基于炔酸酯的一些含氮及含氧杂环化合物的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮、氧杂环化合物是一类非常重要的杂环分子,大多具有生物和药理活性。到目前为止,虽然有多种方法可以用来构筑氮、氧杂环化合物,但是寻找和开发新颖、高效、环境友好、反应条件温和以及操作简便的方法来构筑结构新颖的含氮、含氧杂环化合物骨架仍然有着持续的需求。本论文以炔酸酯为起始原料,围绕几类含氮和含氧的杂环分子的设计与合成方法而开展研究工作,具体包括以下几方面内容:
     1)以NaOH为催化剂,由炔酸酯和1,3-二羰基化合物为起始原料,经过氢烷基化反应和酯交换反应,成功地合成了多取代的α-吡喃酮衍生物和5,6-二氢-α-吡喃酮衍生物。该方法反应条件温和,操作简便,具有广泛的底物适应性,良好的收率。
     2)以NaOAc为催化剂,发展了一种“一锅法”五组分串联反应,由炔酸酯、丙二腈、醛和胺类化合物来合成多取代的1,2,3,4-四氢吡啶衍生物。该合成策略大大减少了合成步骤,避免了中间体的分离与纯化过程。
     3)在DABCO催化下,由炔酸酯和芳香醛经过[2+2+2]的环加成反应合成多取代的4-芳基-4氢-吡喃衍生物。该合成方法反应条件温和,操作简便,具有原子经济性,而且所使用的催化剂与原料廉价易得。值得注意的是,这个反应体系发生了醛基氧的迁移。到目前为止,有关醛基氧的迁移报道得很少。
     4)发展了一种新的共催化体系,并以DDQ为氧化剂,炔酸酯和1,3-二羰基化合物通过有效的加成氧化环化过程,成功地合成了多取代的呋喃衍生物。与文献已报道的合成呋喃的方法相比,此合成策略非常独特的优势在于,它是通过一个温和的氧化-关环的过程来构建呋喃骨架。这也是到目前为止采用氧化-关环的过程来合成呋喃骨架的首例报道。
     5)以AgBF4为催化剂,PIDA为氧化剂,发展了一种由炔酸酯和胺经过“一锅法”三组分串联反应合成多取代吡咯衍生物的新方法。该方法利用简单易得的原料,通过一个温和的氧化过程来合成吡咯衍生物。到目前为止,由炔酸酯和胺类化合物反应,通过一个氧化过程来合成吡咯衍生物的报道不多。这种合成策略还可以通过控制炔酸酯这类底物来构筑多取代的对称吡咯衍生物和非对称吡咯衍生物。
Nitrogen- and oxygen-containing heterocyclic compounds are crucial moieties in a wide range of drug leads. Nitrogen- and oxygen-containing heterocyclic compounds of different ring sizes, with different substitution patterns and embedded in various molecular frameworks constitutes extremely important structure classes in the search for bioactivity. Despite the large availability of methods to construct nitrogen- and oxygen-containing heterocyclic compounds, there is still a strong need to further explore novel and being environmentally friendly synthetic methods to efficiently synthesize novel heterocyclic structures. We aim at the development of novel methodologies and catalysts for the synthesis of nitrogen- and oxygen-containing heterocyclic structural motifs from readily available alkynoates. The main work presented in this dissertation can be divided into six parts:
     1) We have successfully developed an synthesis of polysubstituted 5,6-dihydro-2H-pyran-2-ones and 2H-pyran-2-ones via the hydroalkylation of electron-deficient of alkynoates with activated methylenes and the transesterification using sodium hydroxide from alkynoates and 1.3-dicarbonyl compounds. This protocol provides several advantages such as mild condition, simple work-up procedure, high yield and compatibility to various substrates.
     2) A novel and convenient one-pot synthesis of multisubstituted 1,2,3,4-tetrahydropyridines via sodium acetate promoted five-component reactions under mild conditions from alkynoates, malononitrile, primary amine and formaldehyde. This multicomponent reactions (MCRs) offer several advantages such as atom economy and simpler procedures and equipment, time and energy savings, as well as environmental friendliness, and avoid the separation and purification of intermediates to maximize.
     3) DABCO induced [2+2+2] cycloaddition reaction to synthesize 4-Aryl-4H-pyrans, through reactions of of ethyl propiolate and aromatic aldehydes, is described. Operational simplicity, mild condition, atom economy, use of an economically convenient catalyst and starting materials are the key features of this protocol. Besides, to the best of our knowledge, reports about the synthesis of 4H-pyran derivatives through an oxygen migration process of aldehydes are rather rare, although there are many strategies for their synthesis.
     4) We have established a facile and efficient method to synthesize polysubstituted furans via tin(II) and copper(I)-involved addition/oxidative cyclization of alkynoates and 1,3-dicarbonyl compounds using DDQ as the oxidant. This methodology, comparing o traditional methods, not only provides a simple new way to construct polysubstituted furan derivatives, but also opens a brand new way to build oxygen-containing vinyl ether compounds through oxidation. To the best of our knowledge, it is the first reports about the synthesis of furans through an oxidative process.
     5) A facile and highly efficient C-N and C-C bonds formation method to construct pyrrole framework directly via one pot multicomponent reactions using AgBF4 as the catalyst and PIDA as the oxidant. In this protocol, various of amines and alkynes are all compatibility to this novel addition/oxidative cyclization reaction. Up to now, reports about the synthesis of pyrrole derivatives through an oxidative process are rather rare, although there are many strategies for their synthesis. Besides, this strategy provides an alternative way to construct symmetric and asymmetric polysubstituted pyrrole derivatives via controlling the starting materials of alkynoates.
引文
[1] Chin, C. S.; Won, G.; Chong, D.; Kim, M.; Lee, H. Carbon-Carbon Bond Formation Involving Reactions of Alkynes with Group 9 Metals (Ir, Rh, Co): Preparation of Conjugated Olefins [J]. Acc. Chem. Res. 2002, 35, 218-225.
    [2] Sato, F.; Urabe, H.; Okamoto, S. Synthesis of Organotitanium Complexes from Alkenes and Alkynes and Their Synthetic Applications [J]. Chem. Rev. 2000, 100, 2835-2886.
    [3] Diver, S. T.; Giessert, A. J. Enyne Metathesis (Enyne Bond Reorganization) [J]. Chem. Rev. 2004, 104, 1317-1382.
    [4] Aubert, C.; Buisine, O.; Malacria, M. The Behavior of l,n-Enynes in the Presence of Transition Metals [J]. Chem. Rev. 2002, 102, 813-834.
    [5] Vaile, A. A.; Serebryakov, E. P. Synthetic Methodologies for Carbo-Substituted Conjugated Dimes [J]. Russian Chemical Reviews 2001, 735-776.
    [6] Zeni, G.; Larock, R. C. Synthesis of Heterocycles via Palladium d-Olefin and d-Alkyne Chemistry [J]. Chem. Rev. 2004, 104, 2285-2309.
    [7] Martin, R. E.; Pannier, M.; Diederich, F.; Gramlich, V.; Hubrich, M.; Spiess, H. W. Determination of End-to-End Distances in a Series of TEMPO Diradicals of up to 2.8 nm Length with a New Four-Pulse Double Electron Resonance Experiment [J]. Angew. Chem. Int. Ed. 1998, 37, 2833-2837.
    [8] Jacobs, T. L. The Synthesis of Acetylenes [J]. Org. Reactions 1949, 5, 1-3.
    [9] Klin, J.; Gurfinkil, E. A Convenient Cynthesis of 1- and 2-Alkynes [J]. Tetrahedron 1970, 26, 2127-2131.
    [10] Collier, W. L.; Macomber, R. S. J. Tert-Butylacetylene Revisited. Improved Synthesis. Methyl Migration during Bromination [J]. J. Org. Chem. 1973, 38, 1367-1369.
    [11] Wong, C. M.; Ho, T. L. One-step Synthesis of Acetylenes from Ketones [J]. Syn. Commun. 1974, 4, 25-27.
    [12] Chechulin, P. I.; Filyahova, V. I.; Pashkevich, K. I. Reaction of Unsymmetrical Fluorinatedβ-Diketones with Dihalophosphoranes: The Synthesis ofα,β-ynones [J]. Bull. Acad. Sci Ussr, Div. Chem. Sci. 1989, 189-190.
    [13] Marinetti, A.; Brown, J. T. Phenylthioacetylene [J]. Org. Synth. 1993, 72, 252-264.
    [14] LeNoble, W. J.; Goitien, R.; Shurpik, A. The Effect of Pressure on the Rate of Fragmentation on /gb-Bromoangelate Ion [J]. Tetrahedron Lett. 1969, 895-896.
    [15] Corey, E. J.; Fuchs, P. L. A Synthetic Method for Formyl→Ethynyl Conversion [J]. Tetrahedron Lett. 1972, 3769-3772.
    [16] Carran, J.; Marinetti, A. An Improved Synthesis of Dichloroalkylphosphonates, Chloroalkynes and Terminal Alkynes via Diethyl Dichloromethylphosphonate [J]. Synthesis 1996, 1494-1498.
    [17] Miwa, K. Aoyama, T. Shioiri, T. Extension of the Colvin Rearrangement Using Trimethylsilyldiazomethane.A New Synthesis of Alkyns [J]. Synlett. 1994, 107-108.
    [18] Aitken, R. A.; Atherton, J. I. Flash Vacuum Pyrolysis of Stabilised Phosphorus Ylides. Part 1. Preparation of Aliphatic and Terminal Alkynes [J]. J. Chem. Soc. Perkin Trans. 1. 1994, 1281-1284.
