山羊印记基因H19、Dlk1、CLPG和毛囊发育相关基因Dkk1的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究可以分两个部分:
     第一部分:
     基因组印记是一种依赖于亲本的基因表达形式,导致功能基因单一表达一个等位基因而不表达另一个等位基因,造成印记位点的单等位表达,是一种基因表达的正常形式。虽然印记基因在哺乳动物基因组中只占一小部分,但在胚胎生长和行为发育中都起了关键作用。
     人和小鼠的H19和Dlk1是印记基因,但是山羊的H19和Dlk1的基因序列、基因结构和印记状态还不清楚。
     2002年,Freking等人发现一个位于Gtl2上游32.8kb的A-G的单碱基突变称CLPG突变。该突变可能是导致Callipyge绵羊表型的主要原因。山羊中是否也存在这样的突变,导致“肥臀山羊”成为本研究的一部分。
     试验一:克隆了山羊H19部分序列,得到了1139bp的序列,该序列和绵羊、牛的同源性很高,分别为96.22%和90.51%,和猪、人、小鼠的同源性较低,分别为72.06%、59.64%和51.83%。检测了山羊胎儿和成年组织中H19的表达情况。H19在胎儿的大多数组织表达,出生后的表达在有些组织中受到限制,在成年山羊中在肝脏、肺、胰脏、背最长肌、脾脏和肾脏中检测到H19转录物。在H19外显子5上找到一个SNP,通过检测杂合子基因型和转录物及其父母基因型,发现H19在成年山羊组织中是父本印记表达。
     试验二:克隆了山羊Dlk1部分cDNA序列,得到864bp,编码287个氨基酸残基,山羊Dlk1 cDNA和氨基酸序列与其他哺乳动物的相应序列有很高的同源性。Dlk1在胎儿大多数组织中表达,只在成年组织中的胰脏、胸腺和肾上腺表达。通过外显子5上一个SNP,发现Dlk1在成年上述三种组织中都是父本表达,是一个母本印记基因。另外Dlk1在山羊成年组织中只存在两种剪接变体Dlk1-C和Dlk1-C2。
     试验三:克隆了山羊CLPG区250bp的片段,该片段和绵羊、猪的相应片段有很高的同源性。用PCR-SSCP方法对波尔山羊、莱芜黑山羊、鲁波山羊、鲁北白山羊和白绒山羊进行检测,在“CLPG”突变处没有发现A→G突变,在CLPG突变下游147bp处发现一个A→C的突变,称A216C位点,用PCR-RFLP方法检测了上述5个山羊品种,其中鲁波山羊群体中A等位基因频率最高,鲁北白山羊群体中A等位基因频率最低,前四个群体中该位点处于Hardy-Weinberg平衡状态(P>0.05),白绒山羊群体偏离Hardy-Weinberg平衡状态(P<0.01)。产绒量、出生重、断奶增重等性状在该位点不同基因型之间差异不显著。
     第二部分:
     Dkk1是Dkk家族成员之一,是Wnt信号途径的拮抗物,参与多种生命过程。Dkk1可能通过抑制Wnt信号途径参与毛囊密度的控制。本研究旨在寻找新的和山羊毛囊密度相关的基因,了解其作用机制,期望能够用于提高山羊绒产量的分子育种。
     克隆了山羊Dkk1基因,获得3491bp序列,预测其mRNA和氨基酸序列,其mRNA和氨基酸序列和其他哺乳动物的相应序列有很高的同源性。在白绒山羊群体中对3491bp序列进行了SNP扫描,发现33处单核苷酸替代,内含子2中一处4碱基插入。外显子1中发现一处错义突变,命名为T1108P。检测了T1108P位点在白绒山羊群体中的分布,结果显示该位点在白绒山羊群体中没有多态性。启动子区有一个T-C颠换和C-A转换,二者间距9bp,命名为T593C-C603A,检测了这两个位点在白绒山羊中的基因型频率和基因频率;统计显示,产绒量、单位体表面积产绒量、出生重、断奶增重等性状在T593C位点不同基因型之间差异不显著。
This research can be devided to two parts.
     Part I:
     Genomic imprinting is a phenomenon in which alleles of a gene are expressed differentially depending on their parental origin. The presence of imprinted gene can cause cells with a full parental complement of functional autosomal genes to specifically express one allele but not the other, resulting in monoallelic expression of imprinted loci. Genomic imprinting is a nomal precess and imprinted genes play a critical role in fetal growth and behavioral development even through they account for a little part of all genome.
