乳酸转运体调控谷氨酸转运体在癫痫发病机制中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
癫痫是一种神经系统疾病,通常是指大脑神经元突然异常放电,导致各种临床表现反复发作的慢性疾病。难治性癫痫也称顽固性癫痫,一般情况下,每月发病超过1次,正确用药超过3种,正规治疗时间超过2年仍无疗效者,可视为难治性癫痫[1]。大约30%的癫痫患者属于难治性癫痫[2]。我国癫痫患病率约为5‰,其中难治性癫痫患者有上百万名,给家庭和社会带来了沉重的经济负担和精神负担。几十年来,利用体外及体内癫痫发作模型努力探讨自发性癫痫反复发作(癫痫病患者的大脑的决定性标志)的分子和细胞机制。尽管我们在理解癫痫发生中获得巨大的进步,但是调查人员仍然没有制定可靠致痫病灶的生物标志物或替代标志物。目前对于导致癫痫发生的病理机制知之甚少,尤其是累积事件比如头部外伤,炎症,或长期热性惊厥所触发的癫痫[3]。癫痫治疗面临的主要挑战是癫痫固有的复杂性和异质性以及癫痫发作表现出的不同的遗传易感性。因此,癫痫发作共享一个基本病理生理机制是不可能的。过去几十年来,抗癫痫治疗的总目标是影响或者阻止原发性癫痫发作的急性过[4-6]。目前癫痫治疗一方面是急需要针对疾病发展变化的治疗,全面或部分阻止癫痫发作的反复发作。癫痫治疗的另一方面是减少或阻止癫痫发作所致的并发症。比如认知障碍,心理障碍所造成的危害。迄今为止,在动物模型中验证的癫痫发病过程中的分子和细胞改变包括:神经元损伤和细胞死亡,轴突和树突的可塑性,突触前和突触后的修饰,神经发生,神经炎症,胶质细胞活化,血管损伤和血管生成,细胞外基质破裂,离子通道结构和功能的改变[7]。近年来,研究发现癫痫发生和能量代谢失衡关系密切,能量代谢物质不平衡可以诱发癫痫发生。比如谷氨酸是中枢神经系统最主要的兴奋性神经递质,广泛分布于中枢神经系统,多种致痫机制通过谷氨酸递质及其受体途径导致癫痫发生。相关文献报道乳酸及乳酸转运体在动物模型的癫痫发生中起到重要作用,转运体的活动不仅直接反映突触信息的传递,当转运体的重摄取功能异常,就可以导致神经递质在突触间隙的浓度变化,从而引起病理生理改变,如果突触前递质质量异常,不仅突触后的受体出现数量改变,而且突触前的转运体也会发生代偿性变化,这种转运体的改变要比受体的改变更敏感、更直接。近年来一些研究发现转运体对癫痫的发生和抗癫痫药的作用机理、新药开发都出现了新的看法。基于此,我们进行以下研究:
     第一部分MCT4在癫痫动物模型和临床癫痫样本表达分析
     目的:研究MCT4在癫痫动物模型和临床癫痫样本表达情况。方法:从第四军医大学唐都医院神经外科标本库中随机选取30例颞叶癫痫组织标本作为实验组,12例外伤组织标本作为对照组。将大鼠分为生理盐水对照组、SE4h、SE12h、SE1d、 SE3d、SE7d、SE14d、SE28d、SE60d组,每组8只。建立大鼠氯化锂-匹罗卡品模型,在模型建立成功后在不同时间点收集大鼠颞叶及海马组织。利用西式印迹检测MCT4在癫痫大鼠皮层及海马组织表达,利用西式印迹和免疫组织化学检测MCT4在癫痫样本中表达情况,同时对临床癫痫样本进行甲基化PCR分析。结果:在西式印迹实验中,MCT4在癫痫模型颞叶皮层中急性期开始表达降低,在潜伏期表达达到最低水平,MCT4在海马的表达和颞叶皮层基本一致。在临床癫痫样本中MCT4表达降低。利用甲基化PCR方法证实MCT4在癫痫样本中表达减少与MCT4启动子区过渡甲基化有关。结论:无论是在癫痫模型还是临床癫痫样本中,MCT4表达均降低,研究还发现MCT4在癫痫样本中表达减少与MCT4启动子区过渡甲基化有关,这提示MCT4可能与癫痫发病机制密切相关。
     第二部分MCT4在癫痫发病中的作用分析
     目的:研究MCT4在癫痫发病中的作用。方法:建立大鼠皮层星形胶质细胞原代培养模型,在模型建立成功后将含有MCT4shRNA的慢病毒颗粒感染原代培养星形胶质细胞,然后通过细胞免疫荧光方法检测鉴定。利用MTT方法验证干涉MCT4对大鼠星形胶质细胞增殖能力的影响。同时采用流式细胞仪技术,验证干涉MCT4对大鼠星形胶质细胞凋亡及细胞周期影响。利用MCT4阻断剂阻断MCT4信号,观察阻断MCT4信号对神经元电活动影响。结果:成功构建MCT4干涉的原代培养的星形胶质细胞模型,MTT结果显示原代星形胶质细胞干涉MCT4后,细胞增殖能力显著减弱。流式结果证实原代细胞中干涉MCT4后,显著促进细胞凋亡。流式结果也证实原代细胞中干涉MCT4后导致细胞发生G1期阻滞。膜片钳结果证明:给予癫痫大鼠海马MCT4信号阻断剂后,神经元兴奋性增加。结论:在大鼠的原代培养星形胶质细胞中干涉MCT4可以导致细胞增殖能力减弱,流式细胞仪技术分析显示干涉MCT4促进细胞凋亡并且导致细胞发生G1期阻滞。而且干涉MCT4后促使神经元兴奋性增高。这些结果提示MCT4在正常星形胶质细胞的增殖、凋亡以及细胞周期方面扮演重要作用,并且MCT4表达对维持正常神经元兴奋性表达起到重要作用,因此MCT4在癫痫患者病灶中表达减少,可能是癫痫反复发作的一个重要原因。
     第三部分MCT4在癫痫发病中调控机制研究
     目的:研究MCT4在癫痫发病中调控机制研究。方法:建立大鼠皮层星形胶质细胞原代培养模型,在模型建立成功后将含有MCT4shRNA的慢病毒颗粒感染原代培养星形胶质细胞,然后收集蛋白利用西式印迹方法检测EAAT1表达情况。利用免疫共沉淀检测星形胶质细胞中MCT4是否和EAAT1相互结合。同时对所用癫痫样本进行免疫组织化学染色,检测MCT4和EAAT1在癫痫样本中表达情况。在原代培养的星形胶质细胞中加入放线菌酮,观察干涉MCT4后对EAAT1稳定性是否有影响。结果:大鼠星胶质细胞中干涉MCT4后可以导致EAAT1表达降低,免疫共沉淀证明了在原代培养星形胶质细胞中MCT4和EAAT1是相互结合的。免疫组织化学证实癫痫病灶中MCT4和EAAT1表达具有临床相关性。放线菌酮实验证实,在原代培养的星形胶质细胞中干涉MCT4可以导致EAAT1稳定性减弱。结论:星形胶质细胞中干涉MCT4可以导致EAAT1表达减少,并且免疫共沉淀也证实了在星形胶质细胞中EAAT1和MCT4相互作用,这提示在星形胶质细胞中MCT4可能调控EAAT1表达。斯皮尔曼等级相关性分析证实了MCT4和EAAT1在癫痫病灶中的表达具有临床相关性。放线菌酮实验进一步证实了在星形胶质细胞中干涉MCT4可以影响EAAT1转录后的稳定性。以上实验从多方向说明了MCT4和EAAT1密切相关,可能调控EAAT1表达,为临床上以MCT4为新的药物靶点开发新的抗癫痫药物提供充分的证据。
Epilepsy is characterized by a long term risk of recurrent seizures.Epilepsy isusually controlled, but not cured, with medication. However, more than30%ofpeople with epilepsy do not have seizure control even with the best availablemedications. Intractable epilepsy is a seizure disorder in which a patient's seizuresfail to come under control with treatment. For several decades, both in vitro and invivo models of seizures and epilepsy have been employed to unravel the molecularand cellular mechanisms underlying the occurrence of spontaneous recurrentseizures (SRS) the defining hallmark of the epileptic brain. However, despitegreat advances in our understanding of seizure genesis, investigators have yet todevelop reliable biomarkers and surrogate markers of the epileptogenic process.Sadly, the pathogenic mechanisms that produce the epileptic condition, especiallyafter precipitating events such as head trauma, inflammation, or prolonged febrile convulsions, are poorly understood. A major challenge has been the inherentcomplexity and heterogeneity of known epileptic syndromes and the differentialgenetic susceptibilities exhibited by patients at risk.Therefore, it is unlikely thatthere is