    [19] Aitken, R. A.; Herion, H.; Janosi, A.; Raut, S. V. Pyrolysis ofβ,γ,β′-Trioxo Phosphorus Ylides: Convenient Synthesis of Symmetrical and Unsymmetrical Diacylalkynes [J]. Tetrahedron Lett. 1993, 34, 5621-5622.
    [20] Aitken, R. A.; Horsburg, C. E. R. Flash Vacuum Pyrolysis of Stabilized Phosphorus Ylides. Part 2. Two-Step Conversion of Acid Chlorides into Acetylenic Esters and Terminal Alkynes [J]. J. Chem. Soc. Perkin Trans. 1. 1994, 1727-1732.
    [21] Gough, S. T. D.; Trippett, S. A New Synthesis of Acetylenes [J]. J. Chem. Soc. 1962, 2333-2336.
    [22] Hamper, B. C.α-Acetylenic Esters fromα-Acylmethylenephosphoranes: Ethyl 4, 4, 4-Ttifluorotetrolate [J]. Org. Synth. 1992, 70, 246-255.
    [23] Rosenblum, M.; Brawn, N. Synthesis of Ferrocenylacetylenes [J]. J. Organometal Chem. 1966, 6, 173-180.
    [24]李洪启,姚钟麒,宋燕西.新试剂3,5-二溴苯基乙炔的合成[J].化学试剂, 1997, 19, 103-104.
    [25] Hogan, H. P.; Seehafer, J. An Improved Synthesis of Arylacetylenes [J]. J. Org. Chem. 1972, 37, 4466-4467.
    [26] Pat rick, T. B.; Disher, J. M.; Probst, W. J. Synthesis and Metalation of 2-Ethynylthiophene [J]. J. Org. Chem. 1972, 37, 4467-4468.
    [27] Newman, M. S.; Lee, L. F. The Synthesis of Ary-lacetylenes. 3, 5-Di-tert-butylphenylacetylene [J]. J. Org. Chem. 1972, 37, 4468–4469.
    [28] Jones, E. R. H.; Rglinton, G.; Whiting, M. C. Phenylacetylene [J]. Org. Synth. Coll. 4. 1963, 755-763
    [29] Grattan, T. J.; Whitehurst, J. S. Chiral 2, 2-Disubstituted Cyclohexanones; Annulation via Claisen Rearrangement Products [J]. J. Chem. Soc. Perkin Trans. 1. 1990, 11-18.
    [30] Lalezari, I. A Simple New Synthesis of Arylalkynes [J]. Angew. Chem. Int. Ed. 1970, 9, 464-464.
    [31] Taylor, E. C. A Facile Synthesis of 2-Alkynoic Esters [J]. Angew. Chem. Int. Ed. 1972, 11, 48-48.
    [32] Corey, E. J.; Ruden, R. A. Stereoselective Methods for the Synthesis of Terminal. Cis and Trans Enyne Units [J]. Tetrahedron Lett. 1973, 1495-1499.
    [33] Walton, W. L. Rearrangement of 1, 1, 1, 2-Tetrachloro-2, 2-bis-(p-Chlorophenyl)-Ethane,“Chloro-DDT,”to 1, 1, 2, 2-Tetrachloro-1,2-bis-(p-Chlorophenyl)-Ethane [J]. J. Am. Chem. Soc. 1947, 69, 1544-1545.
    [34] Mukaiyama, T. A New Synthesis of Diaryl- and Alkylaryl-Substituted Acetylenes fromα-Diketones and Triethyl Phosphite [J]. J. Org. Chem. 1964, 29, 2243-2244.
    [35] Horner, L.; Dickerhof, K. Studien zum Vorgang der Wasserstoffübertragung, 68. Die Reduktiveüberführung Aromatischer S?urechloride in Diarylacetylene mit Lithiumamalgam in einer Eintopfreaktion [J]. Chem. Ber. 1983, 116, 1615-1622.
    [36] Wittig, G.über Phosphin-Alkylene als Olefinbildende Reagenzien, VI. Zur Synthese von Alkyl- und Aryl-vinyl?thern auf der Phosphylen-Basis [J]. Chem. Ber. 1962, 95, 2514-2525.
    [37] Corey, E. J. Total synthesis of Dl-sirenin [J]. J. Am. Chem. Soc. 1969, 91, 4318-4320.
    [38] Negishi, E.; King, A. O.; Klima, W. L. Conversion of Methyl Ketones into Terminal Acetylenes and (E)-Trisubstituted Olefins of Terpenoid Origin [J]. J. Org. Chem. 1980, 45, 2526-2528.
    [39] Hoffillann, R. W. Dehydrobenzene and Cycloalkynes [R]. Academic Newyork, 1967.
    [40] Pellissier,H.: Santelli, M. The Use of Arynes in Organic Synthesis [J]. Tetrahedron 2003, 59, 701-730.
    [41] Buchwald, s. L.: Nielsen, R. B. Group 4 Metal Complexes of Benzynes, Cycloalkynes, Acyclic Alkynes, and Alkenes [J]. Chem. Rev. 1988, 88, 1047-1058.
    [42] Wenk, H. H.; Winkler, M.; Sander, W. One Century of Aryne Chemistry [J]. Angew. Chem. Int. Ed. 2003, 42, 502-528.
    [43] Gilehrist, T. L. In The Chemistry of Funetional Groups Supplement.C[M]; Patai, S. Rappoport, Z. Eds.: Wiley: Chichester, 1983, 383-419.
    [44] Hart, H. In The Chemistry of TriPle-bonded Funetional Groups Supplement C2 [M]; Patai, S., Ed.; Wiley: NewYork, 1994, 1017-1134.
    [45] Himeshima, Y; Sonoda, T.: Kobayashi, H. Fluoride-Induced 1, 2-Elimination of o-Trimethylsilyl Phenyl Triflate to BenZyne under Mild Conditions [J]. Chem. Lett. 1983, 1211-1214.
    [46] Friedman, L.; Logullo, F. M. BenZynes via Aprotie Diazotization of Anthxanilie Acids: A Convenient Synthesis of Triptycene and Derivatives [J]. J. Am. Chem. Soc. 1963, 85,1549-1549.
    [47] Logullo, F. M.; Seitz, A. H.: Friedman, L. Benzenediazonium-2-carboxylate and Biphenylene [J]. Org. Synth. 1968, 48, 12-17.
    [48] Buxton, P. C.: Fensome, M.: Heaney, H.: Mason, K. G. Benzyne Formation and the Stepwise Decomposition of Benzenediazoniuxn-2-Carboxylate: A re-investigation [J]. Tetrahedron 1995, 51, 2959-2968.
    [49] Wittig, G. Triptycene [J]. Org. Synth. 1959, 39, 75-77.
    [50] Kitamura, T.; Yamane, M. Development of a Hetero-Diels-Alder Reaction to Synthesize 3-Hydroxypyridines and its Application toward the Total Synthesis of Nosiheptide [J]. Chem. Commun. 1995, 983-984.
    [51] Kitamura,T.; Yamane, M. A New and Effieient Hypervalent Iodine Benzyne Preeursor, (Phenyl)[o-(trimethylsilyl)Phenyl]iodonium Triflate: Generation, Trapping Reaction, and Nature of Benzyne [J]. J. Am. Chem. Soc. 1999, 121, 11674-11679.
    [52] Ganta, A.; Snowden, T. S. FaCile PreParation of 2-Iodophen Trifluoromethanesulfonates: Superior Aryne Precursors [J]. Synlett. 2007, 14, 2227-2231.
    [53] Casta?er, J.; Pascual, J. Isomerisation of Phenylpropargylidenemalonic Acid toγ-Benzylidene-α-Carboxybutenolide [J]. J. Chem. Soc. 1958, 3962-3965.
    [54] Negishi, E.; Kotora, M. Regio- and Stereoselective Synthesis ofγ-Alkylidenebutenolides and Related Compounds [J]. Tetrahedron 1997, 53, 6707-6738.
    [55] Rossi, R.; Bellina, F.; Bechini, C.; Mannina, L.; Vergamini, P. Studies on the Transition Metal-catalyzed Synthesis of Variously Substituted (E)-3-[1-(aryl)methylidene]- and (E)-3-(1-alkylidene)-3H-furan-2-ones [J]. Tetrahedron 1998, 54, 135-156.
    [56] Ogawa, Y.; Maruno, M.; Wakamatsu, T. Efficient Synthesis of Naturally Occurring Ligustilide [J]. Synlett 1995, 871-872.
    [57] Luo, Y. M.; Li, Z. G.; Li, C. J. A Silver-Catalyzed Domino Route toward l,2-Dihydroquinoline Derivatives from Simpple Anilines and Alkynes [J]. Org. Lett. 2005, 7, 2675-2678.
    [58] Dodda, R.: Zhao, C. G. Silver(I) Triflate-Catalyzed Direet Synthesis of N-PMP Proteeted r-AminoproPargy1phosphonates from Terminal Alkynes [J]. Org. Lett. 2007, 9, 165-167.
    [59] Zhang, Y. Xue, J. Xin, Z. Xie, Z. et al. Gold-Catalyzed Double Intramolecular Alkyne Hydroalkoxylation: Synthesis of the Bisbenzannelated Spiroketal Core of Rubromycins [J]. Synlett, 2008, 6, 940-944.
    [60] Carney, J. M. Donoghue, P. J. Wuest, W. M. Intramolecular Hydroamination of Aminoalkynes with Silver-Phenanthroline Catalysts [J]. Org. Lett., 2008, 10, 3903-3906.
    [61] Norman, R. O. C.; Parr, W. J. E.; Thomas, C. B. The Reactions of Alkynes, Cyclopropanes, and Benzene Derivatives with Gold (III) [J]. J. Chem. Soc. Perkin Trans 1. 1976, 1983-1987.