     In human and/or mouse, H19 and Dlk1 are known to be imprinted, whereas in goats, the structure, expression and imprinting status of these two genes remains unknown.
     In 2002, Freking et al found a A-G single nucleotide mutation upstream 32.8kb of Gtl2 and named CLPG mutation. This A-G mutation may be the causative mutation of the Callipyge phaenotype. The objective of this study is to answer the question“is there this mutation in goat which can also results in muscular hypertriphy in goat”.
     In experiment one, a partial DNA fragment of goat H19 in size of 1139bp was obtained, which has 96.22%, 90.51% identity with the corresponding region of sheep and bovine H19 respectively, and 72.06%, 59.64% and 51.83% identity with the corresponding region of pig, human and mouse H19 respectively. H19 was expressed in most tissues of goat fetuses; in adult goat, however, the expressions were restricted to some tissues, expressed in the liver, lung, pancreas, longissimus dorsi, spleen and kidney. One single nucleotide polymorphism for H19 was identified in the fifth exonic region. By genotyping the parents, their daughter and the transcripts in different adult tissues, we found that H19 was maternally expressed.
     In the second experiment, a fragment of 864bp in size for goat D1k1 was amplified and sequenced, which encodes 287 amino acids and has a high homology with those in mammalian species. Dlk1 was expressed in most tissues of goat fetuses; in adult goat, however, the expressions were restricted to some tissues, only in adrenal capsule, pancreas and thymus. One single nucleotide polymorphism for Dlk1 was identified in the fifth exonic region. By genotyping the parents, their daughter and the transcripts in different adult tissues, we found that Dlk1 was paternally expressed. In addition, two alternative transcripts of Dlk1-C and Dlk1-C2 were expressed in goat.
     In the third experiment, a fragment of 250bp in size for goat CLPG was amplified and sequenced, which has a high identity with the corresponding region of sheep and bovine CLPG respectively. The CLPG mutation site was analysised in Boer, Laiwu hei, Lubei white, Lubo and White cashmere goats. We did not found the CLPG mutation in this five population. There was a A-C transversion located 147bp downstream of the CLPG site named A216C site, this site were analysised in those five population. The frist four populations are all in a state of Hardy-Weinberg equilibrium (P>0.05). the White cashmere goat population was deviated from Hardy-Weinberg equilibrium(P<0.01) The frequency of A allele was the highest in Lubo goat and the lowest in Lubeibai goat population. The product of cashmere, birth weight, weanling weight among different genotypes were not different.
     Part II:
     Dkk1, a member of Dkk family, is an antagonist of Wnt signal transduction pathway, takes part in many vital process. Dkk1 may control the density of hair follicle through rivalrying the Wnt signal transduction pathway. Some reseach revealed that the down regulation of Dkk1 expression can decreasehe density of hair follicle. The objective of this study is to find the new gene which is related with goat hair follicle, understand the mechanism of the action, and provide some useful information to the molecular breeding to improve the product of cashmere.
     In this study, a fragment of 3491bp in size for goat Dkk1 was amplified and sequenced, its mRNA and amino acids sequences were predicted, which had high homology with those in mammalian species. We detected the SNPs in 3491bp sequence in White cashmere goat population, and found 33 single nucleotide substitute and a insertion of 4bp in intron 2. there is a missense mutation in exon1, named T1108P. we detected this site in White cashmere goat population and it is not a polymorphism. There were two mutation sites T-C and C-A site spacing 9bp named T593C-C603A site, this two sites were detected in White cashmere goat population. The cashmere product, cashmere product per body surface area, birth weight, gaining weight from birth to weanling among different genotypes were not different.
引文
代蓉. CLPG和BMP15基因多态性与北疆7个绵羊群体生产性能关系的初步研究。南京农业大学硕士学位论文. 2004
    王海亮、李祥龙、周荣艳、李兰会、郭秀丽.山羊Callipyge基因型的检测。中国畜牧兽医. 2007. 34(11), 49-51
    武坚、史洪才、张志峰、简子健.绵羊双肌臀(Callipyge)基因型的检测。畜牧兽医杂志. 2006. 25(6), 1-4
    徐君.猪callipyge基因的克隆、分析和定位。中国农业大学硕士学位论文. 2004.
