草原龙胆花器官MADS-box基因克隆与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草原龙胆(Eustoma grandiflorum)为龙胆科(Gentianaceae)龙胆属(gentian)观赏植物,原产于美国中南部,因其适应性强、花姿典雅、花茎颀长、花色丰富艳丽而成为国际流行的鲜切花。草原龙胆既具有单瓣花又有重瓣花,重瓣花的四轮花器官发育正常且雄蕊数目稳定,这与重瓣花多存在雄蕊瓣化的现象不同。为了阐释草原龙胆花器官发育的分子机理,探讨花器官特征MADS-box基因的保守性及表达情况,本研究以用草原龙胆黄色单瓣(49号)及重瓣花(50号)品系为试验材料,通过抑制性消减杂交及3'-RACE技术,克隆了草原龙胆的DEF/AP3亚家族(B功能基因)、GLO/PI亚家族(B功能基因)、PLE/AG亚家族(C功能基因)和SEP3/AGL9亚家族(E功能基因)MADS-box基因,开展了序列分析、系统发生树构建和RT-PCR等试验工作,为深入研究草原龙胆花发育的分子机理提供有用信息。
     1利用SSH技术筛选草原龙胆花器官发育特征基因
     以草原龙胆(Eustoma grandiflorum)不同发育时期的花器官(萼片,花瓣,雄蕊,雌蕊)原基的cDNA作为试验方(tester),以茎叶组织的cDNA作为驱动方(driver),利用抑制性消减杂交(suppression subtractive hybridization,SSH)技术构建了一个富集花器官发育特性基因的抑制性差减cDNA文库。对抑制性差减cDNA文库进行筛选、测序,Blast同源性比较。对抑制性差减cDNA文库进行筛选、测序,Blast同源性比较结果表明:
     共分离出1610条长度在200 bp以上的序列(平均长度341 bp,最长片段696 bp)。去除冗余序列,经过SeqClust2.1软件拼接得到非重复序列667条,与GenBank数据具有同源性的330条,占49.5%;没有显著同源性的337条序列,占50.5%。在有同源性的序列中,功能已知的有310条,功能未知的20条。序列分析结果表明,部分序列与金鱼草的DEF基因、冬青(Ilex aquifolium)的AP3基因、葡萄(Vitis vinifera)的MADS3基因、矮牵牛(Petunia hybrida)的FBP3基因、灌状买麻藤(Gnetum gnemon)的GGM6基因具高度同源性。成功构建了抑制性差减cDNA文库,为克隆草原龙胆花器官特性基因奠定了基础。
     2草原龙胆MADS-box基因克隆及系统进化分析
     以草原龙胆花芽及成熟的花器官为试验材料,提取RNA,根据MADS-box基因保守序列设计兼并引物,用3'-RACE方法从草原龙胆中分离33条花器官MADS-box基因的cDNA片段,并克隆了5个花特异表达的MADS-box家族基因,序列和系统进化树分析表明这5个基因分别与金鱼草的DEF基因、矮牵牛FBP3基因、FBP6基因和FBP7基因以及与拟南芥的SEP3基因具有很高的同源性,分属DEF/GLO亚家族(B功能基因)、AG-like亚家族(C/D功能基因)和SEP-like亚家族(E功能基因),从而将这5个基因分别命名为EgDEF1、EgGLO1、EgPLE1、EMADS1和EgSEP3-1。推导的氨基酸序列显示,这些基因编码的蛋白质都包含高度保守的MADS结构域、I结构域和K结构,每一基因都有其亚家族特异的C-末端功能域。
     3草原龙胆MADS-box基因的表达分析
     为了分析草原龙胆花发育相关MADS-box基因在野生型花器官中的表达空间特异性,以草原龙胆的根、茎、叶、萼片、花瓣、雄蕊、雌蕊和胚珠等器官的总RNA为模板,进行基因特异性RT-PCR检测。结果显示:
     B功能MADS-box基因EgDEF1在萼片、花瓣、雄蕊及胚珠中有高丰度表达,在心皮中有微量表达;而EgGLO1在花瓣、雄蕊中有高丰度表达,在萼片中有微量表达;在根、茎、叶营养器官中均未检测到两个基因的表达。
     C功能基因EgPLE1在雄蕊、心皮和胚珠中特异表达,但表达的丰度存在一定的差异,在雄蕊中的表达有所减弱。
     D功能基因EgMADS1在心皮和胚珠中特异高丰度表达。
     E功能基因EgSEP3-1在四轮花器官和胚珠中均特异表达,且表达的丰度相对一致。
Eustoma grandiflorum Grise.is a gentian native to the central and southern United States. Due to its large flowers,long stems,a wide range of flower colors and extended vase life,its cut flowers become increasingly popular.There are cultivars with simple and double flowers. In double flowers,the developments of four whorl organs are normal and the number of stamens is stable.In order to elucidate the molecular mechanism of floral development, investeigation was made on the conservation and divergence of expression patterns of floral organ identity MADS-box genes.Several MADS-box genes,including DEF/AP3 subfamily(B class),GLO/PI subfamily(B class),PLE/AG subfamily(C class),and SEP3/AGL9 subfamily (E class),were isolated from Eustoma grandiflorum,yellow simple(No.49) and double flowers(No.50) lines,by SSH(suppression subtractive hybridization) and 3'-RACE(Rapid amplification of cDNA ends).Sequence analyses,phylogeny reconstruction and RT-PCR expression analyses were performed.The gene structure and expression obtained in this investigation can provide important information regarding the floral development of Eustoma grandiflorum.
     1.Primary screening of floral organ identity genes during floral development with suppression subtractive hybridization in Eustoma grandiflorum
     The purpose of this study was to get floral identity genes from Eustoma grandiflorum using SSH.A subtractive cDNA library,which was enriched in genes related to flower organ characteristics,was constructed.The cDNA prepared from sepal,petal,androecium,and gynoecium at different developmental stages was used as the tester and the cDNA from stem and leaf organ as the driver.From the library,1610 high quality sequences(longer than 200 bp, 696 bp at the longest and 341 bp in average) were isolated.After clustering,these unigenes were contigged by SeqClust 2.1 software,and then we got 667 contig sequences.By running blastn program of NCBI,330 contig sequences were found to have homologous genes with the network database,and 337 ESTs(expressed sequence tags) without remarkable homology. Among 330 ESTs with homology,there were 310 ESTs with known function and 20 ESTs with unknown function.The results of GenBank search indicated that they showed a high degree of identity in nucleotide sequence with DEF gene from Antirrhinum majus,AP3 gene from Ilex aquifolium,MADS3 gene from Vitis vinifera,FBP3 gene from Petunia hybrida,and GGM6 gene Gnetum gnemon,respectively.
     These results showed that the subtractive cDNA library was constructed successfully and that the foundation was established for cloning the floral organ identity genes.
     2.Isolation and phylogenetic analysis of MADS-box genes from Eustoma grandiflorum
     Plant MADS-box genes encode a family of highly conserved transcription factors that are involved in many different developmental processes including flower development.In order to elucidate the molecular mechanisms of floral development in a dicotyledonous species, lisianthus,total RNA prepared fron flower buds and mature flower organs,cDNA of five flower-specific MADS-box genes were isolated from this plant by the method of 3'-RACE using degenerate primers designed according to the conserved region of MADS-box protein family taken from flower bud.Sequence and phylogenetic analysis indicated that they had a high degree of identity in the predicted protein sequence with DEF gene from Antirrhinum majus,FBP3,FBP6,and FBP7 genes from Petunia,and SEP3gene from Arabidopsis thaliana,respectively.Therefore,these five genes were termed EgDEF1(DEF/GLO subfamily, B class),EgGLO1(DEF/GLO subfamily,B class),EgPLE1(AG-like subfamily,C class), EgMADS1(AGL11-like subfamily,D class),and EgSEP3-1(SEP-like subfamily,E class), respectively.Alignment of the predicted amino acid sequences from these genes,along with previously published subfamily members,demeonstrated that these genes comprise four regions of the typical MIKC-type MADS-box proteins:the MADS domain,intervening(I) domain and keratin-like(K) domain,and the C-terminal domain.Alignment of C-terminal regions of the predicted protein sequences of these genes with those of their subfamily genes revealed that each gene bears the highly conserved motifs.
     3.The expression of the MADS-box genes from Eustoma grandiflorum
     To investigate the expression patterns of the floral organ identify MADS-box genes in flower of Eustoma grandiflorum,gene-specific RT-PCR was performed with RNA that was isolated from vegetative and floral organs.This analysis revealed that both class B-function genes EgDEF1 and EgGLO1 were strongly expressed in petals and stamens.The EgDEF1 expression was strongly detected in sepals and ovules,but the EgGLO1 expression in sepals was weakly detected with no detection in ovules.