    [62] Markham, J. P.; Staben, S. T.; Toste, F. D. Gold (I)-Catalyzed Ring Expansion of Cyclopropanols and Cyclobutanols [J]. J. Am. Chem. Soc. 2005, 127, 9708-9709.
    [63] Oehida, A.; Ito, H.; Using Triethynylphosphine Ligands Bearing Bulky End Caps to Create a Holey Catalytic: Application to Gold (I)-Catalyzed Alkyne CycliZations [J]. J. Am. Chem. Soc. 2006, 128, 16486-16487.
    [64] Ferrer, C.; Eehavarren, A. M. Gold-Catalyzed Intromolecular Reaction of Indoles with Alkynes: Facile Formation of Eight-Membered Rings and an Unexpected Allenylation [J]. Angew. Chem. Int. Ed. 2006, 45, 1105-1109.
    [65] Minnihan, E. C.; Colletti, S. L.; Toste, F. D.; Shen, H. C. Gold(I)-Catalyzed Regioselective Cyclizations of Silyl Ketene Amides and Carbamates with Alkynes [J]. J. Org. Chem. 2007, 72, 6287-6289.
    [66] Curtis, N. R.; Prodger, J. C.; Rassias, G. A Facile Gold (I)-Catalysed Intramolecular Alkyne Hydroarylation Approach to Methyl 5-amino-2H-1-benzopyran-8-carboxylate Derivatives [J]. Tetrahedron Lett. 2008, 49, 6279-6281.
    [67] Zriba, R. Gandon, V. Aubert, C. Alkyne versus Allene Activation in Platinum- and Gold-Catalyzed Cycloisomerization of Hydroxylated 1,5-Allenynes [J]. Chem. Eur. J. 2008, 14, 1482-1491.
    [68] Kim, C.; Bae, H. J.; Lee, J. H.; Jeong, W.; Kim, H. Formal Alkyne Aza-Prins Cyclization: Gold (I)-Catalyzed Cycloisomerization of Mixed N,O-Acetals Generated from Homopropargylic Amines to Highly Substituted Piperidines [J]. J. Am. Chem. Soc. 2009, 131, 14660-14661.
    [69] Glaser, C. Chem.Ber, 1869, 2, 422.
    [70] Baeyer, A, Landsberg, L. Ueber Synthesen mittelst des Phenylacetylens und seiner Derivate [J]. Chem. Ber. 1882, 15, 57-61.
    [71] Vaitiekunas, A.; Nord, F. F. Studies on the Chemistry of Heterocyclics XXV Investigations on Diacetylenes and Diacetylenic Glycols in the Thiophene Series [J]. J. Am. Chem. Soc. 1954, 76, 2733-2736.
    [72] Siemsen, P.; Llvingston, R. C.; Diederich, F. Acetylenic Coupling: A Powerful Tool in Molecular Construction [J]. Angew. Chem. Int. Ed. 2000, 39, 2632-2657.
    [73] Hay, A. S.; Communications–Oxidative Coupling of Acetylenes [J]. J. Org. Chem. 1960, 25, 1275-1276.
    [74] Hay, A S. Oxidative Couoling of Acetylenes II [J]. J. Org. Chem. 1962, 27, 3320-3321.
    [75] Li, J. H.; Jlang, H. F. Glaser Coupling Reaction in Supercritical Carbon Dioxide [J]. Chem. Commun. 1999, 2369-2370.
    [76] Jiang, H. F.; Tang, J. Y. Cu (II) Promoted Oxiadative Homocoupling Reaction of Terminal Alkynes in Supercritical Carbon Dioxide [J]. Synthesis 2006, 1155-1161.
    [77] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions [J]. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
    [78] Base Dependence in CoPper-Catalyzed Huisgen Reactions: Effieient Formation of Bistriazoles [J].Yu, A.: Kevin, B. Angew. Chem. Int. Ed. 2007, 46, 3649-3651.
    [79] Gonzalez, S. D. Nolan, S. P. [(NHC)2Cu]X Complexes as Efficient Catalysts for Azide–Alkyne Click Chemistry at Low Catalyst Loadings [J]. Angew. Chem. Int. Ed., 2008, 47: 8881-8884.
    [80] Yu, L.; Burgess, K.; Peptidomimetics via Copper-catalyzed Azide–Alkyne Cycloadditions [J]. Chem. Soc. Rev., 2007, 36, 1674–1689.
    [81] Wan, Q.; Chen, J.; Chen. G.; Danishefsky, S. J. A Potentially Valuable Advance in the Synthesis of Carbohydrate-Based Anticancer Vaccines through Extended Cycloaddition Chemistry [J]. J. Org. Chem., 2006, 71, 8244-8249.
    [82] Kinugasa, M.; Hashimoto, S. The Reactions of Copper (I) Phenylacetylide with Nitrones [J]. J. Chem. Soc., Chem. Commun. 1972, 466-467.
    [83] Dutta, D. K.; Boruah, R. C.; Sandhu, J. S.β-Lactam Synthesis by the Kinugasa Reaction [J]. Heterocycles, 1986, 24, 655-658.
    [84] Bae, I.; Han, H.: Chang, S. Highly Efficient One-Pot Synthesis of N-Sulfonylamidines by Cu-Catalyzed Three-Component Coupling of Sulfonyl Azide, Alkyne, and Amine [J]. J. Am. Chem. Soc. 2005, 127, 2038-2039.
    [85] Cho, S. H.; Yoo, E. J.: Bae, I.; Chang, S. Copper-Catalyzed Hydrative Amide Synthesis with Terminal Alkyne, Sulfonyl Azide, and Water [J]. J. Am. Chem. Soc. 2005, 127, 16046-16047.
    [86] Brannock, K. C.; Burpitt, R. D.; Thweatt, J. G. Enamine Chemistry. I. Reactions with Nonactivated Terminal Acetylenic Compounds [J]. J. Org. Chem. 1963, 28, 1462-1464.
    [87] Li, C.-J.; Wei, C.-M. Highly Efficient Grignard-type Imine Additions via C–H Activation in Water and Under Solvent-free Conditions [J]. Chem. Commum., 2002, 268–269.
    [88] Shi, L.; Tu, Y. Q.: Wang, M.: Zhang, F. M.: Fan, C. A. Microwave-Promoted Three-Component Coupling of Aldehyde, Alkyne, and Amine via C-H Activation Catalyzedby Copper in Water [J]. Org. Lett. 2004, 6, 1001-1003.
    [89] Ohno, H.: Ohta, Y.; Oishi, S.: Fujii, N. Direct Synthesis of 2-(Aminomethyl)indoles through Copper(I)-Catalyzed DominoThree-Component CouPling and Cyclization Reactions [J]. Angew. Chem. Int. Ed. 2007, 46, 2295-2298.
    [90] Wang, M. Li, P. H. Wang, Lei, Silica-Immobilized NHC–CuI Complex: An Efficient and Reusable Catalyst for A3-Coupling (Aldehyde–Alkyne–Amine) under Solventless Reaction Conditions [J]. Eur. J. Org. Chem. 2008, 73, 2255–2261.
    [91] Xiao, F.; Chen, Y.; Liu, Y.; Wang, J. Sequential Catalytic Process: Synthesis of Quinoline Derivatives by AuCl3/CuBr-catalyzed Three-component Reaction of Aldehydes, Amines, and Alkynes [J]. Tetrahedron, 2008, 64, 2755-2761.
    [92] Zhou, L. Jiang, H. F. Li, C. J. Efficient Synthesis ofδγ-Alkynyl-β-amino Acid Derivatives by a New Copper-Catalyzed Amine-Alkyne-Alkyne Addition Reaction [J]. Adv. Synth. Catal. 2008, 350, 2226-2230.
    [93] Tsuji, J. Palladium Reagents and Catalystsb [M]. John Wiley & Sons, New York, 1995.
    [94] Hegedus, L. S. Organometallics in Synthesis, A Manual [M]. John Wiley & Sons, New York, 2001, 1125-1217.
    [95] Hegedus, L. S. Organometallics in Synthesis, A Manual Ed [M]. Hegedus, L. S.; Schlosser, M. John Wiley & Sons, New York, 2001, 1125-1217.
    [96] Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis Ed [M]. Negishi, E. Wiley-Interscience, New York, 2002.
    [97] De Meijere, A.; Diederich, F. Metal-Catalyzed Cross-Coupling Reactions [M]. Wiley-VCH, Weinheim, 2004.
    [98] Li, J. H.; Jiang, H. F.; Feng, A. Q.; Jia, L. Q. Novel Stereospecific Synthesis of 3-Chloroacrylate Esters via Palladium-Catalyzed Carbonylation of Terminal Acetylenes [J]. J. Org. Chem. 1999, 64, 5984-5991.
    [99] Ma, S. M.; Wu, B.; Zhao, S. Mild and Efficient Synthesis of (Z)--Chloroalkylidene-β-lactones via the PdCl2-Catalyzed Cyclocarbonylation of 2-Alkynols [J]. Org. Lett. 2003, 5, 4429-4432.
    [100] Ma, S. M.; Wu, B.; Jiang, X. PdCl2-Catalyzed Efficient Transformation of Propargylic Amines to (E)-Chloroalkylidene-β-lactams [J]. J. Org. Chem. 2005, 70, 2588-2591.
    [101] Tang, S.; Yu, Q. F.; Peng, P.; Li, J. H.; Zhong, P.; Tang, R. Y. Palladium-Catalyzed Carbonylative Annulation Reaction of 2-(1-Alkynyl) -benzenamnes: Selective Synthesis of 3-(Halomethylene)indolin-2-ones [J]. Org. Lett. 2007, 9, 3413-3416.
