Dmrt7基因重组腺病毒及腺相关病毒载体的构建及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Doublesex和mab-3相关转录因子7(double sex and mab3- relatated transcrip- tion factor7,Dmrt7)在动物体内可表达Dmrt7蛋白。该蛋白是哺乳动物生殖系统的重要蛋白,主要含有DM结构域,其主要生物学功能是调控精子发生、控制性别的分化。应用Dmrt7蛋白在治疗雄性动物产弱精、不产精等方面具有丰富的使用价值和广阔的前景。然而,由于天然Dmrt7蛋白来源稀少,不能满足临床和科学研究的需要,因此利用转基因技术生产Dmrt7蛋白已经逐渐成为研究的热点。
     本研究首先从小鼠睾丸组织中分离提取得到总RNA,利用RT-PCR法得到Dmrt7基因全长cDNA序列。对Dmrt7基因序列进行PCR扩增后,分别进行重组腺病毒载体和重组腺相关病毒载体的构建及鉴定。获得的实验结果如下:
     (1)用一对预先设计好的引物,采用RT-PCR法,从小鼠睾丸组织总RNA中扩增出的产物,经1.0%的琼脂糖凝胶电泳,结果显示,在1100bp处有一条阳性目的条带。对所扩增的cDNA进行测序,结果显示与Genebank中所记载的序列一致,未发生碱基突变。
     (2)细菌内同源重组法构建Dmrt7重组腺病毒载体。穿梭载体pShuttle -Dmrt7-IRES-GFP质粒经酶切鉴定正确后,用PacⅠ酶线性化,与pAdEasy-l共转染大肠杆菌BJ5183进行同源重组,获得pAd-Dmrt7重组腺病毒阳性克隆质粒,经PacⅠ酶切,通过1%琼脂糖凝胶电泳鉴定,得2.9kbp特异性小片段,获得正确的重组腺病毒载体Ad-Dmrt7
     (3)将重组Ad-Dnrt7转染293细胞,24h后可在倒置荧光显微镜下观察到绿色荧光,收集病毒上清,进行PCR鉴定及病毒滴度测定,鉴定结果显示,在1100bp处有一明显条带;采用半数荧光细胞法测定重组腺病毒滴度为0.95×10~8PFU/ml。
     (4)细胞内同源重组法构建Dmrt7重组腺相关病毒载体。将测序正确的Dmrt7基因亚克隆至pAAV-MCS中,酶切鉴定获得的重组pAAV-Dmrt7质粒,纯化后与pRC质粒以及pHelper质粒共转染HEK 293细胞,包装获得重组Dmrt7腺相关病毒。转染24h后可在倒置荧光显微镜下观察到绿色荧光。重组Dmrt7腺相关病毒经酶切,PCR鉴定病毒上清,在1100bp处出现一明显条带。采用半数荧光细胞法测定重组腺相关病毒滴度为1.5×10~9PFU/ml。
Dmrt7 gene can express protein Dmrt7, which is important to mammalian reproductive system and contains DM domain. The main biological functions of Dmrt7 are the regulation of spermatogenesis and sex differentiation. There are rich values and broad prospects in the application of Dmrt7 protein in the treatment of low sperm production and no sperm production of male animals. While the natural Dmrt7 protein is scarce, and can not meet the needs of clinic and scientific research, the production of Dmrt7 protein using transgenic technology are becoming the main focus of current research.
     In our study, total RNA was firstly separated and extracted from mouse testis and then the cDNA of Dmrt7 was obtained by RT-PCR. After being amplified by PCR, Dmrt7 was recombined with Adenovirus vector and adeno-associated virus vector.
     The results of this study included as follows:
     (1) The 1.0% agarose gel electrophoresis results of RT-PCR showed the 1100bp gene fragment was obtained from mouse testis total RNA and amplification with a pair of special primers designed at first. The sequence of Dmrt7 gene obtained was consistent with the reported, and had no mutation.
     (2) Construction of Dmrt7 recombinant adenovirus vector using Homologous recombination in bacteria. After being digested and identified by restrictive endonuclease, pShuttle-Dmrt7 -IRES-GFP was linearized by PmeⅠand subsequently co-transfected into BJ 5183 with adenoviral backbone plasmid pAdEasy-1. The results of 1.0% agarose gel electrophoresis of recombinant Ad-Dmrt7 digested by restrictive endonuclease PacⅠshowed a special band of 2.9kb. It confirmed that the Ad-Dmrt7 was constructed successfully. The homologous recombination in bacteria was a convenient and efficient way to construction of recombinant adenoviral vectors.