only one fundamental pathophysiologic mechanism shared by all theepilepsies.Identification of antiepileptogenesis targets has been an overarching goalover the last decade, as current anticonvulsant medications appear to influence onlythe acute process of ictogenesis. Clearly, there is an urgent need to develop noveltherapeutic interventions that are disease modifying therapies that eithercompletely or partially prevent the emergence of SRS.An important secondary goalis to develop new treatments that can also lessen the burden of epilepsycomorbidities (e.g., cognitive impairment, mood disorders) by preventing orreducing the deleterious changes during the epileptogenic process. So far, themolecular and cellular changes reported during the presumed epileptogenesisprocess in animal models include neuronal injury and cell death, axonal anddendritic plasticity, presynaptic and postsynaptic modifications, neurogenesis,neuroinflammation, glial cell activation, vascular damage and angiogenesis,disruption of extracellular matrix integrity, as well as structural and functionalchanges in ion channels properties. In recent years, a variety of studies have foundthat the incidence of epilepsy and energy metabolism imbalances are closely related,the the energy metabolites imbalance can induce epileptic occurs.
     Glutamate is the primary excitatory neurotransmitter in the central nervous system(CNS), mechanisms that promote glutamatergic neurotransmission could playimportant roles in the development of epilepsy. Increased levels of extracellularglutamate in fact have been observed in human epileptic serum. In vivomicrodialysis studies also show elevated extracellular concentration of glutamate inthe epileptogenic cortex as compared to the nonepileptogenic cortex in patientswith temporal lobe epilepsy (TLE). These reports suggest that dysfunctionalextracellular glutamate cycling and reuptake may play a vital role in the genesisand maintenance of focal epileptic activity.Glutamate transporters, also referred toas excitatory amino acid transporters (EAAT), represent the sole mechanism of active reuptake of glutamate into the astrocytes and neurons and are essential todampen neuronal excitation following glutamate release at synapses.
     Monocarboxylate transporters (MCT) facilitates the transport of monocarboxylatefuels (lactate and pyruvate) and acidic drugs, such as valproic acid, across cellmembranes. A resent research shows that MCT1is deficient on microvessels in theepileptogenic hippocampal formation in patients with medicationrefractoryepilepsy. To further define the role of MCT in the pathophysiology ofmedicationrefractory epilepsy, we used immunohistochemistry, western blot andwhole cell clamp analysis to localize and quantify the transporters in thehippocampal formation in the novel and highly relevant rat model ofedicationrefractory epilepsy and in nonepileptic control animals. We were also todetermine the expression and distribution of MCT in tissue samples from therefractory cortex of patients who had been surgically treated for refractory epilepsy.We compared these tissues with histologically normal samples from controls. Inour present study, we found MCT4was lost on hippocampus and piriform corticesin the lithium-pilocarpine model. In addition, we were able tocoimmunoprecipitate MCT4and EAAT1in primary rat astrocytes. We also foundRNAi-mediated inhibited of MCT4can decrease the expression of EAAT1inprimary rat astrocytes. It is possible that EAAT1is a substrate for MCT4, implyingMCT4may directly modulate EAAT1in primary rat astrocytes. Therefore, wehypothesize that the loss of MCT in brain is mechanistically involved in thepathophysiology of intractable epilepsy, and propose that re-expression of MCTmay represent a novel therapeutic approach for this disease.This study is supposedto confirm the above hypothesis. The results from this study will shed light on newstrategic treatment for epilepsy. The following research has been conducted on thisbasis.