    [102] Kaneda, K.; Uchiyama, T.; Fujiwara, Y.; Imanaka, T.; Teranishi, S. Codimerization ofAcetylenes and Allyl Halides by Pd-benzonitrile Complexes [J]. Tetrahedron Lett. 1974, 15, 1067-1070.
    [103] Kaneda, K.; Uchiyama, T.; Fujiwara, Y.; Imanaka, T.; Teranishi, S. Selective Codimerization of Acetylenes and Allyl Halides Catalyzed by Palladium Complexes [J]. J. Org. Chem., 1979, 44, 55-63.
    [104] Kosugi, M.; Sakaya, T.; Ogawa, S.; Migita, T. Mizoroki-Heck type reaction of Organoboron Reagents with Alkenes and Alkynes. A Pd (II)-Catalyzed Pathway with Cu(OAc)2 as an Oxidant [J]. Bull. Chem. Soc. Jpn. 1983, 66, 3058-3062.
    [105] Liebeskind, L. S.; Bombrun, A. A Method for the Stereoselective Construction of 4-alkoxy-5-alkylidenecyclopentenones by the Tandem ring Expansion- functionalization of 1-Alkynylcyclobutenols using a Palladium-mercury Cocatalytic System [J]. J. Org. Chem. 1994, 59, 1149-1152.
    [106] Thadani, A. N.; Rawal, V. H. Stereospecific Synthesis of Highly Substituted Skipped Dienes through Multifunctional Palladium Catalysis [J]. Org. Lett. 2002, 4, 4317-4319.
    [107] Jiang, H. F.; Zhou, L.; Jiang, H. Palladium-Catalyzed Allylation of Alkynes with Allyl Alcohol in Aqueous media: Highly Regio- and Stereoselective Synthesis of 1, 4-Dienes [J]. Angew. Chem. Int. Ed. 2006, 45, 1945-1949.
    [108] Ma, S.; Lu, X. Divalent Palladium Catalyzed Stereoselective Synthesis of. Alpha.-(Z)-(halomethylene)-.gamma.-Butyrolactone Derivatives and Its Mechanism [J]. J. Org. Chem.1991, 56, 5120-5123.
    [109] Li, J.; Wang, Z.; Lu, X. Studies on [PdH]-and [PdCl]-Catalyzed Intramolecular Cyclization: The Search for a Better Solution to Selective Enyne Coupling [J]. Organometallics, 1996, 15, 2821-2825.
    [110] Lu, X. Ma, S. in Transition Metal Catalyzed Reactions, Eds [M] Murahashi, S. I.; Davies, S. G. Blackwell Science, Oxford, 1999, 133-137.
    [111]韩秀玲,刘桂霞,陆熙炎,钯催化反应中的β-氢消除反应[J].有机化学,2005,25, 1182-1197。
    [112] Lu, X.; Zhu, G. An Efficient Synthesis of (+)-Isohinokinin from the Acyclic Ester Precursor [J]. Synlett.1993, 68-73.
    [113] Aurrecoechea, J. M. Durana, A.; Pérez, E. Palladium-Catalyzed Cyclization/Heck- and Cyclization/Conjugate-Addition-Type Sequences in the Preparation of Polysubstituted Furans [J]. J. Org. Chem. 2008, 73, 3650–3653.
    [114] Xiao, Y.; Zhang, J. Tetrasubstituted Furans by a Pd (II)-Catalyzed Three-ComponentMichael Addition/Cyclization/Cross-Coupling Reaction [J]. Angew. Chem. Int. Ed. 2008, 47, 1903–1906.
    [115] Balraju, V.; Vasu Dev, R.; Srinivasa, D.; Iqbal, J. Synthesis of Cyclic Peptides Using a Palladium-catalyzed Enyne Cycloisomerization [J]. Tetrahedron Lett. 2006, 47, 3569–3571.
    [116] Blomquist, A. T.; Maitlis, P. M. Reactions of Palladium Compounds with Acetylenes Tetraphenylcyclobutadienepalladium(II) Chloride [J]. J. Am. Chem. Soc. 1962, 84, 2329-2331.
    [117] Dietl, H.; Maitlis, P. M. The reaction of Methylphenylacetylene with Palladium Chloride [J]. Chem. Commun. 1968, 481-485.
    [118] Dietl, H.; Reinheimer, H.; Moffat, J.; Maitlis, P. M. The Reaction of Methylphenylacetylene with Palladium Chloride [J]. J. Am. Chem. Soc. 1970, 92, 2276-2280.
    [119] Li, J. H.; Jiang, H. F.; Chen, M. C. CuCl2-Induced Regiospecifical Synthesis of Benzene Derivatives in the Palladium-Catalyzed Cyclotrimerization of Alkynes [J]. J. Org. Chem. 2001, 66, 5627-5680.
    [120] Cheng, J. S.; Jiang, H. F. Palladium-Catalyzed Regioselective Cyclotrimerization of Acetylenes in Supercritical Carbon Dioxide [J]. Eur. J. Org. Chem. 2004, 643-647.
    [121] Yamamoto,Y; Nagata,A.; Nagata,H; Ando,Y.; Arikawa,Y.; Tatsumi,K.; Itoh, K. Palladium (0)-Catalyzed Intramolecular [2+2+2] Alkyne Cyclotrimerizations with Electron-Deficient Diynes and Triynes [J]. Chem. Eur. J. 2003, 9, 2469-2483.
    [122] Berris, B. C.; Hovakeemian, G. H.; Lai, Y.-H.; Mestdagh, H.; Vollhardt, K. P. C. A new approach to the construction of biphenylenes by the cobalt-catalyzed cocyclization of o-diethynylbenzenes with alkynes. Application to an iterative approach to [3]phenylene, the first member of a novel class of benzocyclobutadienoid hydrocarbons [J]. J. Am. Chem. Soc. 1985, 107, 5670-5687.
    [123] Pena, D.; Pérez, D.; Guitián, E.; Castedo, L. First Partially Intramolecular Palladium-Catalyzed [2+2+2] Cycloaddition of Benzyne: Application to the Synthesis of Benzo[b]fluorenones [J]. Eur. J. Org. Chem. 2003, 1238-1243.
    [124] Quan, L. G.; Gevorgyan, V.; Yamamoto, Y. Intramolecular Nucleophilic Addition of Vinylpalladiums to Aryl Ketones [J]. J. Am. Chem. Soc. 1999, 121, 3545-3547.
    [125] Larock, R. C.; Tian, Q.; Pletnev, A. A. Carbocycle Synthesis via Carbopalladation of Nitriles [J]. J. Am. Chem. Soc., 1999, 121, 3238-3240.
    [126] Zhao, J.; Larock, R. C. Synthesis of Substituted Carbazoles by a Vinylic to Aryl Palladium Migration Involving Domino C-H Activation Processes [J]. Org. Lett. 2005, 7, 701-704.
    [127] Yoshikawa, E.; Yamamoto, Y. Palladium-Catalyzed Intermoleeular Controlled Insertion of Benzyne-Benzyne-Alkeneand BenZyne-Alkyne-Alkene: Synthesis of Phenanthrene and Naphthalene Derivatives [J]. Angew. Chem. Int. Ed. 2000, 39, 173-175.
    [128] Yoshikawa, E.; Yamamoto, Y. Palladium-Catalyzed Controlled Carbopalladation f Benzyne [J]. J. Am. Chem. Soc. 2000, 122, 7280-7286.
    [129] Pena, D.; Perez, D.; Guitian, E.: Castedo, L. First Partially Intramolecular Palladiuxn-Catalyzed [2+2+2] Cyeloaddition of Benzyne: Applieation to the Synthesis of Benzo[b]fluorenones [J]. Eur. J. Org. Chem. 2003, 1238-1243.
    [130] Joo, J. N.; Yuan, Y.; Lee, C. Tandem Cyelizationof Alkynes via Rhodium Alkynyl and Alkenylidene Catalysis [J]. J. Am. Chem. Soc. 2006, 128, 14818-14819.
    [131] Chen, Y. Y.: Lee, C. Rodium-Catalyzed Arylative and Alkenylative Cyclization of l, 5-Enynes Indueed by Geminal Carbometalation of Alkynes [J]. J. Am. Chem. Soc. 2006, 128, 15598-15599.
    [132] Khand, I. U.; Knox, G. R.; Pauson, P. L.; Watts, W. E. Organocobalit Complexes Part II. Reaction of Acetylenehexacarbonyldicobalt Complexes, (R1C2R2)Co2(CO)6, with Norbornene and Its Drivatives [J]. J. Chem. Soc. Perkin Trans 1. 1973, 977-981.
    [133] Schmid, T. M.; Consiglio, G. Mechanistic and Stereochemical Aspects of the Asymmetric Cyclocarbonylation of 1, 6-enynes with Rhodium Catalyst [J]. Chem. Commun. 2004, 2318-2319.
    [134] Wang, M. Li, P. H. Wang, Lei, Silica-Immobilized NHC–CuI Complex: An Efficient and Reusable Catalyst for A3-Coupling (Aldehyde–Alkyne–Amine) under Solventless Reaction Conditions [J]. Eur. J. Org. Chem., 2008, 73: 2255–2261.
    [135] Wender, R. A.: Christy, J. P. Rhodium (I)-Catalyzed [4+2+2] Cycloadditions of l,3-Dienes, Alkenes, and Alkynes for the Synthesis of Cyclooetadienes [J]. J. Am. Chem. Soc, 2006, 128, 5354-5355.