     (3) Recombinant Ad-Dmrt7 vector was transfected into HEK293 cell by liposome. After fluorescence was observed in 293 cells which were infected by 24h, the viral supernatant was collected and identified by PCR. The results indicated that there is a distinct band at 1100bp; the titer of recombinant Ad-Dmrt7 which was determined by half fluorescent cell method was 0.95×10~8PFU/ml.
     (4) Construction of Dmrt7 recombinant AAV vector using Homologous recombination in HEK 293 cells. The Dmrt7 gene was subcloned into pAAV-MCS,then the obtained recombinant pAAV-Dmrt7 plasmid was digested and identified by restrictive endonuclease. After being purifed, the pAAV-Dmrt7 plasmid was co-transfected into HEK293 cells with pRC plasmid and pHelper plasmid and packaged into recombinant AAV-Dmrt7. The fluorescence can be observed after being transfected by 24h. The titer of recombinant AAV-Dmrt7 which was determined by half fluorescent cell method was 1.5×10~9PFU/ml.
引文
程子华.2006.Dmrt基因的功能和特点.安徽农业科学,34(5):853-856
    葛永斌,曹承和,聂刘旺.2008.饰纹姬蛙7个Dmrt基因DM结构域的克隆及序列分析.生命科学研究, 12(2):110-114
    淮亚红,许尚忠. 2009.牛Dmrt7基因的cDNA克隆及遗传变异.安徽农业科学, Journal of Anhui Agri.Sci., 37(30):14607-14610,14615
    季代丽,李洁,刘先英,聂刘旺. 2005.黑斑蛙Dmrt1基因的克隆及在不同组织中的表达.应用与环境生物学报, 11(2):198- 201
    李洁,芮金龙,彭巧铃,聂刘旺.2006.山地麻蜥7个Dmrt基因成员的克隆及序列分析.激光生物学报, 15(6): 571-575
    李永明,赵玉琪.1998.实用分子生物学方法手册.北京:科学出版社, 366-368.
    唐永凯,王光花,吴婷婷.2006.奥利亚罗非鱼DMRT1,DMO基因片段的克隆及序列分析.生物技术, 16(2):1-3
    水怡,余红仕,夏来新. 2004.大熊猫Dmrt基因家族4个成员基因的克隆.遗传学报, 31(5):468-473
    吴宝林,葛熹凯,何荣华.2007.Dmrt基因家族的研究近况.内陆水产, 32(6):12-14
    周荣发.2001.参与发育的基因家族.遗传, 23(1):86 -88
    Amalfitano A, Hauser MA, Hu H, Serra D, Begy C R, Chamberlian J S. 1998. Production and characterization of improved adenovirus vectors with the E1, E2b, and E3 genes deleted. Journal of Virology, 72:926-933.
    Anderson R D, Haskell R E, Xia H, Roessler B J, Davidson B L. 2000. A simple method for the rapid generation of recombinant adenovirus vectors. Gene Ther, 7: 1034–1038.
    Anderson S C, Johnson D E, and Harris M P. 1998. p53 gene therapy in a rat model of hepatocellular carcinoma:intra-arterial delivery of a recombinant adenovirus. Clinical Cancer Research, 4:1649-1659.
    Aoki K, Barker C, Danthinne X, Imperiale M J, Nabel G J. 1999. Efficient generation of recombinant adenoviral vectors by Cre–lox recombination in vitro. Mol Med, 5:224–231.
    Bai M, Harfe B, Freimuth P. 1993. Mutations that alter an Arg–Gly–Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol, 67: 5198-5205.
    Bartlett J S, Samulski R J, McCown T J. 1998. Selective and rapid uptake of adeno- associated virus type 2 in brain . Hum Gene Ther, 9:1181-1186
    Bartlett J S, Wilcher R, Samulski R J. 2000. Infectious entry pathway of ade-no-associated virus and adeno-associated virus vectors. Virol, 74:2777-2785
    Bergelson J M, Cunningham J A, Droguett G, Kurt-Jones E A, Krithivas A, Hong J S, Horwitz M S, Crowell R L, Finberg R W. 1997. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science, 275;1320-1323.
    Berkner K L,Sharp P A. 1983. Generation of adenovirus by transfection of plasmids. NucleicAcids Res, 11:003–6020.