     C-function gene EgPLE1 was expressed specifically in stamens,carpels,and ovules,but the expression in stamens less abundant.
     D-function genes EgMADS1 was expressed specifically in carpels and ovules.E-function genes EgSEP3-1 expression was strongly detected in four flower whorls.
     Theses experiments revealed that five MADS-box genes were expressed specifically in floral organs,while no signal was detected in vegetative organs such as root,stem,and leaf.
引文
[1]余叔文,汤章城.植物生理与分子生物学(第2版).北京:科学出版社,1999,pp.576
    [2]Coen ES.Flower development.Cell Biology.1992,4:929-933
    [3]Weigel D,Nissen O.A developmental switch sufficient for flower initiation in diverse plant.Nature,1995,377:495-500
    [4]Cronquist A.The evolution and classification of flowering plants.New York:Columbia University Press,1988
    [5]Dahlgren G.The last Dahlgrengram-System of classification of the dicotyledons.in Tan K(eds).Plant taxonomy,phytogeography and related subjects.Edinburgh:Edinburgh University Press,1989,pp.249-260
    [6]Thorne RF.Classification and geography of the flowering plants.Bol Rev,1992,58:225-348
    [7]Taklitajan A.Diversity and classfication of flowering plants.New York:Columbia University Press,1997.
    [8]Wu ZY,Lu AM,Tang YC,Chen ZD,Li DZ.Synopsis of a new "polyphyletic-polychronic-polytopic"system of the angiosperms.Acta Phytotax Sin,2002,40:289-322
    [9]Kramcr EM,Di Stifio,VS,Schlutcr,PM.Complex pattcms of gcnc duplication in theAPETALA3 and PISTILLATA lineages of the Ranunculaceae.Int J Plant Sci,2003,164:1-11
    [10]Soltis DE,Soltis PS,Albert VA,Oppenheimer DG,dePamphihs CW,Ma H,Frohlich MW,Theissen G.Missing links:the genetic architecture of flower and floral diversification.Trends Plant Sci,2002,7:22-31
    [11]Irish VF.The evolution of floral homeotic gene function.BioEssays,2003,25:637-646
    [12]ChentaoLin,Margaret Ahmad,Anthony R.Cashmore.Arabidopsis cryptochromel is a soluble protein mediating blue light-dependent regulation of plant growth and development.The Plant Journal,1996,10(5):893-902
    [13]Michelle TZ,Karen AH,Carolyn IJ,Jeff CY,Roger PH,Meeks-Wagner DR.The Arabidopsis ELF3gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering.The Plant Journal,1996,10(4):691-702
    [14]Koornneef M,Alonso-Blanco C,Peeters A J M,Soppe W.Genetic control of flowering time in Arabidopsis.Annu Rev Plant Phys,1998,49:345-370
    [15]雍伟东,种康,许智宏,谭克辉,朱至清.高等植物开花时间决定的基因调控研究.科学通报,2000,45:455-466
    [16]许智宏,刘春明编.植物发育的分子机理(第1版).北京:科学出版社,1999,89-106
    [17]Simpson GG,Dean C.Arabidopsis,the rosetta stone of flowering time.Science,2002,296:285-289
    [18]Mouradov A,Cremer F,Coupland G.Control of flowering time:interacting pathways as a basis for diversity.Plant Cell,2002,14(Suppl):S111-S130
    [19]He Y,Amasino RM.Role of chromatin modification in flowering-time control.Trends Plant Sci,2005,10 (1):30-35
    [20]Tan FC,Swain SM.Genetics of flower initiation and development in annual and perennial plants.Physiologia Plantarum,2006,128:8-17
    [21]Reeves PH,Coupland G.Response of plant development to environment:control of flowering by daylength and temperature.Curr Opin Plant Biol,2000,3(1):37-42
    [22]Hayama R,Coupland G Shedding light on the circadian clock and the photoperiodic control of flowering.Curr Opin Plant Biol,2003,6:13-19
    [23]Guo HW,Yang WY,Mockler TC,Lin CT.Regulations of Flowering Time by Arabidopsis Photoreceptors.Science,1998,279:1360-1363
    [24]Kardailsky I,Shukla VK,Ahn JH,DagenaisN,Christensen SK,Nguyen JT,ChoryJ,Harrison MJ,WeigelD.Activation Tagging of the Floral Inducer FT.Science,1999,286:1962-1965
    [25]Onouchi H,Igeno MI,Perilleux C,Graves K,Coupland G.Mutagenesis of Plants Overexpressing CONSTANS Demonstrates Novel Interactions among Arabidopsis Flowering-time Genes.Plant Cell,2000,12:885-900
    [26]Suarez-Lopez P,Wheatley K,Robson F,Onouchi H,Valverde F,Coupland G.CONSTANS Mediates between the Circadian Clock and the Control of Flowering in Arabidopsis.Nature,2001,410:1116-1120
    [27]Briggs WR,Olney MA.Photoreceptors in Plant Photomorphogenesis to Date.Five Phytochromes,Two Cryptochromes,One Phototropin,and One Superchrome.Plant Physiology,2001,125:85-88
    [28]Aukeman MJ,Hirschfeld M,Weaver L,Wester L,Weaver M,Clack T,Amasino R M,Sharrock R A.A deletion in the PHYD gene of the Arabidopsis Wassilewskija Ecotype defines a role for phytochrome D in red/far-red light sensing.Plant Cell,1997,9(8):1317-1326
    [29]Devlin PF,Patel SR,Whitelam GC.Phytochrome Einfluences internode elongation and flowering time in Arabidopsis.Plant Cell,1998,10(9):1479-1487
    [30]Weller JL,Beauchamp N,Kerckhoffs LH,Platten JD,Reid JB.Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea.Plant J,2001,26(3):283-294
    [31]Hayama R,Coupland G.The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice.Plant Physiol,2004,135(2):677-684
    [32]Park DH,Somers DE,Kim YS,Choy YH,Lim HK,Soh MS,Kim HJ,Kay SA,Nam H G Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene.Science,1999,285(5433):1579-1582
    [33]Mizoguchi T,Wright L,Fujiwara S,Cremer F,Lee K,Onouchi H,Mouradov A,Fowler S,Kamada H,Putterill J,Coupland G.Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis.Plant Cel 1,2005,17(8):2255-2270
    [34]Suarez-Lopez P,Wheatley K,Robson F,Onouchi H,Valverde F,Coupland G.CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis.Nature,2001,410(6832):1116-1120
    [35]Putterill J,Robson F,Lee K,Simon R,Coupland G The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors.Cell,1995,85:847-857
    [36]JackT.Molecular and Genetic Mechanisms of Floral Control.The Plant Cell,2004,16(suppl.):S1-S7
    [37]Samach A,Onouchi H,Gold SE,Ditta GS,Schwarz-Sommer Z,Yanofsky MF,Coupland G.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis.Science,2000,288(5471):1613-1616
    [38]Onouchi H,Igeno MI,Perilleux C,Graves K,Coupland G.Mutagenesis of Plants Overexpressing CONSTANS Demonstrates Novel Interactions among Arabidopsis Flowering-time Genes.Plant Cell,2000,12:885-900
    [39]Hepworth SR,Valverde F,Ravenscroft D,Mouradov A,Coupland GAntagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs.The EMBO Journal,2002,21:4327-4337
    [40]Pineiro M,Gomez-Mena C,Schaffera R,Martinez-Zapaterb JM,eorge Coupland G EARLY BOLTING IN SHORT DAYS Is Related to Chromatin Remodeling Factors and Regulates Flowering in Arabidopsis by Repressing FT.The Plant Cell,2003,15:1552-1562
    [41]Michaels SD,Amasino RM.FLOWERING LOCUS C Encodes a Novel MADS Domain Protein that Acts as a Repressor of Flowering.Plant Cell,1999,11:949-956
    [42]Sheldon CC,Rouse DT,Finnegan EJ,Peacock WJ,Dennis ES.The molecular basis of vernalization:The central role of FLOWERING LOCUS C {FLC).Proceedings of the National Academy of Sciences,2000,97(7):3753-3758
    [43]JohansonU,West J,Lister C,Michaels S,AmasinoR,Dean C.Molecular Analysis of FRIGIDA,a Major Determinant of Natural Variation in Arabidopsis Flowering Time.Science,2000,290(5490):344-347
    [44]Noh YS,Amasino RM.PIE1,an ISWI family gene,is required for FLC activation and floral repression in Arabidopsis.Plant Cell,2003,15:1671-1682
    [45]Michaels SD,Amasino RM.Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization.Plant Cell,2001,13(4):935-941
    [46]Sheldon CC,Conn AB,Dennis ES,Peacock WJ.Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression.Plant Cell,2002,14:2527-2537
    [47]Lee H,Suh SS,Park E,Cho E,Ann JH,KimSQ Lee JS,KwonYM,Lee I.The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis.Genes Dev,2000,14(18):2366-2376
    [48]Hepworth SR,Valverde F,Ravenscroft D,Mouradov A,Coupland CAntagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs.The EMBO Journal,2002,21:4327-4337
    [49]Moon J,Suh SS,Lee H,Choi KR,Hong CB,Paek NC,Kim SQ Lee I.The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis.Plant J,2003,35:613-623