    [136] Tanaka, K.; Wada, A.; Noguchi, K. Rodium-Catalyzed Chemo-, Regio-, and Enantioselective [2+2+2] Cyeloaddition of Alkynes with Isocyanates [J]. Org. Lett. 2005, 7, 4737-4739.
    [137] Le Paih, J. Monnier, F. Derien, S. et al. Biscarbene?Ruthenium Complexes in Catalysis: Novel Stereoselective Synthesis of (1E,3E)-1,4-Disubstituted-1,3-dienes via Head-to-Head Coupling of Terminal Alkynes and Addition of Carboxylic Acids [J]. J. Am. Chem. Soc., 2003, 125, 11964-11975.
    [138] Zhang, M.; Jiang, H. F.; Neumann, H.; Beller, M.; Dixneuf, P. H. Sequential Synthesis of Furans from Alkynes: Successive Ruthenium (II)- and Copper(II)-Catalyzed Processes [J].Angew. Chem. Int. Ed. 2009, 48, 1681-1684.
    [139] Varela, J. A. Castedo, L.; Sa?, C. Ru-Catalyzed Cyclization of Terminal Alkynals to Cycloalkenes [J]. J. Am. Chem. Soc. 2006, 128, 9576-9577.
    [140] Cadiemo, V.; Gimeno, J. Efficient Intermolecular [2+2+21 Alkyne Cyclotrimerization in Aqueous Medium Using a Ruthenium (IV) Precatalyst [J]. J. Am. Soc. Chem. 2006, 128, 15094-15095.
    [141] Zhang, L.: Chen, X. G.; Xue, P.; Sun, H. H. Y.; Charpless, B.; Fokin, V. V.; Jia, G. C. Ruthenium-Catalyzed Cyeloaddition of Alkynes and Organic Azides [J]. J. Am. Chem. Soc. 2005, 127, 15998-15999.
    [142] Dalko, P. I.; Moisan, L. Enantioselective Organocatalysis [J]. Angew. Chem. Int. Ed. 2001, 40, 3726-3748.
    [143] Dalko, P. I.; Moisan, L. In the Golden Age of Organocatalysis [J]. Angew. Chem. Int. Ed. 2004, 43, 5138-5175.
    [144] Benaglia, M.; Puglisi, A.: Cozzi, F. Polymer-Supported Organic Catalysts [J]. Chem. Rev. 2003, 103, 3401-3430.
    [145] List, B. Asymmetric Aminocatalysis [J]. Synlett. 2001, 1675-1686.
    [146] KaePrzak, K.; Gawronski, J. Cinchona Alkaloids and Their Derivatives: Versatile Catalysts and Ligands in Asymmetric Synthesis [J]. Synthesis 2001, 961-998.
    [147] Lu, X. Y.; Zhang, C. M.; Xu, Z. R. Reactions of Electron-Deficient Alkynes and Allenes under Phosphine Catalysis [J]. Acc. Chem. Res. 2001, 34, 535-544.
    [148] McGamigle, E. M.: Myers, E. L.: Shaw, M. A.: Riehes, S. L.: Aggarwal, V. K. Chalcogenides as Organocatalysts [J]. Chem. Rev. 2007, 107, 5841-5883.
    [149] De Arlllas, P.; García-Tellado, F.; Marrero-Tellado, J. J.; Tejedor, D. Alkynoates as a Source of Reactive Alkylinides for Aldehyde Addition Reactions [J]. Org. Lett. 2001, 3, 1905-1908.
    [150] Arag6n, D. T.; L6pez, G. V.; García-Tellado, F.: Marrero-Tellado, J. J.: de Annas, P.; Tejedor, D. An Effeetive One-Pot Synthesis of 5-Substituted Tetronic Acids [J]. J. Org. Chem. 2003, 68, 3363-3365.
    [151] Tejedor, D.: Santos-ExPósito, A.; García-Tellado, F. Chemo-Differentiating MCRs based onα-ketoesters and terminal alkynoates. A Homoaldol-based ABB’System [J]. Chem. Comm. 2006, 2667-2669.
    [152] Tejedor, D.: L6pez-Tosco, S.; García-Tellado, F. Metal-Free Access to Fully Substituted Skipped Diynes. An Efficient Chemodifferentiating A2BB’4CR Manlfold [J]. J. Org. Chem. 2007, 72, 5454-5456.
    [153] Tejedor, D.; L6pez-Tosco, S.; García-Tellado, F. From Conjugated Tertiary Skipped Diynes to Chain-Functionalized Tetrasubstituted Pyrroles [J]. Chem. Eur. J. 2009, 15, 838-842.
    [154] Zhao, G. L.; Shi, M. J. Aza-Baylis-Hillman Reactions of N-Tosylated Aldimines with Activated Allenes and Alkynes in the Presence of Various Lewise Base Promoters [J]. Org. Chem. 2005, 70, 9975-9984.
    [155] Matsuya, Y.; Hayashi, K.: Nemoto, H. A Novel Modified Baylis?Hillman Reaction of Propiolate [J]. J. Am. Chem. Soc. 2003, 125, 646-647.
    [156] Matsuya, Y.; Hayashi, K.; Nemoto, H. A New Protocol for the Consecutive and Activation of Propiolates towards Electrophiles, Involving Conjugate Addition of Tertiary Amines and Intramolecular Silyl Migration [J]. Chem. Eur. J. 2005, 11, 5408-5418.
    [157] Fan, M.Yang, Z.; Liu, W.: Liang, Y. M. DABCO-Catalyzed Reaction ofα-Halo Carbonyl Compounds with Dimethyl Acetylenedicarboxylate: A Novel Method for the Preparation of Polysubstituted Furans and Highly Functionalized 2H-Pyrans [J]. J. Org. Chem. 2005, 70, 8204-8207.
    [158] Fan, M. J.: Lia, G. Q.; Liang, Y. M. DABCO catalyzed reaction of various nucleophiles with activated alkynes leading to the formation of alkenoic acid esters, 1, 4-dioxane, morpholine, and piperazinone derivatives [J]. Tetrahedron 2006, 62, 6782-6791.
    [159] Huisgen, R. In Topics in Heterocyclic Chemistry; Castle, R., Ed.; John Wiley and Sons: New York, 1969; chapter 8, 223.
    [160] Huisgen, R. Synthese von Heterocyclen mit 1,4-Dipolaren Cycloadditionen [J]. Chem. 1968, 8, 290-298.
    [161] Huisgen, R.; Morikawa, M.; Herbig, K.; Brunn, E. 1,4-Dipolar Cycloaddition, II: Dreikomponenten-Reaktionen des Isochinolins mit Acetylendicarbonsaüreester und Verschiedenen Dipolarophilen [J]. Chem. Ber. 1967, 100, 1094-1106.
    [162] Nair, V.; Sreekanth, A. R.: Vinod, A. U. Novel Pyridine-Catalyzed Reaction of Dimethyl Acetylenedicarboxylate with Aldehydes: Formal [2 + 2] Cycloaddition Leading to 2-Oxo-3-benzylidinesuccinates [J]. Org. Lett. 2001, 3, 3495-3497.
    [163] Nair, V.: Sreekanth, A. R.; Vinod, A. U. Novel Pyridine-Catalyzed Reaction of Dimethyl Acetylenedicarboxylate with Aldehydes: Formal [2 + 2] Cycloaddition Leading to 2-Oxo-3-benzylidenesuccinates [J]. Org. Lert. 2002, 4, 2807-2808.
    [164] Nair, V.; Sreekanth, A. R.: Abhilash, N.: Biju, A. T.: Remadevi, B.; Menon, R. S.; Rath, N. P.: Srinivas, R. Novel Pyridine-Catalyzed Reactionof Dimethyl Acetylenedicarboxylate with Aldehydes and N-Tosylimines: Efficient Synthesis of2-Benzoylfumarates and1-Azadienes [J]. Synthesis 2003, 1895-1902.
    [165] Li, C. Q.; Shi, M. Reactions of Arylaldehydes and N-Sulfonated Imines with Dimethyl Acetylenedicarboxylate Catalyzed by Nitrogen and Phosphine Lewis Bases [J]. Org. Lett. 2003, 5, 4273-4276.
    [166] Nair, V.: Remadevi, B.: Vidya, N.; Menon, R. S.; Abhilash, N.; Rath, N. P. Novel pyridine catalysed reactions of dimethyl acetylenedicarboxylate (DMAD) and arylmethylidenemalononitriles: a stereoselective synthesis of highly substituted buta-1,3-dienes [J]. Tetrahedron Lett. 2004, 45, 3203-3205.
    [167] Nair, V.; Pillai, A. N.: Menon, R. S.; .:Sureesh, E. Pyridine-Catalyzed Addition of Diaryl-1,2-diones to Dimethyl Butynedioate Leading to the Formation of 1,2-Diaroyl Dimethyl Maleates via an Unprecedented Rearrangement [J]. Org. Lett. 2005, 7, 1189-1191.
    [168] Nair,V.: Pillai, A. N.: Beneesh, P. B.: Suresh, E. Engaging the Pyridine-DMAD Zwitterion in a Novel Strategy for the Selective Synthesis of Highly Substituted Benzene and Cyclopentenedione Derivatives [J]. Org. Lett. 2005, 7, 4625-4628.
    [169] Nair, V.: Vidya, N.: Biju, A. T.: Deepthi, A.: Abhilash, K. G.: Suresh, E. DMAP catalyzed reaction ofβ-ketoesters and dimethyl acetylenedicarboxylate: efficient synthesis of polysubstituted benzenes and biaryls [J]. Tetrahedron 2006, 62, 10136-10140.