     Part1The expression of monocarboxylate transporter4in epilepsy animalmodels and clinical epilepsy sample
     Objective: The purpose of our research is to explore the expression of monocarboxylate transporter4in epilepsy animal models and clinical epilepsysample. Methods:The cases included in the study were obtained from the files ofthe Department of Neurosurgery of Tangdu Hospital of the Fourth Military MedicalUniversity. We examined30specimens obtained from patients undergoing surgeryfor medically intractable epilepsy. The control samples obtained from12patientswho underwent neurosurgical intervention for increased intracranial pressure due tohead trauma. The li-pilo model has been established. The rats were randomlydivided into a normal control and eight Li-pilo model (SE4h、SE12h、SE1d、 SE3d、SE7d、SE14d、SE28d、SE60d) groups. After the success of the model, Rattemporal lobe and hippocampal tissue collected at different time points. The epilepsyrat cortex and hippocampus expression of MCT4was studied by Western blot. Theexpression of MCT4in the cortex of patients with intractable epilepsy was studiedby western blot and immnohistochemistry. Meanwhie, these clinical samples wasstudied by methylation-specific PCR. Results: In western blot test, the temporalcortex MCT4protein level was shown to be low in the acute phase of the epilepsymodel, the expression of MCT4protein decreased dramatically in the latent phase ofthe epilepsy model. The expression of MCT4in the hippocampus is consistent withthe expression in temporal cortex. In brain tissue, decreased MCT4proteinexpression has been found in the cortex of patients with intractable epilepsy. We alsofound hypermethylation of MCT4Promoter Contributes to the down-regulation ofMCT4in human epileptic brian tissue. Conclusion: Both in the epilepsy model orclinical epilepsy sample found MCT4expression reduced dramatically. The studyalso found that hypermethylation of MCT4Promoter Contributes to the decreasedexpression of MCT4in epileptic tissue.Based on the phenomenon of decreasedMCT4expression in the cortex of patients with intractable epilepsy, we suggest thatMCT4may play a role in intractableepilepsy.
     Part2The role Of MCT4in epileptogenesis
     Objective: To explore the role of MCT4in epileptogenesis. Methods: The model of primary culture rat cortical astrocytes has been established. Primary culturecells were transduced with the lentiviral particles containing MCT4shRNAsequences, these cells were identified by immunofluorescence. Measurement ofthese cells growth by Methyl Thiazolyl Tetrazolium Assay (MTT). Apoptosis andcell cycle of these cells were analyzed by flow cytometry. Moreover, the MCT4blockers are used to observe the effects of the blockers on the electrical activity ofneurons. Results: The model of MCT4shRNA primary culture rat corticalastrocytes was successfully established. In our study, the cell growth curvesshowed that the growth of MCT4shRNA cells was notably inhibited in atime-dependent manner. We also found the decreased cell number was attributableto apoptosis induced by MCT4-targeting shRNA. To explore the potentialcontribution of MCT4shRNA to cell cycle progression, we used flow cytometry toevaluate the cell cycle distribution. The results showed that MCT4shRNA cellsaccumulated in G0/G1phase, but the cell numbers in G2/M phase were reducedsharply. The patch clamp results show that the MCT4signal blockers CHCincreased neuronal excitability. Conclusion: In the current study, we demonstratedthat suppression of MCT4inhibited primary culture rat cortical astrocytes growth.In the model of primary culture rat cortical astrocytes, we found suppression ofMCT4inhibited proliferation and induced apoptosis. We also demonstrated thatsuppression of MCT4increased neuronal excitability. Because CHC increasedneuronal excitability and that depletion of MCT4in primary culture rat corticalastrocytes suppressed proliferation and induced apoptosis, MCT4may play animportant role in epileptogenesis.
     Part3The potential molecular mechanisms of MCT4in epileptogenesis
     Objective: To explore the potential molecular mechanisms of MCT4inepileptogenesis. Methods: The model of primary culture rat cortical astrocytes hasbeen established. Primary culture astrocytes were transduced with the lentiviralparticles containing MCT4shRNA sequences, Western blot analyses wereperformed as described above. Whole primary culture rat cortical astrocytes lysates were obtained by resuspending cell pellets in RIPA buffer. Lysates were incubatedovernight with EAAT1antibody before being absorbed with proteinA/G PLUS agarose beads. Precipitated immunocomplexes were released by boilingwith2×SDS electrophoresis sample buffer and were prepared for Western blotanalysis. For immunohistochemical analysis, clinical sample sections were stainedand evaluated. Primary culture rat cortical astrocytes stably transfected with thelentiviral particles containing MCT4shRNA sequences were treated with20mg/mlcycloheximide (CHX) for0,1,3,6, and12h. After treatments, Western blotanalyses were performed. Results: Western blot results demonstrated decreasedexpression levels of EAAT1in MCT4silence astrocytes, compared with controlcells. We found MCT4was coimmunoprecipitated with EAAT1when anti-EAAT1was used to pull down EAAT1protein and its associated proteins. Wedemonstrated that the expression of MCT4and EAAT1has clinical relevance inclinical epilepsy sample. We also found the decrease in the EAAT1protein levelfor MCT4silence astrocytes correlated with a decrease in its stability. Conclusion:In the current study, we demonstrated that suppression of MCT4contributes to thedecreased expression of EAAT1in primary culture rat cortical astrocytes. Inaddition, we were able to coimmunoprecipitate MCT4and EAAT1in imary culturerat cortical astrocytes. A clinical relevance comparison of the expressions of MCT4and EAAT1demonstrated that EAAT1expression in clinical epilepsy sample wassimilarly associated with MCT4expression.CHX treatment revealed that MCT4bindingEAAT1could stabilize EAAT1expression in primary culture rat corticalastrocytes. Taken together, these results provide the biological basis for MCT4as acandidate therapeutic target for antiepileptic drugs.
引文
1. Arroyo S, Brodie MJ, Avanzini G, Baumgartner C, Chiron C, Dulac O, French JAand Serratosa JM. Is refractory epilepsy preventable? Epilepsia.2002;43(4):437-444.
    2. Berg AT and Kelly MM. Defining intractability: comparisons among publisheddefinitions. Epilepsia.2006;47(2):431-436.
    3. Kobow K, Auvin S, Jensen F, Loscher W, Mody I, Potschka H, Prince D, Sierra A,Simonato M, Pitkanen A, Nehlig A and Rho JM. Finding a better drug for epilepsy:antiepileptogenesis targets. Epilepsia.2012;53(11):1868-1876.