    [50]Sung S,Amasino RM.Vernalization and epigenetics:how plants remember winter.Curr Opin Plant Biol,2004a,7(1):4-10
    [51]Sung S,Amasino R M.Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3.Nature,2004b,427(6970):159-164
    [52]Levy YY,Mesnage S,Mylne JS,Gendall AR,Dean C.Multiple roles of Arabidopsis VRN1 in vernalization and flowering tine control.Science,2002,297(5579):243-246
    [53]Bastow R,Mylne JS,Lister C,Lippman Z,Martienssen RA,Dean C.Vernalization requires epigenetic silencing of FLC by histone methylation.Nature,2004,427(6970):164-167
    [54]Gendall AR,Levy YY,Wilson A,Dean C.The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis.Cell,2001,107(4):525-535
    [55]Czermin B,Melfi R,McCabe D,Seitz V,Imhof A,Pirrotta V.Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites.Cell,2002,111(2):185-196
    [56]Schultz DC,Ayyanathan K,Negorev D,Maul GG,Rauscher FJ.SETDB1:a novel KAP-1-associated histone H3,lysine 9-specific methyltransferase that contributes to HP 1-mediated silencing of euchromatin genes by KRAB zinc-finger proteins.Genes Dev,2002,16(8):919-932
    [57]Finnegan EJ,Kovac KA,Jaligot E,Sheldon CC,Peacock WJ,Dennis ES.The downregulation of FLOWERING LOCUS C (FLC)expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms.Plant J,2005,44:420-432
    [58]Simpson GG.The autonomous pathway:epigenetic and post-transctriptional gene regulation in the control of Arabidopsis flowering time.Curr Opin in Plant Biol,2004,7(5):570-574
    [59]Aukerman MJ,Lee I,Weigel D,Amasino,RM.The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression.Plant J,1999,18(2):195-203
    [60]Macknight R,Bancroft I,Page T,Lister C,Schmidt R,Love K,Westphal L,Murphy G,Sherson S,Cobbett C,Dean C.FCA,a gene controlling flowering time in Arabidopsis,encodes a protein containing RNA-binding domains.Cell,1997,89(5):737-745
    [61]Schomburg FM,Patton DA,Meinke DW,Amasino RM.FPA,a gene involved in floral induction in Arabidopsis,encodes a protein containing RNA-recognition motifs.Plant Cell,2001,13(6):1427-1436
    [62]LimMH,Kim YS,Chung KS,Seo YH,Lee I,Kim J,Hong CB,Kim HJ,Park CM.A new Arabidopsis gene,FLK,encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C.Plant Cell,2004,16(3):731-740
    [63]Quesada V,Macknight R,Dean C,Simpson GG.Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time.EMIBO J,2003,22(12):3142-3152
    [64]Simpson GG,Dijkwel PP,Quesada V,Henderson I,Dean C.FY is an RNA 3'end-processing factor that interacts with FCA to control the Arabidopsis floral transition.Cell,2003,113(6):777-787
    [65]Amasino RM.Flowering time:a pathway that begins at the 3'end.Curr Biol,2003,13(17):670-672
    [66]He Y,Michaels SD,Amasino RM.Regulation of flowering time by histone acetylation in Arabidipsis.Science,2003,302(5651):1751-1754
    [67]Blazquez MA,Green R,Nilsson O,Sussman MR,Weigel D.Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter.Plant Cell,1998,10(5):791-800
    [68]Wilson RN,Heckman JW,Somerville C.Gibberellin is required for flowering in Arabidopsis thaliana under short days.Plant Physiol,1992,100:403-408
    [69]Sun TP,Kamiya Y.The Arabidopsis gal locus encodes the cyciase ent2kaurene synthetase of gibberellin biosynthesis.Plant Cell,1994,6(10):1509-1518
    [70]Xu YL,Li L,Wu KQ,Peeters AJM,Gage DA.The ga5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase-molecular-cloning and functional expression.Proc Natl Acad Sci USA,1995,92(14):6640-6644
    [71]Miguel A,Green R,Nilsson O,Michael R,Weigel D.Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter.The Plant Cell,1998,10(5):791-800
    [72]Bolle C,Koncz C,Chua NH.PAT1,a New Number of the GRAS Family,is involved in Phytochrome A signal Transduction.Genes Dev,2000,14:1269-1278
    [73]Jacobsen SE,Olszewski NE.Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction.Plant Cell,1993,5(8):887-896
    [74]Blazquez MA,Weigel D.Integration of floral inductive signals in Arabidopsis.Nature,2000,404(6780):889-892
    [75]Nilsson O,Lee I,Blazquez MA,Weigel D.Flowering time genes modulate the response to LEAFY activity.Genetics,1998,150:403-410
    [76]Yu H,Xu Y,Tan EL,Kumar PP.AGAMOUS-LIKE 24,a dosage-dependent mediator of the flowering signals.Proc Natl Acad Sci USA,2002,99:16336-16341
    [77]Michaels SD,Ditta G,Gustafson-Brown C,Pelaz S,Yanofsky M,Amasino RM.AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization.Plant J,2003,33:867-874
    [78]Moon J,Lee H,Kim M,Lee I.Analysis of flowering pathway integrators in Arabidopsis.Plant Cell Physiol,2005,46(2):292-299
    [79]Weigel D,Alvarez J,Smyth DR,Yanofsky MF,Meyerowitz EM.LEAFY controls floral meristem identity in Arabidopsis.Cell,1992,69:843-859
    [80]Coen ES,Romero JM,Doyle S,Elliott R,Murphy G,Carpenter R.FLORICAULA:a homeotic gene required for flower development in Antirrhinum majus.Cell,1990,63:1311-1322
    [81]Schultz EA,Haughn GW.LEAFY,a homeotic gene that regulates inflorescence development in Arabidopsis.Plant Cell,1991,3:771-781
    [82]Coen ES,Carpenter R.The metamorphosis.Plant Cell,1993,5:1175-1181
    [83]Blazquez MA,Soowal LN,Lee I,Weigel D.LEAFY expression and flower initiation in Arabidopsis.Development,1997,124:3835-3844
    [84]Ruiz-Garcia L,Madue"no F,Wilkinson M,Haughn G,Salinas J,Martines-Zapater JM.Different roles of flowering time genes in the activation of floral initiation genes in Arabidopsis.Plant Cell,1997,9:1921-1934
    [85]Weigel D,Nilsson O.A developmental switch sufficient for flower initiation in diverse plants.Nature,1995,377:495-500
    [86]Pena L,Martin-Trillo M,Juarez J,Pina JA,NavarroL,Martinez-Zapater JM.Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time.Nat Biotechnol,2001,19:263-267
    [87]Maize! A,Busch MA,Tanahashi T,Perkovic J,Kato M,Hasebe M,Weigel D.The floral regulator LEAFY evolves by substitutions in the DNA binding domain.Science,2005,308:260-263
    [88]Blazquez MA,Ferrandiz C,Madueno F,Parcy F.How floral meristems are built.Plant Molecular Biology,2006,60:855-870
    [89]Parcy F,Nilsson O,Busch MA,Lee I,Weigel D.A genetic framework for floral patterning.Nature,1998,395:561-566
    [90]Lamb RS,Hill TA,Tan QK,Irish VF.Regulation of APETALA3 floral homeotic gene expression by meristem identity genes.Development,2002,129:2079-2086
    [91]Busch MA,Bomblies K,Weigel D.Activation of a floral homeotic gene in Arabidopsis.Science,1999,285:585-587
    [92]Hantke SS,Carpenter R,Coen ES.Expression of floricaula in single cell layers of periclinal chimeras activates downstream homeotic genes in all layers of floral meristems.Development,1995,121:27-35
    [93]Sessions A,Yanofsky MF,Weigel D.Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1.Science,2000,289:779-782
    [94]Wu X,Dinneny JR,Crawford KM,Rhee Y,Citovsky V,Zambryski PC,Weigel D.Modes of intercellular transcription factor movement in the Arabidopsis apex.Development,2003,130:3735-3745
    [95]Mandel MA,Gustafson-Brown C,Savidge B,Yanofsky MF.Molecular characterization of the Arabidopsis floral homeotic gene APETALA1'.Nature,1992,360:273-277
    [96]Kempin SA,Savidge B,Yanofsky MF.Molecular basis of the cauliflower phenotype in Arabidopsis.Science,1995,267:522-525
    [97]Bowman JL,Alvarez J,Weigel D,Meyerowitz EM,Smyth DR.Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes.Development,1993,119:721-743
    [98]Mandel MA,Yanofsky MF.A gene triggering flower formation in Arabidopsis.Nature,1995a,377:522-524
    [99]Mandel MA,Yanofsky MF.The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1.Plant Cell,1995b,7:1763-1771
    [100]Gu Q,Ferrandiz C,Yanofsky MF,Martienssen R.The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development.Development,1998,125:1509-1517
    [101]Ferrandiz C,Gu Q,Martienssen R,Yanofsky MF.Redundant regulation of meristem identity and plant architecture by FRUITFULL,APETALA1 and CA ULIFLOWER.Development,2000,127:725-734