    张志峰.绵羊肉、毛性状分子遗传标记的初步研究。新疆农业大学硕士学位论文. 2005
    Abdulkhaliq AM, Meyer HH, Thompson JM, Holmes ZA, Forsberg NE, Davis SL. Callipyge gene effects on lamb growth, carcass traits, muscle weights and meat characteristics. Small Ruminant Res. 2002. 45, 89-93
    Altenberger T, Bilban M, Auer M, Knosp E, Wolfsberger S, Gartner W, Mineva I, Zielinski C, Wagner L, Luger A. Identification of DLK1variants in pituitary and neuroendocrine tumors. Biochem. Biophys. Res. Commun. 2006, 340, 995-1005
    Amager V, Nguyen M, Laere ASV, Braunschweig M, Nezer C, Georges M, Andersson L. Comparative sequence analysis of the INS-IGF2-H19 gene cluster in pigs. Mamm. Genome. 2002. 13, 388-398
    Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev. Cell. 2002. 2, 643-653
    Ansell PJ, Zhou YL, Schjeide BM, Kerner A, Zhao J, Zhang X, Klibanski A. Regulation of growth hormone expression by Delta-like protein 1 (Dlk1). Mol. Cell. Endocrinol. 2007. 271, 55-63
    Bartolemci MS, Zemel S, Tilghman S M. Parental imprinting of the mouse H19 gene. Nature. 1991. 351, 153-155
    Bell JA, Felsenfeld CG. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature. 2000. 405, 482-485
    Berghmans S, Segers K, Shay T, Georges M, Cockett N, Charlier C. Breakpoint mapping positions the callipyge gene within a 450-kilobase chromosome segment containing the DLK1 and GTL2 genes. Mamm. Genome. 2001.12, 183-185
    Bidwell CA, Shay TL, Georges M, Beever JE, Berghmans S, Cockett NE. Differential expression of the GTL2 gene within the callipyge region of ovine chromosome 18. Anim. Genet. 2001 32, 248-256
    Cai XZ, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNAprecursor. RNA. 2007. 13, 313-316
    Carr MS, Yevtodiyenko A, Schmidt CL, Schmidt JV. Allele-specific histone modific- ations regulate expression of the Dlk1–Gtl2 imprinted domain .Genomics. 2006 xx xxx–xx
    Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G, Georges M. Human–ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome. Res. 2001. 11, 850-862
    Christophersen NS, Gr?nborg M , Petersen TN, Larsen LF, J?rgensen JR, Juliusson B, Blom N, Rosenblad C, Brundin P. Midbrain expression of Delta-like1 homologue is regulated by GDNF and is associated with dopaminergic differentiation. Exp. Neur. 2007. 204, 791-801
    Cockett NE, Jackson SP, Snowder GD, Shay TL, Berghmans S, Beever JE, Carpenter C, Georges M. The Callipyge phenomenon: evidenc for unusual genetic inheritance. J Dairy. Sci. 1999. 82, 221-227
    Cockett NE, Smit MA, Bidwell CA, Segers K, Hadfield TL, Snowder GD, Georges M, Charlier C. The callipyge mutation and other genes that affect muscle hypertrophy in sheep. Genet. Sel. E. 2005. 37, S65-S81
    Costa FF. Non-coding RNAs: New players in eukaryotic biology. Gene. 2005. 357, 83- 94
    Davis E, Jensen CH, Schroder HD, Farnir F, Hadfield TS, Kliem A, Cockett NE, Georges M, Charlier C. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype. Curr Biol. 2004. 14, 1858-1862
    Davis E, Caiment F, Tordoir X, CavailléJ, Smith A F, Cockett N, Georges M and Charlier C. RNAi-Mediated Allelic trans-Interaction at the Imprinted Rtl1/Peg11 Locus. Curr. Biol. 2005. 15, 743-749
    Deiuliis JA , Li B, Lyvers-Peffer PA, Moeller SJ, Lee K. Alternative splicing of delta-like 1 homolog DLK1 in the pig and human. Comp. Biochem. Physiol. Part B. 2006. 145, 50-59
    Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, Heide D, Landewe R, Lacey D, Richards WG, Schett G. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 2007. 13(2) , 156-163
    Fahrenkrug SC, Freking BA, Smith TPL. Genomic organization and genetic mapping of the bovine PREF-1 gene. Biochem. Biophys. Res. Commun. 1999. 264, 662-667
    Fahrenkrug SC, Freking BA. Comparative mapping of the ovine CLPG locus. Mamal Gemome. 2000. 11, 871-876