    4. Gibbons MB, Smeal RM, Takahashi DK, Vargas JR and Wilcox KS. Contributionsof astrocytes to epileptogenesis following status epilepticus: Opportunities forpreventive therapy? Neurochemistry international.2012.
    5. Schwartzkroin Ph DP. Molecular plasticity in epilepsy and epileptogenesis: emergingtherapeutic targets from new insight into basic mechanisms. Epilepsia.2012;53Suppl9:1.
    6. Tan ML, Ng A, Pandher PS, Sashindranath M, Hamilton JA, Davis SM, O'Brien TJ,Medcalf RL, Yan B and Jones NC. Tissue plasminogen activator does not alterdevelopment of acquired epilepsy. Epilepsia.2012;53(11):1998-2004.
    7. Pitkanen A, Kharatishvili I, Karhunen H, Lukasiuk K, Immonen R, Nairismagi J,Grohn O and Nissinen J. Epileptogenesis in experimental models. Epilepsia.2007;48Suppl2:13-20.
    8. Shorvon S. Clinical trials in acute repetitive seizures and status epilepticus. Epilepticdisorders: international epilepsy journal with videotape.2012;14(2):138-147.
    9. Schauwecker PE. The effects of glycemic control on seizures and seizure-inducedexcitotoxic cell death. BMC neuroscience.2012;13:94.
    10. Verrotti A, Scaparrotta A, Olivieri C and Chiarelli F. Seizures and type1diabetesmellitus: current state of knowledge. European journal of endocrinology/EuropeanFederation of Endocrine Societies.2012;167(6):749-758.
    11. Pro S, Randi F, Pulitano P, Vicenzini E and Mecarelli O. Non-convulsive statusepilepticus characterised exclusively by a language disorder induced by non-ketotichyperglycaemia. Epileptic disorders: international epilepsy journal with videotape.2011;13(2):193-196.
    12. Goto H, Kumagai T and Momozaki N. MRI findings of occipital seizures innon-ketotic hyperglycemia. Intern Med.2011;50(4):367-368.
    13. Martinez-Fernandez R, Gelabert A, Pablo MJ, Carmona O and Molins A. Statusepilepticus with visual seizures in ketotic hyperglycemia. Epilepsy&behavior: E&B.2009;16(4):660-662.
    14. Tiras R, Mutlu A, Ozben S, Aydemir T and Ozer F. Forced eye closure-inducedreflex seizure and non-ketotic hyperglycemia. Annals of Saudi medicine.2009;29(4):313-315.
    15. Yamada KA. Calorie restriction and glucose regulation. Epilepsia.2008;49Suppl8:94-96.
    16. Stanley CA. Two genetic forms of hyperinsulinemic hypoglycemia caused bydysregulation of glutamate dehydrogenase. Neurochemistry international.2011;59(4):465-472.
    17. Genc S, Kurnaz IA and Ozilgen M. Astrocyte-neuron lactate shuttle may boost moreATP supply to the neuron under hypoxic conditions--in silico study supported by invitro expression data. BMC systems biology.2011;5:162.
    18. Figley CR. Lactate transport and metabolism in the human brain: implications for theastrocyte-neuron lactate shuttle hypothesis. J Neurosci.2011;31(13):4768-4770.
    19. Mangia S, DiNuzzo M, Giove F, Carruthers A, Simpson IA and Vannucci SJ.Response to 'comment on recent modeling studies of astrocyte-neuron metabolicinteractions': much ado about nothing. Journal of cerebral blood flow andmetabolism: official journal of the International Society of Cerebral Blood Flow andMetabolism.2011;31(6):1346-1353.
    20. Erlichman JS, Hewitt A, Damon TL, Hart M, Kurascz J, Li A and Leiter JC.Inhibition of monocarboxylate transporter2in the retrotrapezoid nucleus in rats: atest of the astrocyte-neuron lactate-shuttle hypothesis. J Neurosci.2008;28(19):4888-4896.
    21. Zil'berter Iu I and Zil'berter TM.[Power metabolism from neurons and a glia to thewhole brain: norm, pathology and correction]. Uspekhi fiziologicheskikh nauk.2012;43(2):37-54.
    22. Lauritzen F, de Lanerolle NC, Lee TS, Spencer DD, Kim JH, Bergersen LH and EidT. Monocarboxylate transporter1is deficient on microvessels in the humanepileptogenic hippocampus. Neurobiology of disease.2011;41(2):577-584.
    23. Lauritzen F, Perez EL, Melillo ER, Roh JM, Zaveri HP, Lee TS, Wang Y, BergersenLH and Eid T. Altered expression of brain monocarboxylate transporter1in modelsof temporal lobe epilepsy. Neurobiol Dis.2011;45(1):165-176.
    24. McCagh J, Fisk JE and Baker GA. Epilepsy, psychosocial and cognitive functioning.Epilepsy Res.2009;86(1):1-14.
    25. Banerjee PN, Filippi D and Allen Hauser W. The descriptive epidemiology ofepilepsy-a review. Epilepsy Res.2009;85(1):31-45.
    26. Hsu YC, Yang FC, Perng CL, Tso AC, Wong LJ and Hsu CH. Adult-onset ofmitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes(MELAS) syndrome presenting as acute meningoencephalitis: a case report. J EmergMed.2009;43(3):e163-166.
    27. Waldbaum S and Patel M. Mitochondria, oxidative stress, and temporal lobe epilepsy.Epilepsy Res.2010;88(1):23-45.
    28. Fu YK, Chang CJ, Chen KY, Hwang LC, Wu KH, Chang KW, Jan ML, Chen CCand Chang CH. Imaging of regional metabolic activity by (18)F-FDG/PET in ratswith transient cerebral ischemia. Appl Radiat Isot.2009;67(10):1743-1747.
    29. Willmann O, Wennberg R, May T, Woermann FG and Pohlmann-Eden B. Thecontribution of18F-FDG PET in preoperative epilepsy surgery evaluation forpatients with temporal lobe epilepsy A meta-analysis. Seizure.2007;16(6):509-520.
    30. Bough KJ and Rho JM. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia.2007;48(1):43-58.
    31. Maalouf M, Sullivan PG, Davis L, Kim DY and Rho JM. Ketones inhibitmitochondrial production of reactive oxygen species production following glutamateexcitotoxicity by increasing NADH oxidation. Neuroscience.2007;145(1):256-264.