    [102]Litt A,Irish VF.Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage:implications for the evolution of floral development.Genetics,2003,165:821-833
    [103]Huijser P,Klein J,Lonnig WE,Meijer H,Saedler H,Sommer H.Bracteomania,an inflorescence anomaly,is caused by the loss of function of the MADS-box gene SQUAMOSA in Antirrhinum majus.EMBO J,1992,11:1239-1249
    [104]Taylor SA,Hofer JM,Murfet I.C,Sollinger JD,Singer SR,Knox MR,Ellis TH.PROLIFERATING INFLORESCENCE MERISTEM,a MADS-box gene that regulates floral meristem identity in pea.Plant Physiol,2002,129:1150-1159
    [105]Shannon S,Meeks-Wagner DR.A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development.Plant Cell,1991,3:877-892
    [106]Bradley D,Ratcliffe O,Vincent C,Carpenter R,CoenE.Inflorescence commitment and architecture in Arabidopsis.Science,1997,275:80-83
    [107]Ratcliffe OJ,Amaya I,Vincent CA,Rothstein S,Carpenter R,Coen ES,Bradley DJ.A common mechanism controls the life cycle and architecture of plants.Development,1998,125:1609-1615
    [108]Yeung K,Seitz T,Li S,Janosch P,McFerran B,Kaiser C,Fee F,Katsanakis KD,Rose DW,Mischak H,Sedivy JM,Kolch W.Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP.Nature,1999,401:173-177
    [109]Corbit KC,Trakul N,Eves EM,Diaz B,Marshall M,Rosner MR.Activation of Raf-1 signaling by protein kinase C through a mechanism involving Raf kinase inhibitory protein.J Biol Chem,2003,278:13061-13068
    [110]Kobayashi Y,Kaya H,Goto K,Iwabuchi M,Araki T.A pair of related genes with antagonistic roles in mediating flowering signals.Science,1999,286:1960-1962
    [111]Abe M,Kobayashi Y,Yamamoto S,Daimon Y,Yamaguchi A,Ikeda Y,Ichinoki H,Notaguchi M,Goto K,Araki T.FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.Science,2005,309:1052-1056
    [112]Wigge PA,Kim MC,Jaeger KE,Busch W,Schmid M,Lohmann JU,Weigel D.Integration of spatial and temporal information during floral induction in Arabidopsis.Science,2005,309:1056-1059
    [113]Hanzawa Y,Money T,Bradley D.A single amino acid converts a repressor to an activator of flowering.Proc Natl Acad Sci USA,2005,102:7748-7753
    [114]Bradley D,Carpenter R,Copsey L,Vincent C,Rothstein S,CoenE.Control of inflorescence architecture in Antirrhinum.Nature,1996,379:791-797
    [115]Foucher F,Morin J,Courtiade J,Cadioux S,Ellis N,Banfield MJ,Rameau C.DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea.Plant Cell,2003,15:2742-2754
    [116]Hempel FD,Weigel D,Mandel MA,Ditta G,Zambryski PC,Feldman LJ,Yanofsky MF.Floral determination and expression of floral regulatory genes in Arabidopsis.Development,1997,124:3845-3853
    [117]Gocal GF,Sheldon CC,Gubler F,Moritz T,Bagnall D J,MacMillan CP,Li SF,Parish RW,Dennis ES,Weigel D,King RW.GAMYB-like genes,flowering,and gibberellin signaling in Arabidopsis.Plant Physiol,2001,127:1682-1693
    [118]Achard P,Herr A,Baulcombe DC,Harberd NP.Modulation of floral development by a gibberellin regulated microRNA.Development,2004,131:3357-3365
    [119]Schmi M,Uhlenhaut NH,Godard F,Demar M,Bressan R,Weigel D,Lohmann JU.Dissection of floral induction pathways using global expression analysis.Development,2003,130:6001-6012
    [120]Huang,T,Bohlenius H,Eriksson S,Parey F,Nilsson O.The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering.Science,2005,309:1694-1696
    [121]Yoo SK,Chung KS,Kim J,Lee JH,Hong SM,Yoo SJ,Yoo SY,Lee JS,Ahn JH,CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 through FLOWERING LOCUS T to promote flowering in Arabidopsis.Plant Physiol,2005,139:770-778
    [122]An H,Roussot C,Suarez-Lopez P,Corbesier L,Vincent C,Pineiro M,Hepworth S,Mouradov A,Justin S,Turnbull C,Coupland G.CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis.Development,2004,131:3615-3626
    [123]Okamura JK,Szeto W,Lotys-prass C,Jofuku KD.Photo and hormonal control of meristem identity in Arabidopsis flower mutants apetala2 and apetalal.P lant Cell,1997,9:37-47
    [124]Wagner,D,Sablowski,RW,Meyerowitz EM.Transcriptional activation of APETALA1 by LEAFY.Science,1999,285:582-584
    [125]William DA,Su Y,Smith MR,Lu M,Baldwin DA,Wagner D.Genomic identification of direct target genes of LEAFY.Proc Natl Acad Sci USA,2004,101:1775-1780
    [126]Liljegren SJ,Gustafson-Brown C,Pinyopich A,Ditta GS,Yanofsky MF.Interactions among APETALA1,LEAFY,and TERMINAL FLOWER1 specify meristem fate.Plant Cell,1999,11:1007-1018
    [127]Chou ML,Huang MD,Yang CH.EMF genes interact with late-flowering genes in regulating floral initiation genes durong shoot development in Atabidopsis thaliana.Plant Cell Physiol,2001,42:499- 507
    [128]Shannon S,Meeks-Wagner DR.Genetic interactions that regulate inflorescence development in Arabidopsis.Plant Cell,1993,5:639-655
    [129]Ratcliffe OJ,Bradley,DJ,Coen,ES.Separation of shoot and floral identity in Arabidopsis.Development,1999,126:1109-1120
    [130]Yu H,Ito T,Wellmer F,Meyerowitz EM.Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development.Nat Genet,2004,36:157-161
    [131]Gustafson-Brown C,Savidge B,Yanofsky MF.Regulation of the Arabidopsis floral homeotic gene APETALA1.Cell,1994,76:131-14
    [132]Becker A,Gleissberg S,Smyth DR.Floral and vegetative morphogenesis in California poppy (Eschscholzia californica CHAM.).Int J Plant Sci,2005,166:537-555
    [133]Lenhard M,Bohnert A,Jurgens G.,Laux T.Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS.Cell,2001,105:805-814
    [134]Lohmann JU,Hong RL,Hobe M,Busch MA,Parcy F,Simon R,Weigel D..A molecular link between stem cell regulation and floral patterning in Arabidopsis.Cell,2001,105:793-803
    [135]Hong RL,Hamaguchi L,Busch MA,Weigel D.Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.Plant Cell,2003,15:1296-1309
    [136]Weigel D,Meyerowitz EM.Activation of floral homeotic genes in Arabidopsis.Science,1993,261:1723-1726
    [137]Bowman JL,Sung DR,Meyerowitz EM.Genetic interactions among floral homeotic genes of Arabidopsis.Development,1991,112:1-20
    [138]Lee I,Wolfe DS,Nilsson O,Weigel D.A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS.Curr Biol,1997,7:95-104
    [139]Honma T,Goto K.The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete ciselements responsive to induction and maintenance signals.Development,2000,127:2021-2030
    [140]Blazquez MA,Weigel D.Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis.Plant Physiol,1999,120:1025-1032
    [141]Chou ML,Yang CH.FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development.Plant J,1998,15:231-242
    [142]Pi(?)eiro M,Coupland G.The control of flowering time and floral identity in Arabidopsis.Plant Physiol,1998,117:1-8
    [143]Espinosa-Soto C,Padilla-Longoria P,Alvarez-Buylla E.A gene regulatory network model for cell-fate differentiation during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles.Plant Cell,2004,16:2923-2939
    [144]Chaos A,Aldana M,Espinosa-Soto C,de Leon BGP,Arroyo AG,Alvarez-Buylla ER.From Genes to Flower Patterns and Evolution:Dynamic Models of Gene Regulatory Networks.J Plant Growth Regul, 2006,25:278-289
    [145]Kaufmann K,Melzer R,Theissen G MIKC-type MADS-domain proteins:structural modularity.protein interactions and network evolution in land plants.Genes,2005,347:183-198
    [146]Theissen G Kim JT,Saedler H.Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes.Journal of Molecular Evolution,1996,43:484-516
    [147]Theissen G,Saedler H.Floral quartets.Nature,2001,409:469-471
    [148]de Folter S,Immink RGH,Kieffer M,Parenicova L,Henz SR,Weigel D,Busscher M,KooikerM,Colombo L,Kater MM,Davies B,Angenent GC.Comprehensive Interaction Map of the Arabidopsis MADS-box Transcription Factors.The Plant Cell,2005,17:1424-1433
    [149]Theissen G Development of floral organ identity:stories from the MADS house.Current Opinion in Plant Biology,2001,4:75-85
    [150]Bowman JL,Smyth DR,Meyerowitz EM.Genes directing flower development in Arabidopsis.The Plant Cell,1989,1:37-52.