    Fedi P, Bafico A, Soria AN, Burgess WH, Mikii T, Bottaroi DP, Kraus MH, Aaronson S A. Isolation and biochemical characterization of the human dkk-1 homologue, a novel inhibitor of mammalian wnt signaling. J. Biol. Chem. 1999. 274 (27), 19465-19472
    Foley AC, Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes. dev. 2005. 19, 387-396
    Freking BA, Keele JW, Nielse MK, Leymaster KA. Evaluation of the ovine Callipyge locus: II. genotypic effects on growth, slaughter, and carcass traits. J. Anim. Sci. 1998. 76, 2549- 2559
    Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, Leymaster KA, Jirtle RL, Smith TPL. Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome. res. 2002. 12(10), 1496-1506
    Freking BA, Keele JW, Beattie CW, Kappes SM, Smith TP, Sonstegard TS, Nielsen MK, Leymaster KA. Evaluation of the ovine callipyge locus: I relative chromosomal position and gene action. J. Anim. Sci. 1998. 76, 2062-2071
    Garces C, Ruiz-Hidalgo MJ, Bonvini E, Goldstein J, Laborda J. Adipocyte differentiation is modulated by secreted delta-like (dlk) variants and requires the expression of membrane-associated dlk. Differentiation. 1999. 64, 103-14
    Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998. 391 ( 22), 1357-362
    Grotewold L. Expression pattern of Dkk-1 during mouse limb development. Mech. Dev. 1999. 89, 151-153
    Grotewold L, Ruèther U. The Wnt antagonist Dickkopf-1 is regulated by BMP signaling and c-Jun and modulates programmed cell death. EMBO. 2002. 21(5), 966-975
    Hurst LD, Smith NGC. Molecular evolutionary evidence that H19 mRNA is functional. Genome. Anal. 1999. 15(4), 134-135
    Joergensen L, Jensen C, Davis E, Charlier C, Georges M, Schroeder H. DLK1 as a candidate for booster gene therapy in muscular dystrophy. Abstracts/ Neuromuscular Disorders. 2007. 17, 764-900
    John RM, Surani MA. Genomic Imprinting, mammalian evolution, and the mystery of egg-laying mammals. Cell. 2000. 101, 585-588
    Kawaharaa M, Wua Q, Ferguson-Smith AC, Konoa T. Appropriate expression of imprinted genes on mouse chromosome 12 extends development of bi-maternal embryos to term. FEBS Letters. 2007. 581, 5178-5184
    Kazanskaya O. The role of Xenopus dickkopf 1 in prechordal plate specification and neural patterning. Development. 2000. 127, 4981-4992
    Khatib H, Schutzkus V. The expression profile of the H19 gene in cattle. Mamm. Genome. 2006. 17, 991-996
    Kobayashi S, Wagatsuma H, Ono R, Ichikawa H, Yamazaki M, Tashiro H, Aisaka K, Miyoshi N, Kohda T, Ogura A, Ohki M, Kaneko-Ishino T, Ishino F. Mouse Peg9/Dlk1 and human PEG9/DLK1 are paternally expressed imprinted genes closely located to the maternally expressed imprinted genes: mouse Meg3/Gtl2 and human MEG3. Genes to Cells. 2000. 5, 1029-1037
    Koohmaraie M, Shackelford SD, Wheeler TL, Lonergan SM, Doumit ME. A muscle hypertrophy condition in lamb (Callipyge): characterization of effects on muscle growth and meat quality traits. J. Anim. Sci. 1995. 73, 3596-3607
    Koppen A, Ait-Aissa R, Hopman S, Koster J, Haneveld F, Versteeg R, Valentijn LJ. Dickkopf-1 is down-regulated by MYCN and inhibits neuroblastoma cell prolifer- ation. Cancer Letters. 2007. 256, 218-228
    Krupnik VE, Sharp JD, Jiang C, Robison K, Chickering TW, Amaravadi L, Brown DE, Guyot D, Mays G, Leiby K, Chang B, Duong T, Goodearl ADJ, Gearing DP, Sokol SY, McCarthy SA. Functional and structural diversity of the human Dickkopf gene family. Gene. 1999. 238, 301-313
    Laborda J. The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol. 2000. 15, 119-29
    Lee RSF, Depree KM, Davey HW. The sheep (Ovis aries ) H19 gene: genomic structure and expression patterns, from the preimplantation embryo to adulthood. Gene. 2002. 301, 67-77