    32. Nazarewicz RR, Zenebe WJ, Parihar A, Parihar MS, Vaccaro M, Rink C, Sen CKand Ghafourifar P.12(S)-hydroperoxyeicosatetraenoic acid (12-HETE) increasesmitochondrial nitric oxide by increasing intramitochondrial calcium. Arch BiochemBiophys.2007;468(1):114-120.
    33. Yamamoto HA and Mohanan PV. Effect of alpha-ketoglutarate and oxaloacetate onbrain mitochondrial DNA damage and seizures induced by kainic acid in mice.Toxicol Lett.2003;143(2):115-122.
    34. Jarrett SG, Liang LP, Hellier JL, Staley KJ and Patel M. Mitochondrial DNA damageand impaired base excision repair during epileptogenesis. Neurobiol Dis.2008;30(1):130-138.
    35. Wang Y and Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronaldeath. Apoptosis: an international journal on programmed cell death.2010;15(11):1382-1402.
    36. Janjua NA, Itano T, Kugoh T, Hosokawa K, Nakano M, Matsui H and Hatase O.Familial increase in plasma glutamic acid in epilepsy. Epilepsy Res.1992;11(1):37-44.
    37. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, KrystalJH, Spencer DD and Abi-Saab WM. Extracellular metabolites in the cortex andhippocampus of epileptic patients. Annals of neurology.2005;57(2):226-235.
    38. Kammerer M, Brawek B, Freiman TM, Jackisch R and Feuerstein TJ. Effects ofantiepileptic drugs on glutamate release from rat and human neocorticalsynaptosomes. Naunyn-Schmiedeberg's archives of pharmacology.2011;383(5):531-542.
    39. Utoguchi N and Audus KL. Carrier-mediated transport of valproic acid in BeWocells, a human trophoblast cell line. International journal of pharmaceutics.2000;195(1-2):115-124.
    40. Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N andKuncl RW. Localization of neuronal and glial glutamate transporters. Neuron.1994;13(3):713-725.
    41. Arriza JL, Eliasof S, Kavanaugh MP and Amara SG. Excitatory amino acidtransporter5, a retinal glutamate transporter coupled to a chloride conductance. ProcNatl Acad Sci U S A.1997;94(8):4155-4160.
    42. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H,Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, et al.Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporterGLT-1. Science.1997;276(5319):1699-1702.
    43. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, vanVeelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH and de Graan PN.Distribution of glutamate transporters in the hippocampus of patients withpharmaco-resistant temporal lobe epilepsy. Brain: a journal of neurology.2002;125(Pt1):32-43.
    44. Peghini P, Janzen J and Stoffel W. Glutamate transporter EAAC-1-deficient micedevelop dicarboxylic aminoaciduria and behavioral abnormalities but noneurodegeneration. The EMBO journal.1997;16(13):3822-3832.
    45. Kirat D, Matsuda Y, Yamashiki N, Hayashi H and Kato S. Expression, cellularlocalization, and functional role of monocarboxylate transporter4(MCT4) in thegastrointestinal tract of ruminants. Gene.2007;391(1-2):140-149.
    46. Halestrap AP and Meredith D. The SLC16gene family-from monocarboxylatetransporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch.2004;447(5):619-628.
    47. Pinheiro C, Longatto-Filho A, Scapulatempo C, Ferreira L, Martins S, Pellerin L,Rodrigues M, Alves VA, Schmitt F and Baltazar F. Increased expression ofmonocarboxylate transporters1,2, and4in colorectal carcinomas. Virchows Arch.2008;452(2):139-146.
    48. Halestrap AP and Price NT. The proton-linked monocarboxylate transporter (MCT)family: structure, function and regulation. Biochem J.1999;343Pt2:281-299.
    49. Pierre K, Pellerin L, Debernardi R, Riederer BM and Magistretti PJ. Cell-specificlocalization of monocarboxylate transporters, MCT1and MCT2, in the adult mousebrain revealed by double immunohistochemical labeling and confocal microscopy.Neuroscience.2000;100(3):617-627.
    50. Vannucci SJ and Simpson IA. Developmental switch in brain nutrient transporterexpression in the rat. Am J Physiol Endocrinol Metab.2003;285(5):E1127-1134.
    51. Pierre K, Magistretti PJ and Pellerin L. MCT2is a major neuronal monocarboxylatetransporter in the adult mouse brain. J Cereb Blood Flow Metab.2002;22(5):586-595.
    52. Pierre K and Pellerin L. Monocarboxylate transporters in the central nervous system:distribution, regulation and function. J Neurochem.2005;94(1):1-14.
    53. Halestrap AP. The monocarboxylate transporter family--Structure and functionalcharacterization. IUBMB Life.2012;64(1):1-9.
    54. Meredith D and Christian HC. The SLC16monocaboxylate transporter family.Xenobiotica.2008;38(7-8):1072-1106.
    55. Poole RC and Halestrap AP. Transport of lactate and other monocarboxylates acrossmammalian plasma membranes. The American journal of physiology.1993;264(4Pt1):C761-782.
    56. Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH and Endou H. Expressioncloning of a Na+-independent aromatic amino acid transporter with structuralsimilarity to H+/monocarboxylate transporters. J Biol Chem.2001;276(20):17221-17228.
    57. Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP and Visser TJ.Identification of monocarboxylate transporter8as a specific thyroid hormonetransporter. J Biol Chem.2003;278(41):40128-40135.
    58. Halestrap AP and Wilson MC. The monocarboxylate transporter family--role andregulation. IUBMB life.2012;64(2):109-119.
    59. Halestrap AP and Denton RM. Specific inhibition of pyruvate transport in rat livermitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. BiochemJ.1974;138(2):313-316.
    60. Deuticke B. Monocarboxylate transport in erythrocytes. The Journal of membranebiology.1982;70(2):89-103.
    61. Poole RC and Halestrap AP. N-terminal protein sequence analysis of the rabbiterythrocyte lactate transporter suggests identity with the cloned monocarboxylatetransport protein MCT1. Biochem J.1994;303(Pt3):755-759.
    62. Garcia CK, Goldstein JL, Pathak RK, Anderson RG and Brown MS. Molecularcharacterization of a membrane transporter for lactate, pyruvate, and othermonocarboxylates: implications for the Cori cycle. Cell.1994;76(5):865-873.