    [170] Trost, B. M.; Kazmaier, U. Internal Redox Catalyzed by Triphenylphosphine [J]. J. Am. Chem. Soc. 1992, 114, 7933-7935.
    [171] Rychnovsky, S. D.: Kim, J. Triphenylphosphine-Catalyzed Isomerizations of Enynes to (E,E,E)-Trienes: Phenol as a Cocatalyst [J]. J. Org. Chem. 1994, 59, 2659-2660.
    [172] Kazmaier, K. A short synthesis of conjugated unsaturated amides and esters via triphenylphosphine-catalysed isomerisation of acetylenic pentafluorophenyl esters [J]. Chem. Commun. 1997, 2305-2306.
    [173] Kazmaier, K. A Short Synthesis of Conjugated Unsaturated Alcohols [J]. Tetrahedron 1998, 54, 1491-1496.
    [174] Wang, Y G.: Jiang, H. F.; Liu, H. L.; Polymeric Tertiaryphosphine as a Green and Recyclable Organocatalyst for Stereoselective Isomerization Reaction [J]. Tetrahedron Lett. 2005, 46, 3935-3937.
    [175] Liu, H. L.; Jiang, H. F.; Zhan, H. Y. Solvent-Free Heterogeneous Organocatalysis: Stereoselective Isomerization ofα,β-Ynones to (E,E)-α,β-γ,δ-Dienones Catalyzed by Polymer-Supported Tertiaryphosphines [J]. Tetrahedron Lett. 2007, 48, 8371-8375.
    [176] Inanaga, J.: Baba, Y: Hanamoto, T. Organic Synthesis with Trialkylphosphine Catalysts. Conjugate Addition of Alcohols toα,β-Unsaturated Alkynic Acid Esters [J]. Chem. Lett.1993, 241-242.
    [177] Grossman, R. B.: Comesse, S.; Rasne, R. M.: Hattori, K.: Delong, M. N. Phosphoramidites Are Efficient, Green Organocatalysts for the Michael Reaction. Mechanistic Insights into the Phosphorus-Catalyzed Michael Reaction of Alkynones and Implications for Asymmetric Catalysis [J]. J. Org. Chem. 2003, 68, 871-874.
    [178] Sriramurthy, V.; Barean, G. A.; Kwon, O. Bisphosphine-Catalyzed Mixed Double-Michael Reactions: Asymmetric Synthesis of Oxazolidines, Thiazolidines, and Pyrrolidines [J]. J. Am. Chem. Soc. 2007, 129, 12928-12929.
    [179] Trost, B. M.; Li, C, J. Novel "Umpolung" in C-C Bond Formation Catalyzed by Triphenylphosphine [J]. J. Am. Chem. Soc. 1994, 116, 3167-3168.
    [180] Trost, B. M.; Li, C, J. Phosphine-Catalyzed Isomerization-Addition of Oxygen Nucleophiles to 2-Alkynoates [J]. J. Am. Chem. Soc. 1994, 116, 10819-10820.
    [181] Trost, B. M.; Dake, G. R. Nitrogen Pronucleophiles in the Phosphine-Catalyzed Gamma-Addition Reaction [J]. J. Org. Lett. 1997, 119, 5670-5671.
    [182] Trost, B. M.; Dake, G. R. Nucleophilicα-Addition to Alkynoates. A Synthesis of Dehydroamino Acids [J]. J. Am. Chem. Soc. 1997, 119, 7595-7596.
    [183] Hanédanian, M.; Loreau, O.; Taran, F.; Mioskowski, C.α-Addition of Activated Methylenes to Alkynoates. A Straightforward Synthesis of Multifunctional Compounds [J]. Tetrahedron Lett. 2004, 45, 7035–7038.
    [184] Hanédanian, M.; Loreau, O.; Sawicki, M.; Taran, F. Tributylphosphine as a Superior Catalyst for theα-C-addition of 1, 3-Ddicarbonyl Compounds to Electron-Deficient Alkynes [J]. Tetrahedron, 2005, 61, 2287–2294.
    [185] Lecercle, D.; Sawicki, M.; Taran, F. Phosphine-Catalyzed -P-Addition on Activated Alkynes: A New Route to P-C-P Backbones [J]. Org. Lett., 2006, 8, 4283–4285.
    [186] Hayashi, Y.; Yuki, Y.-i.; Matsumoto, T. New Congeners of Cytotoxic nor-Diterpenoid Dilactones in Podocarpus nagi: two C19 Lactones from Seed Extract [J]. Tetrahedron Lett. 1977, 41, 3637-3640.
    [187] Kupchan, S. M.; Moniot, J. L.; Sigel, C. W.; Hemingway, R. J. Tumor Inhibitors. LXV. Bersenogenin, Berscillogenin, and 3-Epiberscillogenin, Three New Cytotoxic Bufadienolides from Bersama Abyssinica [J]. J. Org. Chem. 1971, 36, 2611-2616.
    [188] Leutbecher, H.; Williams, L. A. D.; Rosner, H.; Beifuss, U. Efficient Synthesis of Substituted 7-Methyl-2H,5H-Pyrano[4,3-b]pyran-5-ones and Evaluation of their in vitro Antiproliferative/cytotoxic Activities [J]. Bioorg. Med. Chem. Lett. 2007, 17, 978-982.
    [189] Chattapadhyay, T. K.; Dureja, P. Antifungal Activity of4-Methyl-6-alkyl-2H-pyran-2-ones [J]. J. Agric. Food Chem. 2006, 54, 2129-2133.
    [190] Bellina, F.; Carpita, A.; Mannocci, L.; Rossi, R. First Total Synthesis of Naturally Occurring (-)-Nitidon and Its Enantiomer [J]. Eur. J. Org. Chem. 2004, 2610-2619.
    [191] Ramesh, S.; Franck, R. W. Total Synthesis of (+)-Asperlin [J]. Tetrahedron: Asymmetry. 1990, 1, 137-140.
    [192] Alkofahi, A.; Ma, W. W.; McKenzie, A. T.; Byrn, S. R.; McLaughlin, J. L. Goniotriol from Goniathalamus Giganteus [J]. J. Nat. Prod. 1989, 52, 1371-1373.
    [193] Dickinson, J. Microbial Pyran-2-ones and Dihydropyran-2-ones [J]. Natural Product Reports, 1993, 10, 71-89.
    [194] Gardner, S. C.; Kwon, O. Alcohol-Assisted Phosphine Catalysis: One-Step Syntheses of Dihydropyrones from Aldehydes and Allenoates [J]. Org. Lett. 2008, 10, 429-432.
    [195] McGlacken, G. P.; Fairlamb, I. J. S. 2-Pyrone Natural Products and Mimetics: Isolation, Characterisation and Biological Activity [J]. Nat. Prod. Rep. 2005, 22, 369-385
    [196] Bartolo, G.; Raffaella, M.; Giuseppe, S. A Novel Palladium-Catalyzed Dicarbonylation Process Leading to Coumarins [J]. J. Org. Chem. 2008, 73, 756-759.
    [197] Fang, D.; Cheng, J.; Gong, K.; Shi, Q. R.; Liu, Z. L. Synthesis of Coumarins via Pechmann Reaction in Water Catalyzed by Acyclic Acidic Ionic Liquids [J]. Catal. Lett. 2008, 121, 255-259.
    [198] Lin, L. L.; Chen, Z. L.; Yang, X.; Liu, X. H.; Feng, X. M. Efficient Enantioselective Hetero-Diels?Alder Reaction of Brassard's Diene with Aliphatic Aldehydes: A One-Step Synthesis of (R)-(+)-Kavain and (S)-(+)-Dihydrokavain [J]. Org. Lett. 2008, 10, 1311-1314.
    [199] Li, K. L.; Tunge, J. A. Chemical Libraries via Sequential C?H Functionalization of Phenols [J]. J. Com. Chem. 2008, 10, 170-174.
    [200] Minoru, T.; Ken. O.; Mitsuru, K.; Hirohisa, K. General Synthesis Route to Benanomicin-Pradimicin Antibiotics [J]. Chem. Eur. J. 2007, 13, 9791-9823.
    [201] J?rg, T. B.; Stefan, F. K.; Stefan, F. K. Synthesis of Small Gold Nanoparticles: Au(I) Disproportionation Catalyzed by a Persulfurated Coronene Dendrimer [J]. Chem. Commun. 2007, 4164-4167.
    [202] Toshiaki Sunazuka, T.; ?mura, S. Total Synthesis ofα-Pyrone Meroterpenoids, Novel Bioactive Microbial Metabolites [J]. Chem. Rev. 2005, 105, 4559?4580.
    [203] J?rgensen, K. A. Catalytic Asymmetric Hetero-Diels-Alder Reactions of Carbonyl Compounds and Imines [J]. Angew. Chem. Int. Ed. 2000, 39, 3558-3588.
    [204] Bennett, D. M.; Okamoto, I.; Danheiser, R. L. Hetero [4+2] Cycloadditions of (Trialkylsilyl)vinylketenes. Synthesis ofα,β-Unsaturatedγ-Valerolactones and–Lactams [J].Org. Lett. 1999, 1, 641-644.
    [205] Reddy, M. V. R.: Yueel, A. J.: Ramaehandran, P. V. An Efficient Asymmetric Synthesis of Tarchonanthuslactone1 [J]. J. Org. Chem. 2001, 66, 2512-2514.
    [206] Ma, S. M.; Yin, S. H.; Li, L. T.; Tao, F.G. K2CO3-Catalyzed Michael Addition-Lactonization Reaction of 1,2-Allenyl Ketones with Electron-Withdrawing Group Substituted Acetates. An Efficient Synthesis of -Pyrone Derivatives [J]. Org. Lett. 2002, 4, 505-507.