    [151]Kunst L,Klenz JE,Martinez-Zapater J,Haughn GW.AP2 gene determines the identity of perianth organs in flowers of Arabidopsis thaliana The Plant Cell,1989,1:1195-1208
    [152]Schwarz-Sommer Z,Huijser P,Nacken W,Saedler H,Sommer H.Genetic control of flower development by homeotic genes in Antirrhinum majus.Science,1990,250:931-936
    [153]Carpenter R,Coen ES.Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus.Genes Development,1990,4:1483-1493
    [154]Coen ES,Meyerowitz EM.The war of the whorls:genetic interactions controlling flower development.Nature,1991,353:31-37
    [155]Bowman JL,Drews GN,Meyerowitz EM.Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development.The Plant Cell,1991,3:749-758
    [156]Ma H,de Pamphilis CW.The ABCs of floral evolution.Cell,2000,101:5-8
    [157]Soltis PS,Soltis DE,Kim S,Chanderbali A,Buzgo M.Expression of floral regulators in basal angiosperms and the origin and evolution of ABC-function.In:Soltis DE,Soltis PS,Leebens-Mack J,eds.Advances in botanical research.Vol.44.Developmental genetics of the flower.New York,NY:Academic Press,2006,323-347
    [158]Jofuku KD,den Boerl BGW,Van Montagul M,Okamuroa JK.Control of Arabidopsis flower and seed development by the homeotic gene APETALA2.The Plant Cell,1994,6:1211-1225
    [159]Hill JP,Lord EM.Floral development in Arabidopsis thaliana:a comparison of the wild type and the homeotic pistillata mutant.Can J Bot,1989,67:2922-2936
    [160]Jack T,Brockman LL,Meyerowitz EM.The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS-box and is expressed in petals and stamens.Cell,1992,68:683-697
    [161]Jack T,Fox GL,Meyerowitz EM.Arabidopsis homeotic gene APETALA3 ectopic expression:Transcriptional and posttranscriptional regulation determine floral organ identity.Cell,1994,76:703-716
    [162]Goto K,Meyerowitz EM.Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA.Genes Development,199,48:1548-1560
    [163]Yang Y,Fanning L,Jack T.The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins,APETALA3 and PISTILLATA.The Plant Journal,2003,33:47-59
    [164]Yanofsky MF,Ma H,Bowman JL,Drews GN,Feldmann KA,Meyerowitz EM.The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors.Nature,1990,346:35-39
    [165]Keck E,McSteen P,Carpenter REC.Separation of genetic functions controlling organ identity in flowers.EMBO J,2003 22:1058-1066
    [166]Sommer H,Beltran JP,Huijser P,Pape H,Lonnig WE,Saedier H,Schwarz-Sommer Z.Deficiens,a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:the protein shows homology to transcription factors.EMBO J,1990,9:605-613
    [167]Schwarz-Sommer Z,Hue I,Huijser P,Flor PJ,Hansen R,Tetens F,Lonnig WE,Saedier H,Sommer H.Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens:evidence for DNA binding and autoregulation of its persistent expression throughout flower development.EMBO J,1992,11:251-263
    [168]Trobner W,Ramirez L,Motte P,Hue I,Huijser P,Lonnig WE,Saedier H,Sommer H,Schwarz-Sommer Z.GLOBOSA-.a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis.EMBO J,1992,13:4693-4704
    [169]Davies B,Motte P,Keck E,Saedier H,Sommer H,Schwarz-Sommer Z.PLENA and FARINELLI:Redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.EMBO J,1999,18:4023-4034
    [170]Bradley D,Carpenter R,Sommer H,Hartley N,Coen E.Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum.Cell,1993,72:83-95
    [171]Drews GN,Bowman JL,Meyerowitz EM.Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product.Cell,1991,65:991-1002
    [172]Liu Z,Meyerowitz EM.LEUNIG regulates AGAMOUS expression in Arabidopsis flowers.Development,1995,121:975-991
    [173]Elliott RC,Betzner AS,Huttner E,Oakes MP,Tucker WQ,Gerentes D,Perez P,Smyth DR.AINTEGUMENTA,an APETALA2-\\ke gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth.Plant Cell,1996,8:155-168
    [174]Klucher KM,Chow H,Reiser L,Fischer RL.The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2.Plant Cell,1996,8:137-153
    [175]Byzova MV,Franken J,Aarts MG,de Almeida-Engler J,Engler G,Mariani C,Van Lookeren Campagne MM,Angenent GC.Arabidopsis STERILE APETALA,a multifunctional gene regulating inflorescence,flower,and ovule development.Genes Dev,1999,13:1002-1014
    [176]Conner J,Liu Z.LEUNIG,a putative transcriptional corepressor that regulates AGAMOUS expression during flower development.Proc Natl Acad Sci USA,2000,97:12902-12907
    [177]Franks RG,Wang C,Levin JZ,Liu Z.SEUSS,a member of a novel family of plant regulatory proteins,represses floral homeotic gene expression with LEUNIG.Development,2002,129:253-263
    [178]Krizek BA,Prost V,Macias A.AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS.Plant Cell,2000,12:1357-1366
    [179]Goodrich J,Puangsomlee P,Martin M,Long D,Meyerowitz EM,Coupland G.A Polycomb-group gene regulates homeotic gene expression in Arabidopsis.Nature,1997,386:44-51
    [180]Chen X.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development.Science,2004,303:2022-2025
    [181]Bartel B,Bartel DP.MicroRNAs:At the root of plant development? Plant Physiol,2003,132:709-717
    [182]Hill TA,Day CD,Zondlo SC,Thackeray A,Irish VF.Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3.Development,1998,125:1711-1721
    [183]Levin JZ,Meyerowitz EM.UFO:An Arabidopsis gene involved in both floral meristem and floral organ development.Plant Cell,1995,7:529-548
    [184]Wilkinson MD,Haughn GW.UNUSUAL FLORAL ORGANS controls meristem identity and organ primordia fate in Arabidopsis.Plant Cell,1995,7:1485-1499
    [185]Simon R,Carpenter R,Doyle S,Coen E.Fimbriata controls flower development by mediating between meristem and organ identity genes.Cell,1994,78:99-107
    [186]Ingrain GC,Goodrich J,Wilkinson MD,Simon R,Haughn GW,Coen ES.Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA,genes controlling flower development in Arabidopsis and Antirrhinum.Plant Cell,1995,7:1501-1510
    [187]Samach A,Klenz JE,Kohalmi SE,Risseeuw E,Haughn GW,Crosby WL.The UNUSUAL FLORAL ORGANS gene of Arabidopsis thaliana is an F-box protein required for normal patterning and growth in the floral meristem.Plant J,1999,20:433-445
    [189]Wang X,Feng S,Nakayama N,Crosby WL,Irish V,Deng XW,Wei N.The COP9 signalosome interacts with SCF~(UFO) and participates in Arabidopsis flower development.Plant Cell,2003,15:1071-1082
    [190]Sakai H,Krizek BA,Jacobsen SE,Elliot M.Regulation of SUP expression identifies multiple regulators involved in Aarabidopsis floral meristem development.Plant Cell,2000,12:1607-1618
    [191]Bowman JL,Sakai H,Jack T,Weigel D,Mayer U,Meyerowitz EM.SUPERMAN,a regulator of floral homeotic genes in Arabidopsis.Development,1992,114(3):599-615
    [192]Sakai H,Medrano LJ,Meyerowitz EM.Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries.Nature,1995,378(6553):199-203
    [193]Ma H.Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants.Annu Rev Plant Biol,2005,56:393-434