    63. Carpenter L and Halestrap AP. The kinetics, substrate and inhibitor specificity of thelactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pHindicator BCECF. Biochem J.1994;304(Pt3):751-760.
    64. Broer S, Schneider HP, Broer A, Rahman B, Hamprecht B and Deitmer JW.Characterization of the monocarboxylate transporter1expressed in Xenopus laevisoocytes by changes in cytosolic pH. Biochem J.1998;333(Pt1):167-174.
    65. Manning Fox JE, Meredith D and Halestrap AP. Characterisation of humanmonocarboxylate transporter4substantiates its role in lactic acid efflux from skeletalmuscle. J Physiol.2000;529Pt2:285-293.
    66. Murray CM, Hutchinson R, Bantick JR, Belfield GP, Benjamin AD, Brazma D,Bundick RV, Cook ID, Craggs RI, Edwards S, Evans LR, Harrison R, Holness E, etal. Monocarboxylate transporter MCT1is a target for immunosuppression. Naturechemical biology.2005;1(7):371-376.
    67. Guile SD, Bantick JR, Cheshire DR, Cooper ME, Davis AM, Donald DK, Evans R,Eyssade C, Ferguson DD, Hill S, Hutchinson R, Ingall AH, Kingston LP, et al. Potentblockers of the monocarboxylate transporter MCT1: novel immunomodulatorycompounds. Bioorg Med Chem Lett.2006;16(8):2260-2265.
    68. Ovens MJ, Manoharan C, Wilson MC, Murray CM and Halestrap AP. The inhibitionof monocarboxylate transporter2(MCT2) by AR-C155858is modulated by theassociated ancillary protein. Biochem J.2010;431(2):217-225.
    69. Vinnakota KC and Beard DA. Kinetic analysis and design of experiments to identifythe catalytic mechanism of the monocarboxylate transporter isoforms4and1.Biophys J.2011;100(2):369-380.
    70. Manoharan C, Wilson MC, Sessions RB and Halestrap AP. The role of chargedresidues in the transmembrane helices of monocarboxylate transporter1and itsancillary protein basigin in determining plasma membrane expression and catalyticactivity. Mol Membr Biol.2006;23(6):486-498.
    71. Wilson MC, Meredith D, Bunnun C, Sessions RB and Halestrap AP. Studies on theDIDS-binding site of monocarboxylate transporter1suggest a homology model ofthe open conformation and a plausible translocation cycle. J Biol Chem.2009;284(30):20011-20021.
    72. Edlund GL and Halestrap AP. The kinetics of transport of lactate and pyruvate intorat hepatocytes. Evidence for the presence of a specific carrier similar to that inerythrocytes. Biochem J.1988;249(1):117-126.
    73. Poole RC, Halestrap AP, Price SJ and Levi AJ. The kinetics of transport of lactateand pyruvate into isolated cardiac myocytes from guinea pig. Kinetic evidence for thepresence of a carrier distinct from that in erythrocytes and hepatocytes. Biochem J.1989;264(2):409-418.
    74. Garcia CK, Brown MS, Pathak RK and Goldstein JL. cDNA cloning of MCT2, asecond monocarboxylate transporter expressed in different cells than MCT1. J BiolChem.1995;270(4):1843-1849.
    75. Broer S, Broer A, Schneider HP, Stegen C, Halestrap AP and Deitmer JW.Characterization of the high-affinity monocarboxylate transporter MCT2in Xenopuslaevis oocytes. Biochem J.1999;341(Pt3):529-535.
    76. Jackson VN, Price NT, Carpenter L and Halestrap AP. Cloning of themonocarboxylate transporter isoform MCT2from rat testis provides evidence thatexpression in tissues is species-specific and may involve post-transcriptionalregulation. Biochem J.1997;324(Pt2):447-453.
    77. Bergersen L, Waerhaug O, Helm J, Thomas M, Laake P, Davies AJ, Wilson MC,Halestrap AP and Ottersen OP. A novel postsynaptic density protein: themonocarboxylate transporter MCT2is co-localized with delta-glutamate receptors inpostsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res.2001;136(4):523-534.
    78. Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylatetransporter subtypes in brain and muscle. Neuroscience.2007;145(1):11-19.
    79. Yoon H, Fanelli A, Grollman EF and Philp NJ. Identification of a uniquemonocarboxylate transporter (MCT3) in retinal pigment epithelium. BiochemBiophys Res Commun.1997;234(1):90-94.
    80. Grollman EF, Philp NJ, McPhie P, Ward RD and Sauer B. Determination of transportkinetics of chick MCT3monocarboxylate transporter from retinal pigment epitheliumby expression in genetically modified yeast. Biochemistry.2000;39(31):9351-9357.
    81. Philp N, Chu P, Pan TC, Zhang RZ, Chu ML, Stark K, Boettiger D, Yoon H andKieber-Emmons T. Developmental expression and molecular cloning of REMP, anovel retinal epithelial membrane protein. Experimental cell research.1995;219(1):64-73.
    82. Philp NJ, Yoon H and Grollman EF. Monocarboxylate transporter MCT1is locatedin the apical membrane and MCT3in the basal membrane of rat RPE. The Americanjournal of physiology.1998;274(6Pt2):R1824-1828.
    83. Bergersen L, Johannsson E, Veruki ML, Nagelhus EA, Halestrap A, Sejersted OMand Ottersen OP. Cellular and subcellular expression of monocarboxylatetransporters in the pigment epithelium and retina of the rat. Neuroscience.1999;90(1):319-331.
    84. Price NT, Jackson VN and Halestrap AP. Cloning and sequencing of four newmammalian monocarboxylate transporter (MCT) homologues confirms the existenceof a transporter family with an ancient past. Biochem J.1998;329(Pt2):321-328.
    85. Wilson MC, Jackson VN, Heddle C, Price NT, Pilegaard H, Juel C, Bonen A,Montgomery I, Hutter OF and Halestrap AP. Lactic acid efflux from white skeletalmuscle is catalyzed by the monocarboxylate transporter isoform MCT3. J Biol Chem.1998;273(26):15920-15926.
