Shi Y, Kuchenbecker KM, et al. Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma. Biochem Biophys Res Commun,2006,342(4):1228-32.
    [49]Lin YC, You L, Xu Z, et al. Wnt inhibitory factor-1 gene transfer inhibits melanoma cell growth. Hum Gene Ther,2007,18(4):379-86.
    [50]Urakami S, Shiina H, Enokida H, et al. Epigenetic inactivation of Wnt inhibitory factor-1 plays an important role in bladder cancer through aberrant canonical Wnt/beta-catenin signaling pathway. Clin Cancer Res,2006,12(2):383-91.
    [51]Taniguchi H, Yamamoto H, Hirata T, et al. Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene, 2005,24(53):7946-52.
    [52]Gotze S, Wolter M, Reifenberger G, et al. Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700