    [194]Mayer KFX,Schoof H,Haecker A,Lenhard M,Jurgens G.Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem.Cell,1998,95:805-815
    [195]Alvarez J,Smyth DR.CRABS CLAW and SPATULA,two Arabidopsis genes that control carpel development in parallel with AGAMOUS.Development,1999,126:2356-2375
    [196]Savidge B,Rounsley SD,Yanofsky MF.Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes.Plant Cell,1995,7:721-733
    [197]Flanagan CA,Hu Y,Ma H.Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development.Plant J,1996,10:343-353
    [198]瞿礼嘉,邓兴旺译.植物发育的机制.高等教育出版社,2006,pp.96-97
    [199]Soltis DE,Chanderbali AS,Kim S,Buzgo M,Soltis PS.The ABC Model and its Applicability to Basal Angiosperm.Annals of Botany,2007,100:155-163
    [200]Angenent GC,Franken J,Busscher M,van Dijken A,van Went JL,Dons HJ,van Tunen AJ.A novel class of MADS box genes is involved in ovule development in petunia.The Plant Cell,1995,7:1569-1582
    [201]Colombo L,Franken J,Koetje E,van Went J,Dons HJ,Angenent GC,van Tunen AJ.The petunia MADS box gene FBP11 determines ovule identity.The Plant Cell,1995,7:1859-1868
    [202]Rounsley SD,Ditta GS,Yanofsky MF.Diverse roles for MADS box genes in Arabidopsis development.The Plant Cell,1995,7:1259-1269
    [203]Pinyopich A,Ditta GS,Savidge B,Liljegren SJ,Baumann E,Wisman E,Yanofsky MF.Assessing the redundancy of MADS-box genes during carpel and ovule development.Nature,2003,424:85-88
    [204]Liljegren SJ,Ditta GS,Eshed Y,Savidge B,Bowman JL,Yanofsky MF.SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis.Nature,2000,404:766-770
    [205]Favaro R,Pinyopich A,Battaglia R,Kooiker M,Borghi L,Ditta G,Yanofsky MF,Kater MM,Colombo L.MADS-box protein complexes control carpel and ovule development in Arabidopsis.The Plant Cell,2003,15:2603-2611
    [206]Pelaz S,Ditta GS,Baumann E,Wisman E,Yanofsky MF.B and C floral organ identityfunctions require SEPALLATA MADS-box genes.Nature,2000,405:200-203
    [207]Pelaz S,Tapia-Lopez R,Alvarez-Buylla ER,Yanofsky MF.Conversion of leaves into petals in Arabidopsis.Current Biology,2001,11:182-184
    [208]Honma T,Goto K.Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.Nature,2001,409:25-529
    [209]Ditta G,Pinyopich A,Robles P,Pelaz S,Yanofsky MF.The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity.Current Biology,2004,14:1935-1940
    [210]Ferrario S,Immink RG,Angenent GC.Conservation and diversity in flower land.Current Opinion Plant Biology,2004,7:84-91
    [211]Kim S,Koh J,Yoo M-J,Kong HZ,Hu Y,Ma H,Soltis PS,Soltis DE.Expression of floral MADS-box genes in basal angiosperms:implications for the evolution of floral regulators and the perianth.The Plant Journal,2005,43:724-744
    [212]Meagher TR.Linking the Evolution of Gender Variation to Floral Development.Annals of Botany,2007,100:165-176
    [213]Pnueli L,Hareven D,Broday L,Hurwitz C,Lifschitz E.The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers.Plant Cell,1994,6:175-186
    [214]Ampomah-Dwamena C,Morris BA,Sutherland P,Veit B,Yao JL.Down-regulation of TM29,a tomato SEPALLATA homolog,causes parthenocarpic fruit development and floral reversion.Plant Physiol,2002,130:605-617
    [215]Angenent GC,Franken J,Busscher M,Weiss D,van Tunen AJ.Co-suppression of the petunia homeotic gene FBP2 affects the identity of the generative meristem.Plant J,1994,5:33-44
    [216]Ferrario S,Immink RGH,Shchennikova A.Busscher-Lange J,Angenent GC.The MADS box gene FBP2 is required for SEPALLATA function in petunia.Plant Cell,2003,15:914-925
    [217]Sung SK,Yu GH,Nam J,Jeong DH,An G.Developmentally regulated expression of two MADS-box genes,MdMADS3 and MdMADS4,in the morphogenesis of flower buds and fruits in apple.Planta,2000,210:519-528
    [218]Kotilainen M,Elomaa P,Uimari A,Albert VA,Yu D,Teeri TH.GRCD1,an AGL2-like MADS box gene,participates in the C function during stamen development in Gerbera hybrida.Plant Cell,2000,12:1893-1902
    [219]Uimari A,Kotilainen M,Elomaa P,Yu D,Albert VA,Teeri TH.Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene.Proc Natl Acad Sci USA,2004,101:15817-15822
    [220]Wang YQ1,Tian HY,Du XQ,L(u|¨) SH,Lu WL,Chong K,Meng Z.Isolation and Characterization of a Putative Class E Gene from Taihangia rupestris.Journal of Integrative Plant Biology,2007,49(3):343-350
    [221]Jang S,An K,Lee S,An G,Characterization of tobacco MADS-box genes involved in floral initiation.Plant Cell Physiol,2002,43:230-238
    [222]Jang S,Hong MY,Chung YY,An G.Ectopic expression of tobacco MADS genes modulates flowering time and plant architecture.Mol Cells,1999,9:576-586
    [223]Lemmetyinen J,Hassinen M,Elo A,Porali I,Keinonen K,Makela H,Sopanen T.Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch.Phisiol.Plantarum,2004,121:149-162
    [224]Moon YH,Kang HG,Jung JY,Jeon JS,Sung SK,An G.Determination of the motif responsible for interaction between the rice APETALAl/AG AMOUS-LIKE9 family proteins using a yeast twohybrid system.Plant Physiol,1999,120:193-1204
    [225 Pelaz S,Gustafson-Brown C,Kohalmi SE,Crosby WL,Yanofsky MR APETALAl and SEPALLATA3 interact to promote flower development.Plant J,2001,26:385-394
    [226]Tzeng T-Y,Hsiao C-C,Chi P-J,Yang C-H.Two lily SEPALLATAAike genes cause different effects on floral formation and floral transition in Arabidopsis.Plant Physiol,2003,133:1091-1101
    [227]Vandenbussche M,Zethof J,Souer E,Koes R,Tornielli GB,Pezzotti M,Ferrario S,Angenent GC,Gerats T.Toward the analysis of the Petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches:B,C,and D floral organ identity functions required SEPALLATA-like MADS box genes in Petunia.Plant Cell,2003,15:2680-2693
    [228]Busi MV,Bustamante C,D'Angelo C,Hidalgo-Cuevas M,Boggio SB,Valle EM,Zabaleta E.MADS-box genes expressed during tomato seed and fruit development.Plant Mol.Biol,2003,52:801-815
    [229]Chung YY,Kim SR,Finkel D,Yanofsky MF,An G.l Early flowering and reduced apical dominance result from ectopic expression of a rice MADS box gene.Plant Mol.Biol,1994,26:657-665
    [230]Vrebalov J,Ruezinsky D,Padmanabhan V,White R,Medrano D,Drake R,Schuch W,Giovannoni J.A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin)locus.Science,2001,296:343-346
    [231]Soltis PS,Soltis DE.The origin and diversification of angiosperms.Am J Bot,2004,91:1614-1624
    [232]Rijpkema A,Gerats T,Vandenbussche M.Genetics of floral development in Petunia.In:Soltis DE,Soltis PS,Leebens-Mack J,eds.Advances in botanical research.Vol.44.Developmental genetics of the flower.New York,NY:Academic Press,2006,pp.237-270
    [233]Teeri T,Kotilainen M,Uimari A,Ruokolainen A,Ng YP,Malm U.Floral developmental genetics of Gerbera.In:Soltis DE,Soltis PS,Leebens-Mack J,eds.Advances in botanical research.Vol.44.Developmental genetics of the flower.New York,NY:Academic Press,2006,pp.323-347.