    86. Hatta H, Tonouchi M, Miskovic D, Wang Y, Heikkila JJ and Bonen A.Tissue-specific and isoform-specific changes in MCT1and MCT4in heart and soleusmuscle during a1-yr period. Am J Physiol Endocrinol Metab.2001;281(4):E749-756.
    87. Dimmer KS, Friedrich B, Lang F, Deitmer JW and Broer S. The low-affinitymonocarboxylate transporter MCT4is adapted to the export of lactate in highlyglycolytic cells. Biochem J.2000;350Pt1:219-227.
    88. Lafreniere RG, Carrel L and Willard HF. A novel transmembrane transporterencoded by the XPCT gene in Xq13.2. Human molecular genetics.1994;3(7):1133-1139.
    89. Visser WE, Friesema EC and Visser TJ. Minireview: thyroid hormone transporters:the knowns and the unknowns. Mol Endocrinol.2011;25(1):1-14.
    90. Friesema EC, Grueters A, Biebermann H, Krude H, von Moers A, Reeser M, BarrettTG, Mancilla EE, Svensson J, Kester MH, Kuiper GG, Balkassmi S, Uitterlinden AG,et al. Association between mutations in a thyroid hormone transporter and severeX-linked psychomotor retardation. Lancet.2004;364(9443):1435-1437.
    91. Poole RC, Sansom CE and Halestrap AP. Studies of the membrane topology of therat erythrocyte H+/lactate cotransporter (MCT1). Biochem J.1996;320(Pt3):817-824.
    92. Poole RC and Halestrap AP. Interaction of the erythrocyte lactate transporter(monocarboxylate transporter1) with an integral70-kDa membrane glycoprotein ofthe immunoglobulin superfamily. J Biol Chem.1997;272(23):14624-14628.
    93. Iacono KT, Brown AL, Greene MI and Saouaf SJ. CD147immunoglobulinsuperfamily receptor function and role in pathology. Exp Mol Pathol.2007;83(3):283-295.
    94. Kirk P, Wilson MC, Heddle C, Brown MH, Barclay AN and Halestrap AP. CD147istightly associated with lactate transporters MCT1and MCT4and facilitates their cellsurface expression. The EMBO journal.2000;19(15):3896-3904.
    95. Zhao C, Wilson MC, Schuit F, Halestrap AP and Rutter GA. Expression anddistribution of lactate/monocarboxylate transporter isoforms in pancreatic islets andthe exocrine pancreas. Diabetes.2001;50(2):361-366.
    96. Philp NJ, Ochrietor JD, Rudoy C, Muramatsu T and Linser PJ. Loss of MCT1,MCT3, and MCT4expression in the retinal pigment epithelium and neural retina ofthe5A11/basigin-null mouse. Invest Ophthalmol Vis Sci.2003;44(3):1305-1311.
    97. Leroy C, Pierre K, Simpson IA, Pellerin L, Vannucci SJ and Nehlig A. Temporalchanges in mRNA expression of the brain nutrient transporters in thelithium-pilocarpine model of epilepsy in the immature and adult rat. Neurobiol Dis.2011;43(3):588-597.
    98. Lauritzen F, Perez EL, Melillo ER, Roh JM, Zaveri HP, Lee TS, Wang Y, BergersenLH and Eid T. Altered expression of brain monocarboxylate transporter1in modelsof temporal lobe epilepsy. Neurobiol Dis.2012;45(1):165-176.
    99. Sen E, Basu A, Willing LB, Uliasz TF, Myrkalo JL, Vannucci SJ, Hewett SJ andLevison SW. Pre-conditioning induces the precocious differentiation of neonatalastrocytes to enhance their neuroprotective properties. ASN Neuro.2011;3(3):e00062.
    100. Korn T, Rao M and Magnus T. Autoimmune modulation of astrocyte-mediatedhomeostasis. Neuromolecular medicine.2007;9(1):1-16.
    101. Debernardi R, Magistretti PJ and Pellerin L. Trans-inhibition of glutamate transportprevents excitatory amino acid-induced glycolysis in astrocytes. Brain Res.1999;850(1-2):39-46.
    102. Voutsinos-Porche B, Bonvento G, Tanaka K, Steiner P, Welker E, Chatton JY,Magistretti PJ and Pellerin L. Glial glutamate transporters mediate a functionalmetabolic crosstalk between neurons and astrocytes in the mouse developing cortex.Neuron.2003;37(2):275-286.
    103. Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ and Pellerin L. Lactate is apreferential oxidative energy substrate over glucose for neurons in culture. Journal ofcerebral blood flow and metabolism: official journal of the International Society ofCerebral Blood Flow and Metabolism.2003;23(11):1298-1306.
    104. Danbolt NC. The high affinity uptake system for excitatory amino acids in the brain.Progress in neurobiology.1994;44(4):377-396.
    105. Ma E and Haddad GG. Expression and localization of Na+/H+exchangers in ratcentral nervous system. Neuroscience.1997;79(2):591-603.
    106. Glien M, Brandt C, Potschka H, Voigt H, Ebert U and Loscher W. Repeatedlow-dose treatment of rats with pilocarpine: low mortality but high proportion of ratsdeveloping epilepsy. Epilepsy Res.2001;46(2):111-119.
    107.Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure.Electroencephalography and clinical neurophysiology.1972;32(3):281-294.
    108. Centeno RS, Yacubian EM, Sakamoto AC, Ferraz AF, Junior HC and Cavalheiro S.Pre-surgical evaluation and surgical treatment in children with extratemporal epilepsy.Child's nervous system: ChNS: official journal of the International Society forPediatric Neurosurgery.2006;22(8):945-959.
    109. Wiebe S, Blume WT, Girvin JP and Eliasziw M. A randomized, controlled trial ofsurgery for temporal-lobe epilepsy. The New England journal of medicine.2001;345(5):311-318.
    110. Spencer SS. When should temporal-lobe epilepsy be treated surgically? Lancetneurology.2002;1(6):375-382.
    111. Klitgaard H, Matagne A, Vanneste-Goemaere J and Margineanu DG.Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of statusepilepticus on electrophysiological and neuropathological alterations. Epilepsyresearch.2002;51(1-2):93-107.
    112. Loscher W. Animal models of epilepsy for the development of antiepileptogenic anddisease-modifying drugs. A comparison of the pharmacology of kindling andpost-status epilepticus models of temporal lobe epilepsy. Epilepsy research.2002;50(1-2):105-123.