    Li C, Bin YF, Curchoe C, Yang L, Feng DY, Jiang QY, O’Neill M, Tian XC, Zhang SQ. Genetic imprinting of h19 and igf2 in domestic pigs (Sus Scrofa). Anim. Biotech. 2008. 19, 22-27
    Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature. 1993. 366, 362-365
    Liu JH, Zhu JQ, Liang XW, Yin S, Ola SI, Hou Y, Chen DY, Schatten H, Sun QY. Diploid parthenogenetic embryos adopt a maternal-type methylation pattern on both sets of maternal chromosomes. Genomics. 2008. 91, 121-128
    Li YM. The H19 transcript is associated with polysomes and may regulate IGF2 expression in trans. J. Biol. Chem. 1998. 273, 28247-28252
    Lyle R. Gametic imprinting in development and disease. J. Endocrin. 1997. 155, 1-12
    Maini PK, Baker RE, Chuong CM. The Turing model comes of molecular age. Science. 2006. 314. 1397-1398
    Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, Galun E. The H19 non-coding RNA is essential for human tumor growth. Plos One. 2007. 9, e845
    Mikheev AM, Mikheeva SA, Liu BR, Cohenand P, Zarbl H. A functional genomicsapproach for the identification of putative tumor suppressor genes: Dickkopf-1 as suppressor of HeLa cell transformation. Carcinogenesis. 2004. 25(1), 47-59
    Minoshima Y, Taniguchi Y, Tanaka K, Yamada T, Sasaki Y. Molecular cloning, expression analysis, promoter characterization, and chromosomal localization of the bovine PREF1 gene. Anim. Genet. 2001. 32, 333-339
    Monaghan AP, Kioschisb P, Wu W, Zunigad A, Bocka D, Poustkab A, Deliuse H, Niehrsc C. Dickkopf genes are co-ordinately expressed in mesodermal lineages. Mech. Dev. 1999. 87, 45-56
    Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ, Sul HS. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol. Cell. Biol. 2002. 22( 15), 5585-5592
    Murphy SK, Jirtle RL. Imprinting evolution and the price of silence. BioEssays. 2003. 25, 577-588
    Murphy SK, Freking BA, Smith TPL, Leymaster K, Nolan CM, Wylie AA, Evans HK, Jirtle RL. Abnormal postnatal maintenance of elevated DLK1 transcript levels in callipyge sheep. Mamm. genome. 2005. 16, 171-183
    Murphy SK, Nolan CM, Huang ZQ, Kucera KS, Freking BA, Smith TPL, Leymaster KA, Weidman JR, Jirtle1 RL. Callipyge mutation affects gene expression in cis: A potential role for chromatin structure .Genome Res. 2006. 16, 340-346
    Nueda ML, Ram′?rez JJG, Laborda J, Baladr′on V. Dlk1 specifically interacts with IGFBP1 to modulate adipogenesis of 3T3-L1 cells. J. Mol. Biol. 2008. in press
    O'Neill MJ. The influence of non-coding RNAs on allele-specific gene expression in mammals. Hum. Mol. Genet. 2005. 14(1), R113-R120
    Perkins AC, Kramer LN, Spurlock DM, Hadfield TS, Cockett NE, Bidwell CA. Postnatal changes in the expression of genes located in the callipyge region in sheep skeletal muscle. Animal. Genet. 2006. 37, 535-542
    Pham NV, Nguyen MT, Hu JF, Vu TH, Hoffman AR. Dissociation of IGF2 and H19 imprinting in human brain. Brain Research. 1998. 810, 1-8
    Rocha ST, Tevendale M, Knowles E, Takada S, Watkins M, Ferguson-Smith A C. Restricted co-expression of Dlk1 and the reciprocally imprinted non-coding RNA, Gtl2: Implications for cis-acting control. Dev. Biol. 2007. 306, 810-823
    Rougeulle C, Heard E. Antisense RNA in imprinting: spreading silence through Air. TRENDS in Genetics. 2002. 18 (9), 434-437
    Schoenherr CJ, Levorse JM, Tilghman SM. CTCF maintains differential methylation at the Igf2/H19 locus. Nat. Genet. 2003. 33, 66-69
    Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaille J. A large imprinted microRNA gene cluster at the at the mouse Dlk1-Gtl2 domain. Genome Res. 2004. 14, 1741-1748
    Shay TL, Berghmans S, Segers K, Meyers S, Beever JE, Womack JE, Georges M, Charlier C, Cockett NE. Fine-mapping and construction of a bovine contig spanning the ovine callipyge locus. Mammal. Genome. 2001. 12, 141-149