    [234]Stellari G,Jaramillo M,Kramer E.Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms.Molecular Biology and Evolution,2004,21:506-519
    [235]Zahn LM,Kong H,Leebens-Mack JH,Kim S,Soltis PS,Landherr LL.The evolution of the SEPALLATA subfamily of MADS-box genes:a pre-angiosperm origin with multiple duplications throughout angiosperm history.Genetics,2005,169:2209-2223
    [236]Kim S,Albert VA,Yoo M-J,Farris JS,Soltis PS,Soltis DE.Pre-angiosperm duplication of floral genes and regulatory tinkering at the base of angiosperms.American Journal of Botany,2004,91:2102-2118
    [237]Kim S,Endress P,Hauser B,Soltis PS,Soltis DE.Origin of the calyptra and characterization of B class genes in Eupomatia (Eupomatiaceae).International Journal of Plant Sciences,2005,166:185-198
    [238]Kim S,Soltis PS,Soltis DE.Phylogeny and domain evolution in the APETALA2-l\ke gene family.Molecular Biology and Evolution,2006,23:107-120
    [239]Chanderbali A,Kim S,Buzgo M,Zheng P,Oppenheimer DG,Soltis DE,Soltis PS.Genetic footprints of stamen ancestors guide perianth evolution in Persea (Lauraceae).International Journal of Plant Sciences,2006,167:1075-1089
    [240]Buzgo M,Soltis DE,Soltis PS.Floral developmental morphology of Amborella trichopoda (Amborellaceae).International Journal of Plant Sciences,2004,165:925-947
    [241]Albert VA,Gustafsson MHG,Di Laurenzio L.Ontogenetic systematics,molecular developmental genetics,and the angiosperm petal.In:Soltis PS,Soltis DE,Doyle JJ,eds.Molecular systematics of plants,Vol.Ⅱ.Boston,MA:Kluwer Academic Publishers,1998,349-374
    [242]Bowman JL.Evolutionary conservation of angiosperm flower development at the molecular and genetic levels.Journal of Biosciences,1997,22:515-527
    [243]Kramer EM,Di Stilio VS,Schluter PM.Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae.International Journal of Plant Sciences,2003,164:1-11
    [244]Litt A.An evaluation of A function:evidence from the APETALA1 and APETALA2 gene lineages.International Journal of Plant Sciences,2007,168:73-79
    [245]Theissen G,Becker A,Di Rosa A,Kanno A,Kim JT,Munster T,Winter KU,Saedler H.A short history of MADS-box genes in plants.Plant Molecular Biology,2000,42:115-149
    [246]Riechmann JL,Meyerowitz EM.The AP2/EREBP family of plant transcription factors.Biol Chem,1998,379,633-646
    [247]Passmore S,Maine GT,Elble R,Christ C,Tye BK.A Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells.J Mol Biol,1988,204:593-606
    [248]NormanC,Runswick M,Pollock R,Treisman R.Isolation and properties of cDNA clones encoding SRF,a transcription factor that binds to the c-fos serum response element.Cell,1988,55:989-1003
    [249]Shore P,Sharrocks AD.The MADS-box family of transcription factors.Eur J Biochem,1995,229:1-13
    [250]Alvarez-Buylla ER,Liljegren SJ,Pelaz S,Gold SE,Burgeff C,Ditta GS,Vergara-Silva F,Yanofsky MF.MADS-box gene evolution beyond flowers:expression in pollen,endosperm,guard cells,roots and trichomes.Plant J,2000,24:457-466
    [251]Riechmann JL,Meyerowitz EM.MADS domain proteins in plant development.Biol Chem,1997,378:1079-1101
    [252]Ng M,Yanofsky MF.Function and evolution of the plant MADS-box gene family.Nat Rev Genet,2001,2:186-195
    [253]Singer SD,Krogan NT,Ashton NW.Clues about the ancestral roles of plant MADS-box genes from a functional analysis of moss homologues.Plant Cell Rep,2007,26:1155-1169
    [254]Svensson ME,Engstrom P.Closely related MADS-box genes in club moss (Lycopodium)show broad expression patterns and are structurally similar to,but phylogenetically distinct from,typical seed plant MADS-box genes.New Phytol,2002,154:439-450
    [255]De Bodt S,Raes J,Florquin K,Rombauts S,RouzeT,TheiUen G,Van de Peer Y.Genome-wide structural annotation and evolutionary analysis of the type I MADS-box genes in plants.J Mol Evol,2003,56:573-586
    [256]De Bodt S,Raes J,Van de Peer Y,Theifien G.And then there were many:MADS goes genomic.Trends Plant Sci,2003,8(10):475-483
    [257]Riese M,Faigl W,Quodt V,VerelstA,Matthes A,Saedler H,MUnster T.Isolation and characterization of new MIKC*-type MADS-box genes from the moss Physcomitrella patens.Plant Biol,2005,7:307-314
    [258]TheiUen G,Kim J,Saedler H.Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes.J Mol Evol,1996,43:484-516
    [259]TheiUen G.Development of floral organ identity:stories from the MADS house.Curr Opin Plant Biol,2001,4:75-85
    [260]Becker A,TheiUen G.The major clades of MADS-box genes and their role in the development and evolution of flowering plants.Mol Phylog Evol,2003,29:464-489
    [261]Rijpkema AS,Gerats T,Vandenbussche M.Evolutionary complexity of MADS complexes.Current Opinion in Plant Biology,2007,10:32-38
    [262]Egea-Cortines M,Saedler H,Sommer H.Ternary complex formation between the MADS-box proteins SQUAMOSA,DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus.EMBO J,1999,18:5370-5379
    [263]Honma T,Goto K.Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.Nature,2001,409:525-529
    [264]Sridhar VV,Surendrarao A,Liu Z.APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.Development,2006,133:3159-3166
    [265]Shinners LH.Synopsis of the genus Eustoma (Genthianaceae).Southwest National,1957,2:38-43
    [266]Davies KM,Bradley JM,Schwinn KE,Markham KR,Podivinsky E.Flavonoid biosynthesis in flower petals of five lines of lisianthus {Eustoma grandiflorum Grise.).Plant Sci,1993,95:67-77
    [267]Uddin A F M J,Hashimoto F,Nishimoto S,Shimizu K,Sakata Y.Flower growth,coloration and petal pigmentation in four lisianthus cultivars.J Japan Soc Hort Sci,2002,71:40-47
    [268]Liang P,Pardee AB.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science,1992,257(5072):967-971
    [269]Lisitsyn NA.Representational difference analysis:finding the differences between genomes.Trends Genet,1995,11 (8):303-307
    [270]Lisitsyn NA,Lisitsyn N,Wigler M.Cloning the differences between two complex genomes.Science,1993,259(5097):946-951
    [271]Hubank M,Schatz DG.Identifying differences in mRNA expression by representational difference analysis of Cdna.Nucleic Acids Res,1994,22(25:5640-5648
    [272]Velculescu VE,Zhang L,Vogelstein B,Kinzler KW.Serial analysis of gene expression.Science,1995,270(523):484-487
    [273]Ivanova NB,Belyavsky AV.Identification of differentially expressed genes by restriction endonuelease-based gene expression fingerprinting.Nucleic Acids Res,1995,23(15):2954-2958
    [274]Prashar Y,Weissman SM.Analysis of differential gene expression by display of 3'end restriction fragments of cDNAs.Proc Natl Acad Sci USA,1996,93(2):659-663
    [275]Diatchenko L,Lau YFC,Campbell APC.Suppression subtractive hybridization:A method for generating differentially regulated or tissue-specific cDNA probes and libraries.Proc Natl Acad Sci USA,1996,93:6025-6030
    [276]Kang DC,Lafrance R,Su ZZ,Paul B.Reciprocal subtraction differential RNA display:An efficient and rapid procedure for isolating differentially expressed gene sequences.Proc Natl Acad Sci USA,1998,95:13788-13793
    [278]Diatcbenko L,Lukyanov S,Lau YFC,Siebert PD.Suppression subtraetive hybridization:a versatile method for identifying differentially expressed genes.Methods Enzymol,1999,303:349-380
    [279]张剑,徐桂霞,薛皓月,胡瑾.植物进化发育生物学的形成与研究进展.植物学通报,2007,24(1):1-30
    [280]Kramer EM,Hall JC.Evolutionary dynamics of genes controlling floral development.Curr Opin Plant Biol,2005,8:1-6
    [281]李贵生,陈明生.花、基因、禾本科.植物学通报,2007,24(1):42-48
    [282]刘军,袁自强,刘建东,钱晓茵,钱曼,杨金水.应用抑制差减杂交法分离水稻幼穗发育早期特异表达的基因.科学通报,2000,13:1392-1397