    [207] Ma, S. M.; Yu, S. C.; Yin, S. H. Studies on K2CO3-Catalyzed 1, 4-Addition of 1,2-Allenic Ketones with Diethyl Malonate: Controlled Selective Synthesis ofβ,γ-Unsaturated Enones andα-Pyrones [J]. J. Org. Chem. 2003, 68, 8996-9002.
    [208] Zhao, W. G.; Hua, R. M. ReBr(CO)5-Catalyzed Sequential Addition-Cyclization of 1,3-Dicarbonyl Compounds with Electron-Deficient Internal Alkynes affording Trisubstituted 2H-pyran-2-ones [J]. Tetrahedron 2007, 63, 11803-11808.
    [209] Carey, F. A; Sundberg, R. J. Advance Organic Chemistry-Part B. Reaction and Synthesis [M]. Plenum Press, New York, 1977, 1-8.
    [210] March, J. Advance Organic Chemistry- Ractions, Mechanisms, Structure [M]. McGraw-Hill Inc. 2nd ed. 1977, 54-56.
    [211] Loncaric, C.; Manabe, K.; Kobayashi, S. Alkaline Salt-Catalyzed Aza Diels–Alder Reactions of Danishefskys Diene with Imines in Water under Neutral Conditions [J]. Chem. Commun. 2003, 574-577.
    [212] Loncaric, C.; Manabe, K.; Kobayashi, S. AgOTf-Catalyzed Aza-Diels-Alder Reactions of Danishefsky's Diene with Imines in Water [J]. Adv. Synth. Catal. 2003, 345, 475-477.
    [213] Di Bari, L.; Guillarme, S.; Hermitage, S.; Howard, J. A. K.; Jay, D. A.; Pescitelli, G.; Whiting, A.; Yufit, D. S. Lewis Acid-catalysed Aza-Diels-Alder versus Mannich Reactions of N-Diethyl Phosphoryl Imino Dienophiles with Oxygenated Dienes and Application of a Chiral Lewis Acid [J]. Synlett 2004, 708-710.
    [214] Zhu, X.; Lan, J.; Kwon, O. An Expedient Phosphine-Catalyzed [4 + 2] Annulation: Synthesis of Highly Functionalized Tetrahydropyridines [J]. J. Am. Chem. Soc. 2003, 125, 4716-4717.
    [215] Sridharan, V.; Maiti, S.; Menéndez, J. C. Efficient Generation of Highly Functionalized Fused Oxazepine Frameworks Based on a CAN-Catalyzed Four-Component Tetrahydropyridine Synthesis/Ring-Closing Metathesis Sequence [J]. J. Org. Chem. 2009, 74, 9365-9371.
    [216] Gonzalez, R.; Martin, N.; Seoane, C. The first Asymmetric Synthesis ofPolyfunctionalized 4H-Pyrans via Michael Addition of Malononitrile to 2-Acyl acrylates [J]. Tetrahedron Lett.1992, 33, 3809-3812.
    [217] Shestopalov, A. M.; Niazimbetova, D. H. Synthesis of 2-Amino-4-aryl-3-cyano-6-methyl-5-ethoxycarbonyl-4H-pyrans [J]. Heterocycles, 1999, 51, 1101-1107.
    [218] El-Agrody, A. M.; El-Latif, M. S. A.; El-Hady, N. A.; Fakery A. H.; Bedair, A. H. Heteroaromatization with 4-Hydroxycoumarin Part II: Synthesis of Some New Pyrano[2,3-d]pyrimidines, [1,2,4]triazolo[1,5-c]pyrimidines and Pyrimido[1,6-b]-[1,2,4]triazine Derivatives [J]. Molecules, 2001, 6, 519-527.
    [219] Al-Haiza, M. A.; Mostafa, M. S.; El-Kady, M. Y. Synthesis and Biological Evaluation of Some New Coumarin Derivatives [J]. Molecules, 2003, 8, 275-286.
    [220] Zav'yalov, S. L.; Kharchenko, V G.; Kudryavtseva, L. F. Dicarbonyl Compounds. XII. Nucleophilic Reactions of Dihydroresorcinol and its Derivatives in Solvents with low Polarity [J]. Zhurnal Obshchei Khimii. 1961, 131, 3695-3700
    [221] Kharchenko, V G.; Markova, L. I.; Korshunova, K. M. On Reactions of Oxo-l, 5-Diketones with Sulfurous Reagents [J]. Zhurnal Organicheskoi Khimii. 1976, 112, 663-668.
    [222] Kharchenko, V G.; Markova, L. I.; Smimova, N. S. Synthesis and Catalytic Hydrogenation of 5-Oxotetrahydro-4H-Chromenes, Zhurnal Organicheskoi Khimii [J], 1982, 118, 2184-2189
    [223] Ahluwalia, V. K.; Khan, S.; Arora, K. K. An Efficient and Simple one-pot Synthesis of 2, 7-Diaryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-l-benzopyrans, Indian Journal of Chemistry [J]. 1991, 30B, 1095-1097.
    [224] Ahmed, M. G..; Ahmed, S. A.; Romman, U. K. R. A Convenient One Pot Synthesis of Substituted and Unsubstituted 2, 4-Diaryl-5-oxo-5,6,7,8-tetrahydro-2-chromens [J]. Indian J. Chem. 2002, 41B, 368-371.
    [225] Shi,J.; Wang, M.; He, L.; Zheng, K.; Liu, X. H.; Lin, L. L.; Feng, X. M. Enantioselective Michael addition of Malononitrile to Chalcones Catalyzed by a Simple Quinine–Al(OiPr)3 Complex: A Simple Method for the Synthesis of a Chiral 4H-Pyran Derivative [J]. Chem. Commun. 2009, 4711-4713.
    [226] Mizuno, T.; Okamoto, N.; Ito, T.; Miyata, T. Synthesis of 2, 4-Dihydroxyquinazolines using Carbon Dioxide in the Presence of DBU under Mild Conditions [J]. Tetrahedron Lett. 2000, 41, 1051-1053.
    [227] Mizuno, T.; Ishino, Y. Highly Efficient Synthesis of 1H-Quinazoline-2,4-diones using Carbon Dioxide in the Presence of Catalytic Amount of DBU [J]. Tetrahedron 2002, 58,3155-3158.
    [228] Li, J. R.; Shi, D. X.; Ma, S. L.; Li, Q.; Tang, J. H. A New and Facile Synthesis of Quinazoline-2, 4(1H, 3H)-diones [J]. Org. Lett., 2009, 11, 1193-1196.
    [229] Li, C. Q.; Shi, M. Reactions of Arylaldehydes and N-Sulfonated Imines with Dimethyl Acetylenedicarboxylate Catalyzed by Nitrogen and Phosphine Lewis Bases [J]. Org. Lett. 2003, 5, 4273-4276.
    [230] Sum, F. W.; Wong, V. S.; Largis, H. E.; Malvey, R. Cyclic Amine Sulfonamides as Linkers in the Design and Synthesis of Novel Humanβ3 Adrenergic Receptor Agonists. Bioorg [J]. Med. Chem. Lett. 2003, 13, 2191-2194.
    [231] Pour, M. Spulak, M. Balsanek, V. Synthesis and Structure–Antifungal Activity Relationships of 3-Aryl-5-alkyl-2,5-dihydrofuran-2-ones and Their Carbanalogues: Further Refinement of Tentative Pharmacophore Group [J]. Bioorg. Med. Chem., 2003, 2843-2866.
    [232] Vale-Silva,L. Buchta,V. Vokurkova. D. Investigation of the Mechanism of Action of 3-(4-Bromophenyl)-5-Acyloxymethyl-2,5-Dihydrofuran-2-One Against Candida Albicans by Flow Cytometry [J]. Bioorg. Med. Chem. Lett., 2006, 16: 2491-2495.
    [233] Buchta , V. Pour, M. Kubanova, P. In Vitro Activities of 3-(Halogenated Phenyl)-5-Acyloxymethyl-2, 5-Dihydrofuran-2-ones against Common and Emerging Yeasts and Molds [J]. Antimicrob. Agents. Chemother. 2004, 873-878.
    [234] Weber, V. Coudert, P. Rubat Poel, C. Novel 4, 5-Diaryl-3-Hydroxy-2(5H) - Furanones as Anti-Oxidants and Anti-Inflammatory Agents [J]. Bioorg. Med. Chem., 2002, 10, 1647–1658.
    [235] Wittine, K. Gazivoda, T. Markus. M. Et al. Crystal Structures, Circular Dichroism Spectra and Absolute Configurations of Some L-ascorbic acid Derivatives [J]. J. Mol. Struct. 2004, 687, 101-106.
    [236] Wong, H. N. C.; Yang, Y. Regiospecific Synthesis of 3,4-Disubstituted Furans and 3-Substituted Furans using 3,4-Bis(tri-n-butylstannyl)furan and 3-(Tri-n-butylstannyl) [J]. Tetrahedron 1994, 50, 9583-9608.
    [237] Gabriele, B.; Salerno, G.; Lauria, E. A General and Facile Synthesis of Substituted Furans by Palladium-Catalyzed Cycloisomerization of (Z)-2-En-4-yn-1-ols [J]. J. Org. Chem. 1999, 64, 7687-7692.
    [238] Koguro, K.; Sugimora, T.; Tai, A. Total Syntheses of (+)-Ipomeamarone and (?)-ngaione [J]. Tetrahedron Lett. 1993, 34, 509-512.
    [239] Cristofoli, W. A.; Keav, B. A. A Palladium Catalyzed Cross-Coupling betweenFurylborates(generated) and Organohalides [J]. Tetrahedron Lett. 1991, 32, 5881-5884.