    Sick S, Reinker S, Timmer J, Schlake T. WNT and DKK determine hair follicle spacing through a reaction- diffusion mechanism. Science. 2006. 314, 1447-1449
    Sleutels F, Zwart R, Barlow DP. The noncoding AirRNA is required for silencing autosomal imprinted genes. Nature. 2002. 415, 810-813
    Smas CM, Chen L, Sul HS. Cleavage of membrane-associated pref-1 generates a soluble Inhibitor of adipocyte differentiation. Mol. Cell. Biol. 1997. 17(2), 977-988
    Smas CM, Chen L, Zhao L, Latasa MJ, Sul HS. Transcriptional repression of pref-1 by glucocorticoids promotes 3T3-L1 adipocyte differentiation. J. Biol. Chem. 1999. 274, 12632-41
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000. 403, 41-45
    Szabo PE, Tang SH, Rentsendorj A, Pfeifer G, Pand-Mann JR. Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr. Biol. 2000. 10, 607- 610
    Takeda H, Caiment F, Smit M, Hiard S, Tordoir X, Cockett N, Georges M, Charlier C. The callipyge mutation enhances bidirectional long-range DLK1-GTL2 intergenic transcription in cis. PNAS. 2006. 103(21), 8119-8124
    Takada S, Tevendale M, Baker J, Georgiades P, Campbell E, Freeman T, Johnson MH, Paulsen M, Ferguson-Smith AC. Delta-like and Gtl2 are reciprocally expressed, differentially methylated linked imprinted genes on mouse chromosome 12. Curr. Biol. 2000. 10, 1135-1138
    Targa FR. DNA Methylation, Chromatin Boundaries, and Mechanisms of Genomic Imprinting. Arch. Med. Res. 2002. 33, 428-438
    Thorvaldsen JL, Duran KL, Bartolomei MS. Deletion of the H19 differentially methylated domain results in loss of imprinted expressionof H19 and Igf2. Genes. Dev. 1998. 12, 3693-3702
    Thorvaldsen JL, Mann MR, Nwoko O, Duran KL, Bartolomei MS. Analysis of sequence upstream of the endogenous H19 genereveals elements both essential and dispensable for imprinting. Mol. Cell. Biol. 2002. 22, 2450-2462
    Verani R, Cappuccio I, Spinsanti P, Gradini R, Caruso A, Magnotti MC, Motolese M, Nicoletti F, Melchiorri D. Expression of the Wnt inhibitor Dickkopf-1 is required for the induction of neural markers in mouse embryonic stem cell differentiating in response to retinoic acid. J. Neurochem. 2007. 100, 242-250
    Vuocolo T, Pearson R, Campbell P, Tellam RL. Differential expression of Dlk-1 in bovine adipose tissue depots. Com. Biochem. Physiol. Part B. 2003. 134, 315-333
    Wang J, Shou J, Chen XB. Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene. 2000. 19, 1843-1848
    Weidman JR, Maloney KA, Jirtle RL. Comparative phylogenetic analysis reveals multiple non-imprinted isoforms of opossum Dlk1. Mamm. genome. 2006. 17, 157-167
    White JD, Vuocolo T, McDonagh M,. Grounds MD, Harper GS, Cockett NE, Tellam R. Analysis of the callipyge phenotype through skeletal muscle development; association of Dlk1 with muscle precursor cells. Differentiation. 2007.
    Wu J , Qin Y, Li B, He WZ, Sun ZL. Hypomethylated and hypermethylated profiles of H19 DMR are associated with the aberrant imprinting of IGF2 and H19 in human hepatocellular carcinoma. Genomics. 2008. 91, 443-450
    Xing BS, Xu YX, Cheng Y, Liu HL, Du M. Overexpression of IGF2R and IGF1R mRNA in SCNT-produced Goats Survived to Adulthood. J. Genet. Genomics. 2007. 34(8), 709-719
    Yokomine T, Shirohzu H, Purbowasito W, Toyoda A, Iwama H, Ikeo K, Hori T, Mizuno S, Tsudzuki M, Matsuda Y, Hattori M, Sakaki Y, Sasaki H. Structural and functional analysis of a 0.5-Mb chicken regionorthologous to the imprinted mammalian Ascl2/Mash2-Igf2-H19 region. Genome. Res. 2005. 15, 154-165
    Zhang SQ, Kubota C, Yang L, Zhang YQ, Page B, O’Neill M, Yang X,Z Tian XC. Genomic imprinting of H19 in naturally reproduced and cloned cattle. Biol. Reprod. 2004. 71, 1540-1544

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700