    113. Li WE and Nagy JI. Activation of fibres in rat sciatic nerve alters phosphorylationstate of connexin-43at astrocytic gap junctions in spinal cord: evidence for junctionregulation by neuronal-glial interactions. Neuroscience.2000;97(1):113-123.
    114. Hogan RE, Bucholz RD and Joshi S. Hippocampal deformation-based shape analysisin epilepsy and unilateral mesial temporal sclerosis. Epilepsia.2003;44(6):800-806.
    115. Falconer MA, Serafetinides EA and Corsellis JA. Etiology and Pathogenesis ofTemporal Lobe Epilepsy. Archives of neurology.1964;10:233-248.
    116. Fischer W, Praetor K, Metzner L, Neubert RH and Brandsch M. Transport ofvalproate at intestinal epithelial (Caco-2) and brain endothelial (RBE4) cells:mechanism and substrate specificity. European journal of pharmaceutics andbiopharmaceutics: official journal of Arbeitsgemeinschaft fur PharmazeutischeVerfahrenstechnik eV.2008;70(2):486-492.
    117. McCarthy KD and de Vellis J. Preparation of separate astroglial and oligodendroglialcell cultures from rat cerebral tissue. J Cell Biol.1980;85(3):890-902.
    118. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC. Potent andspecific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature.1998;391(6669):806-811.
    119. Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J, RooneyDL, Zhang M, Ihrig MM, McManus MT, Gertler FB, Scott ML and Van Parijs L. Alentivirus-based system to functionally silence genes in primary mammalian cells,stem cells and transgenic mice by RNA interference. Nat Genet.2003;33(3):401-406.
    120. Bough K. Energy metabolism as part of the anticonvulsant mechanism of theketogenic diet. Epilepsia.2008;49Suppl8:91-93.
    121. Pan JW, Bebin EM, Chu WJ and Hetherington HP. Ketosis and epilepsy:31Pspectroscopic imaging at4.1T. Epilepsia.1999;40(6):703-707.
    122. Williamson A, Patrylo PR, Pan J, Spencer DD and Hetherington H. Correlationsbetween granule cell physiology and bioenergetics in human temporal lobe epilepsy.Brain: a journal of neurology.2005;128(Pt5):1199-1208.
    123. Touret M, Parrot S, Denoroy L, Belin MF and Didier-Bazes M. Glutamatergicalterations in the cortex of genetic absence epilepsy rats. BMC neuroscience.2007;8:69.
    124. Kang N, Xu J, Xu Q, Nedergaard M and Kang J. Astrocytic glutamaterelease-induced transient depolarization and epileptiform discharges in hippocampalCA1pyramidal neurons. Journal of neurophysiology.2005;94(6):4121-4130.
    125. Storck T, Schulte S, Hofmann K and Stoffel W. Structure, expression, and functionalanalysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. ProcNatl Acad Sci U S A.1992;89(22):10955-10959.
    126. McMahon HT and Nicholls DG. Glutamine and aspartate loading of synaptosomes: areevaluation of effects on calcium-dependent excitatory amino acid release. JNeurochem.1990;54(2):373-380.
    127. Levi G and Raiteri M. Carrier-mediated release of neurotransmitters. Trends inneurosciences.1993;16(10):415-419.
    128. Ullian EM, Sapperstein SK, Christopherson KS and Barres BA. Control of synapsenumber by glia. Science.2001;291(5504):657-661.
    129. Pfrieger FW. Role of glia in synapse development. Current opinion in neurobiology.2002;12(5):486-490.
    130. Ullian EM, Christopherson KS and Barres BA. Role for glia in synaptogenesis. Glia.2004;47(3):209-216.
    131. Nagler K, Mauch DH and Pfrieger FW. Glia-derived signals induce synapseformation in neurones of the rat central nervous system. J Physiol.2001;533(Pt3):665-679.
    132. He F and Sun YE. Glial cells more than support cells? The international journal ofbiochemistry&cell biology.2007;39(4):661-665.
    133. Slezak M and Pfrieger FW. New roles for astrocytes: regulation of CNSsynaptogenesis. Trends in neurosciences.2003;26(10):531-535.
    134. Pfrieger FW. Outsourcing in the brain: do neurons depend on cholesterol delivery byastrocytes? BioEssays: news and reviews in molecular, cellular and developmentalbiology.2003;25(1):72-78.
    135. Mauch DH, Nagler K, Schumacher S, Goritz C, Muller EC, Otto A and Pfrieger FW.CNS synaptogenesis promoted by glia-derived cholesterol. Science.2001;294(5545):1354-1357.
    136. Hu R, Cai WQ, Wu XG and Yang Z. Astrocyte-derived estrogen enhances synapseformation and synaptic transmission between cultured neonatal rat cortical neurons.Neuroscience.2007;144(4):1229-1240.
    137. Pfrieger FW and Barres BA. Synaptic efficacy enhanced by glial cells in vitro.Science.1997;277(5332):1684-1687.
    138. Barres BA. What is a glial cell? Glia.2003;43(1):4-5.
    139. Nadkarni S, Jung P and Levine H. Astrocytes optimize the synaptic transmission ofinformation. PLoS computational biology.2008;4(5):e1000088.
    140. Nadkarni S and Jung P. Modeling synaptic transmission of the tripartite synapse.Physical biology.2007;4(1):1-9.
    141. Oliet SH, Piet R and Poulain DA. Control of glutamate clearance and synapticefficacy by glial coverage of neurons. Science.2001;292(5518):923-926.
    142. Schousboe A. Role of astrocytes in the maintenance and modulation of glutamatergicand GABAergic neurotransmission. Neurochemical research.2003;28(2):347-352.
    143. Danbolt NC. Glutamate uptake. Progress in neurobiology.2001;65(1):1-105.
    144. Cloix JF and Hevor T. Epilepsy, regulation of brain energy metabolism andneurotransmission. Current medicinal chemistry.2009;16(7):841-853.
    145. Urban Z, Michels VV, Thibodeau SN, Davis EC, Bonnefont JP, Munnich A, EyskensB, Gewillig M, Devriendt K and Boyd CD. Isolated supravalvular aortic stenosis:functional haploinsufficiency of the elastin gene as a result of nonsense-mediateddecay. Human genetics.2000;106(6):577-588.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700