    [240] Maddaford, S. P.; Keay, B. A. Scope and Limitations of the Palladiurn-Catalyzed Cross-Coupling Reaction of in situ Generated Organoboranes With Aryl and Vinyl Halides [J]. J. Org. Chem. 1994, 59, 6501-6503.
    [241] Wong, H. N. C.; Yu, P.: Yiek, C. Y. The use of furans in natural product synthese [J]. Pure Appl. Chem. 1999, 71, 1041-1044.
    [242] Garzelli, R. Samaritani, S. Malanga, C. 2,5-Dimethoxy-2,5-Dihydrofuran Chemistry: a new Approach to 2-(5H)-Furanone Derivatives [J]. Tetrahedron 2008, 64, 4183-4186.
    [243] Malanga, C. Mannucci, S. 2,5-Dimethoxy-2,5-Dihydrofuran and Vinyl Ethers in the Synthesis of Functionalised 2-Alkylfurans [J]. Tetrahedron Lett. 2001, 42, 2023-2025.
    [244] Wu, H. Liu, Y. Wang, L. Epoxidation of 2, 5-Dihydrofuran to 3,4-Epoxytetrahydrofuran over Ti-MWW Catalysts [J]. Appl.Catal. A-Gen. 2007, 173-180.
    [245] Lipshutz, B. H. Five-Membered Heteroaromatic Rings as Intermediates in Organic Synthesis [J]. Chem. Rev. 1986, 86, 795-819.
    [246] Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.: Lo, T. H.; Tong, S. Y.: Wbng, H. N. C. Regiselective Syntheses of Substituted Furans [J]. Tetrahedron 1998, 54, 1955-2020.
    [247] Amamath, V.; Amamath, K. Intermediates in the Paal-Knorr Synthesis of Furans [J]. J. Org. Chem.1995, 60, 301-307.
    [248] Konig, B. Product Class 9: Furans. In Science of Synthesis: Houben-Weyl Methods of Molecular Transformations [M]. Maa, G. (Ed.). Georg Thieme Verlag: New York. 2001,.2, 9, 183-278.
    [249] Friedriehse, W. Furans and Their Benzo Derivatives: Synthesis. In Comprehensive Heterocyclic Chemistly 11 [M]. Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. (Eds.) Pergamon: New York, 1996, 2, 351-393.
    [250] Dean, F. M. Recent Advances in Furan Chemistry. Part1. In Advances in Heterocyclic Chemistry [M]. Katritzky, A. R. (Ed.) Academic Press: NewYork, 1982, 30, 167-238.
    [251] Alexander, E. R.; Baldwin, S. The Preparation of Ethyl 2, 4-Dimethyl-3-Furoate [J]. J. Am. Chem. Soc. 1951, 73, 356-358.
    [252] GuPta, R. R.; Kumar, M.: GuPta, V. Heterocyclic Chemistry [M]. Springer: NewYork, 1999, 2, 83-84.
    [253] Calter, M. A.; Zhu, C. Scope and Diastereoselectivity of the Inierrupted Feist-Benary Reaction [J]. Org. Lett. 2002, 4, 205-208.
    [254] Howes, P. D.; Stirling, C. J. M. 3-Acetyl-2, 4-Dimethylfuran [J]. Org. Synth. 1988, 6, 31-34.
    [255] Poonoth,M. Krause, N. Stereoselective Synthesis of Conjugated Bisallenols as Precursors of Novel Bis-(2,5-dihydrofuran) Derivatives [J]. Adv. Synth. Catal. 2009, 351, 117-122.
    [256] Deng, Y.Q. Li, J. Ma, S. M. PdI2-Catalyzed Coupling–Cyclization Reactions Involving Two Different 2, 3-Allenols: An Efficient Synthesis of 4-(1’,3’-Dien-2’-yl)-2,5–dihydrofuran Derivatives [J]. Chem. Eur. J. 2008, 14, 4263–4266.
    [257] Deng, Y. Q. Yu, Y. H. Ma, S. M. PdCl2/NaI-Catalyzed Homodimeric Coupling- Cyclization Reaction of 2, 3-Allenols: An Efficient Synthesis of 4-(1’,3’-Dien-2’-yl) -2,5- dihydrofuran Derivatives [J]. J. Org. Chem. 2008, 73, 585-589.
    [258] Deng, Y. Q. Shi, Y. L. Ma, S. M. An Efficient Synthesis of 2,5-Dihydrofuran - Fused Bicyclic Skeletons via the Pd(II)-Catalyzed Tandem-Cyclization Reaction of 1,ω-Bisallenols [J]. Org. Lett., 2009, 11, 1205-1208.
    [259] Wei, H.; Zhai, H. B.; Xu, P. F. Novel Platinum-Catalyzed Tandem Reaction: An Efficient Approach to Construct Naphtho[1,2-b]furan [J]. J. Org. Chem. 2009, 74, 2224-2226.
    [260] Furstner, A.; weintritt, H.; Hupperts, A. A New, Titanium-Mediated Approach to Pyrroles: FirstSynthesis of Lukianol A and Lamellarin O Dimethyl Ether [J]. J. Org. Chem. 1995, 60, 6637-6641.
    [261].Khanna, I. K; Weier, R. M.; Yu, Y.; Collins, P. W.;.Miyashiro, J. M ; Koboldt, C. M.; Veenhuizen, A. W.; Currie, J. L.; Seibert, K.; Isakson, P. C. 1,2-Diarylpyrroles as Potent and Selective Inhibitors of Cyclooxygenase [J]. J. Med. Chem. 1997, 40, 1619-1633.
    [262] Thurkauf, A.; Yuan, J.; Chen, X.; Wasley, J. W.; Meade, R.; Woodruff, K. H.; Huston, K.; Ross, P. C. 1-Phenyl-3-(Aminomethyl)pyrroles as Potential Antipsychotic Agents.Synthesis and Dopamine Receptor Binding [J]. J. Med. Chem. 1995, 38, 4950-4952
    [263] Carson, J. R.; Carmosin, R. J.; Pitis, P. M.; Vaught, J. L.; Alamond, H. R.; Stables, J. P.; Wolf, H. H.; Swinyard, E. A.; White, H. S. Aroyl(aminoacyl)pyrroles, A New Class of Anticonvulsant Agents [J]. J. Med. Chem. 1997, 40, 1578-1584.
    [264] Pudleiner, H.; Laatsch, H. Synthese Cyclischer under Sterisch Gehinderter Pseudiline. Liebigs [J]. Ann. Chem. 1990, 5, 423-432.
    [265] Hanessian, S.; Kaltenbronn, J. S. Synthesis of a Bromine-Rich Marine Antibiotic. J. Am. Chem. Soc. 1966, 88, 4509-4510.
    [266] Birch, A. J.; Hodge, P.; Rickards, R. W.; Takeda, R.; Watson, T. R. The Structure of Pyoluteorin [J]. J. Chem. Soc. 1964, 2641-2643.
    [267] Sundberg, R. J. Pyrroles and their Benzo Derivatives. In Comprehensive Heterocyclic Chemistry [M]. Katritzky, A. R.; Rees, C. W. Eds. Pergamon Press: Oxford, 1984, 4, 324, 325,331-334, 341-343.
    [268] Bean, G. P. Pyrroles: The Synthesis of 1H-Pyrroles. In The Chemistry of Heterocyclic Compounds [M]. Jones, R. A.; Taylor, E. C.; Weissbergen, A. Eds. John Wiley and Sons: New York, 1990, 48, 108, 189.
    [269] Jones, R. A.; Been, G. P. The Chemistry of Pyrroles [M]. Academic Press: New York, 1977; Chapter 3.
    [270] Ong, C. W.; Chen, C. M.; Wang, L. H.; Jan, J. J. Efficient Synthesis of Pyrroles from Chemoselective Addition of Primary Amines to 1, 6-Dioxo-2,4-dienes [J]. J. Org. Chem. 1998, 63, 9131-9134.
    [271] Barnes, R. A.; Brody, F.; Ruby, P. R. Pyridine and Its Derivatives, Part I, in the Chemistry of Heterocyclic Compounds [M]. Klingsberg, E. Ed. Interscience Publishers, Inc. New York, N. Y., 1960, 80 and 500.
    [272] Demir, A. S.; Akhmedov, I. M. Synthesis of 1, 2, 3, 5-Tetrasubstituted Pyrrole Derivatives from 2-(2-Bromoallyl)-1,3- Dicarbonyl Compounds [J]. Tetrahedron 2002, 58, 9793-9799.
    [273] Cadierno, V.; Gimeno, J.; Nebra, N. One-Pot Three-Component Catalytic Synthesis of Fully Substituted Pyrroles from Readily Available Propargylic Alcohols, 1,3-Dicarbonyl Compounds and Primary Amines [J]. Chem. Eur. J. 2007, 13, 9973-9981.
    [274] Dou, G. L.; Shi, C. L.; Shi, D. Q. Highly Regioselective Synthesis of Polysubstituted Pyrroles through Three-Component Reaction Induced by Low-Valent Titanium Reagent [J]. J. Comb. Chem. 2008, 10, 810-813.
    [275] Bremner, W. S.; Organ, M.G. Formation of Substituted Pyrroles via an Imine Condensation/Aza-Claisen Rearrangement/Imine Allene Cyclization Process by MAOS [J]. J. Comb. Chem. 2008, 10, 142-147.
    [276] Zhu, Q. H.; Jiang, H. F.; Li, J. H. Zhang, M. Concise and Versatile Multicomponent Synthesis of Multisubstituted Polyfunctional Dihydropyrroles [J]. J. Comb. Chem. 2009, 11, 685-696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700