    [283]Kim M,Kim S.Isolation of cDNA clones differentially accumulated in the p lacenta of pungent pepper by supp ression subtractive hybridization.Mol Cell,2001,11(2):213-219
    [284]Liu J in,Liu J iandong,Yuan Ziqiang,QIAN Xiaoyin QIAN Min YANG Jinshui Isolation and identification of genes expressed differentially in rice inflorescence meristem with supp rission subtractive hybridization,Chinese Science Bulletin.,2001,46(2):98-101
    [285]Gu Q,Ferr(?)ndiz C,Yanofsky MF,Martienssen R.The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development.Development,1998,125:1509-1517
    [286]Nesi N,Debeaujon I,Jond C,Stewart AJ,Jenkins GI,Caboche M,Lepiniec L.The TRANSPARENT TESTA16 locus encodes the Arabidopsis BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat.Plant Cell,2002,14:2463-2479
    [287]Zhang H,Forde BG.Regulation of Arabidopsis root development by nitrate availability.J Exp Bot,2000,51:51-59
    [288]Zahn LM,Leebens-Mack J,de Pamphilis CW,Ma H,Theissen G.To B or not to B a flower:the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms.J Hered,2005,96:225-240
    [289]Aoki S,Uehara K,Imafuku M,Hasebe M,Ito M.Phylogeny and divergence of basal angiosperms inferred from APETALA3-and PISTILLATAAxVs,MADS-box genes.J Plant Res,2004,117:229-244
    [290]Becker A,Kaufmann K,Freialdenhoven A,Vincent C,Li MA,Saedler H,Theissen G.A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.Mol Genet Genomics,2002,266:942-950
    [291]Kramer EM,Dorit RL,Irish VF.Molecular evolution of genes controlling petal and stamen development:duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages.Genetics,1998,149:765-783
    [292]Kramer E.M,Su H-J,Wu JM,Hu JM.A simplified explanation for the frameshift mutation that created a novel Cterminal motif in the APETALA3 gene lineage.BMC Evol Biol,2006,6:30
    [293]Jaramillo MA,Kramer EM.Molecular evolution of the petal and stamen identity genes,APETALA3 and PISTILLATA,after petal loss in the Piperales.Molecular Phylogenetics and Evolution,2007,44:598-609
    [294]Kramer EM,Jaramillo MA,Di Stilio VS.Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms.Genetics,2004,166:1011-1023
    [295]Zahn LM,Leebens-Mack J,Arrington JM,Hu Y,Landherr LL,de Pamphilis CW,Becker A.Theissen G,Ma H.Conservation and divergence in the AGAMOUS subfamily of MADS-Box genes:evidence of independent sub-and neofunctionalization events.Evol Dev,2006,8:30-45
    [296]Ma H,Yanofsky MF,Meyerowitz EM.AGL1-AGL6 an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes.Genes Dev,1991,5:484-495
    [297]Pnueli L,Abu-Abeid M.Zamir D,Nacken W,Schwarz-Sommer Z,Lifschitz E.The MADS box gene family in tomato:temporal expression during floral development,conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis.Plant J,1991,1:255-266
    [298]Fischer A,Baum N,Saedler H,Theissen G.Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies.Nucleic Acids Res,1995,23:1901-1911
    [299]Davies B,Egea-Cortines M,de Andrade Silva E,Saedler H,Sommer H.Multiple interactions amongst floral homeotic MADS box proteins.EMBO J,1996,15:4330-4343
    [300]Riechmann JL,Krizek BA,Meyerowitz EM.Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1,APETALA3,PISTILLATA,and AGAMOUS.Proc Natl.Acad Sci USA,1996,93:4793-4798
    [301]Ratcliffe OJ,Nadzan GC,Reuber TL,Riechmann JL.Regulation of flowering in Arabidopsis by an FLC homologue.Plant Physiol,2001,126:122-132
    [302]Immink RG,Ferrario S,Busscher-Lange J,Kooiker M,Busscher M,Angenent GC.Analysis of the petunia MADS-box transcription factor family.Mol.Genet.Genomics,2003,268,598-606
    [303]Tzeng TY,Liu HC,Yang CH.The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function Proteins.J Biol Chem,2004,279:10747-10755
    [304]Lamb RS,Irish VF.Function divergence within the APETALA3/PISTILLATA floral homeotic gene lineages.Proc Natl Acad Sci USA,2003,100:6558-6563
    [305]Frohman MA,Dush MK,Martin GR.Rapid production of full-length cDNAs from rare transcripts:Amplification using a single gene-specific oligonucleotide primer.Proc Natl Acad Sci USA,1988,85:8998-9002
    [306]Murayuma IN,Rakow TL,Muruyama HI.cRACE:A simple method for identification of the 5' ends of mRNAs.Nucleic Acids Res,1995,23(18):3796-3797
    [307]De Melis LE,Whiteman PH,Stevenson TW.Isolation and characterisation of a cDNA clone encoding cinnamyl alcohol de-hydrogenase in Eucalyptus globulus Labill.Plant Science,1999,143(20):173-182
    [308]Chen H,Vierling R.A Molecular cloning and characterization of soybean peroxidase gene families.Plant Science,2000,150(2):129-137
    [309]Klein M,Pieri I,Uhlmann F,Pfizenmaier K,Eisel U.Cloning and characterization of promoter and 5-UTR of the NMDA receptor sub-unit 2:Evidence for alternative splicing of 5'-non-coding exon.Gene,1998,208(2):259-269
    [310]陈渝萍,薛社普.应用改进的SSP-抑制PCR技术扩增cDNA片段旁侧序列.基础医学与临床,1999,19(4):1-5
    [311]Yang X-Y,Wang Q-H,Li Y-H.Microsporogenesis,Megasporogenesis,and the Development of Male and Female Gametophytes in Eustoma grandiflorum.J Japan Soc Hort Sci,2007,76(3):244-249
    [312]Frohman MA,Dush MK,Martin GR.Rapid production of full-length cDNAs from rare transcripts:amplification using a single gene-specific oligonucleotide primer.Proc Natl Acad Sci USA,1988,85:8998-9002
    [313]Mishiba K,Nishihara M,Nakatsuka T,Abe Y,Hirano H,Yokoi T,Kikuchi A,Yamamura S.Consistent transcriptional silencing of 35S-driven transgenes in gentian.Plant J,2005,44(4):541-556
    [314]Cho S,Jang S,Chae S,Chung KM,Moon Y-W,An G,Jang SK.Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain.Plant Mol Biol,1999,40:419-429
    [315]Yalovsky S,Rodriguez-Concepcion M,Bracha K,Toledo-Ortiz G,Gruissem W,Prenylation of the floral transcription factor APETALA1 modulates its function.Plant Cell,2000,12:1257-1266
    [316]Tzeng T-Y,Chen H-Y,Yang C-H.Ectopic Expression of Carpel-Specific MADS Box Genes from Lily and Lisianthus Causes Similar Homeotic Conversion of Sepal and Petal in Arabidopsis.Plant Physiol,2002,130:1827-1836
    [317]Adam H,JouannicS,Orieux Y,Morcillo F,Richaud F,Duval Y,Tregear JW.Functional characterization of MADS box genes involved in the determination of oil palm flower structure.Journal of Experimental Botany,2007,58(6):1245-1259
    [318]Angenent GC,Busscher M,Franken J,Mol JNM,Van Tunen AJ.Differential expression of two MADS-box genes in wild-type and mutant petunia flowers.Plant Cell,1992,4:983-993
    [319]Kush A,Brunelle A,Shevell D,Chua N-H:The sequence of 2 MADS-box proteins in petunia.J Plant Physiol,1993,102:1051-1052
    [320]Honma T,Goto K.Coplexes of MADS-box proteins are sufficient to convert leaves into floral organs.Nature,2001,409:525-529
    [321]Ditta G,Pinyopich A,Robles P,Pelaz S,.Yanofsky MF.The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity.Curr Biol,2004,14:1935-1940
    [322]Kapoor M,Tsuda S,Tanaka Y,Mayama T,Okuyama Y,Tsuchimoto S,Takatsuji H.Role of petunia pMADS3 in determination of floral organ and meristem identity,as revealed by its loss of function.The Plant Journal,2002,32:115-127
    [323]Kater MM,Colombo L,Franken J,Busscher M,Masiero S,van Lookeren Campagne MM,Angenent GC.Multiple AGAMOUS homologs from cucumber and petunia differ in their ability to induce reproductive organ fate.Plant Cell,1998,10:171-182
    [324]Busi MV,Bustamante C,D'Angelo C,Hidalgo-Cuevas M,Boggio SB,Valle EM,Zabaleta E.MADS-box genes expressed during tomato seed and fruit development.Plant Mol Biol,2003,52:801-815
    [325]Filipecki MK,Sommer H,Malepszy S.TheMADS-box gene CUSl is expressed during cucumber somatic embryogenesis.Plant Sci,1997,125:63-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700