    Berns K I, Hauswirth W W. 1979. Adeno-associated viruses. Adv Virus Res, 25:407-449
    Bett A J, Haddara W, Prevec L, Graham F L. 1994. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci, 91:8802–8806.
    Bouri K, Feero W G, Myerburg M M , Wickham T J, Kovesdi I, Hoffman E P, Clemens P R. 1999. Poly-lysine modification of adenoviral fiber protein enhances muscle cell transduction. Hum Gene Ther, 10:1633–1640.
    Bramson J, Hitt M, Gallichan W S, Rosenthal K L, Gauldie J, Graham F L. 1996. Construction of a double recombinant adenovirus vector expressing a heterodimeric cytokine: in vitro and in vivo production of biologically active interleukin-12. Hum Gene Ther, 7:333–342.
    Bruce C B, Akrigg A, Sharpe S A. 1999.Replication-deficient recombinant adenoviruses expressing the human immunodeficiency virus Env antigen can induce both humoral and CTL immune responses in mice. Journal of General Virology, 80:2621-2628.
    Chanock R M, Ludwig W, Heubner R J. 1966. Immunization by selective infection with type 4 adenovirus grown in human diploid tissue cultures. I. Safety and lack of oncogenicity and tests for potency in volunteers. Journal of the American Medical Association, 195: 445-452.
    Cullen B R, Lomedico P T, Ju G. 1984. Transcriptional interference in avian retroviruses- implications for the promoter insertion model of leukaemogenesis. Nature, 307:241–245.
    Danthinne X. 1999. New vectors for the construction of double recombinant adenoviruses. J Virol Methods, 81:11–20.
    Danthinne X, Werth E. 2000. New tools for the generation of E1-and/or E3-substituted adenoviral vectors. Gene Ther, 7: 80–87.
    Dmitriev I, Krasnykh V, Miller C R. 1998. An adeno- virus vector with genetically modified fibers demonstrates expanded tropism via utilization of a Coxsackievirus and adenovirus receptor -independent cell entry mechanism. J Virol,72: 9706-9713.
    Douar A M, Poulard K, Stockholm D. 2001. Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. Virol, 75:1832-1833
    Dragomira Majhen. 2006. Adenoviral vectors—How to use them in cancer gene therapy?. Virus Research, 119:121-133.
    Duan D, Li Q, Kao AW. 1999. Dynamin is required for recombinant adeno-associated virus type 2 infection. Virol, 73:10371-10376
    Emerman M, Temin H M. 1984. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell,39:459–467.
    Emerman M, Temin H M. 1986. Quantitative analysis of gene suppression in integrated retrovirus vectors. Mol Cell Biol, 6:792–800.
    Ferrari F K, Samulski T, Shenk T, Samulski R J. 1996. Secondstrand synthesis is a rate- limiting step for efficient transduction by recombinant adeno-associated virus vectors. Virol, 70:3227-3234
    Fisher K J, Gao G P, Weitzman M D. 1996. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. Virol, 70: 520-532
    Fu S, Deisseroth A B. 1997. Use of the cosmid adenoviral vector cloning system for the in vitro construction of recombinant adenoviral vectors . Hum Gene Ther, 20:1321–1330.
    Girod A, Wobus C E, Zadori Z. 2002.The VP1 capsid protein of adeno-associated virus type 2 iscarrying a phospholipase A2 domain required for virus infectivity. Gen Virol, 83:973-978
    Gonzalez R, Vereecque. 1999. R Wickham T J,et al. Increased gene transfer in acute myeloid leukemic cells by an adenovirus vector containing a modified fiber protein. Gene Ther,6:314–320.
    Hansen J, Qing K, Kwon H J. 2000. Impaired intracellular trafficking of adenoassociated virus type 2 vectors limits efficient transduction of marine fibroblasts. Virol, 74:992-996
    Han J, Sabbatini P, Perez D. 1996. The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes & Development, 10: 461-477.
    Hardy S, Kitamura M, Harris-Stansil T. 1997. Construction of adenovirus vectors through Cre–lox recombination. J Virol, 71:1842–1849.
    Hay R T, Freeman A, Leith I. 1995. Molecular interactions during adenovirus DNA replication. In The Molecular Repertoire of Adenoviruses. Berlin: Springer, 31-48.
    Hayes A L, Smith C, Foxwell B M. 1999. CD45-induced tumor necrosis factor alpha production in monocytes is phosphatidylinositol 3-kinase-dependent and nuclear factor-kappaB- independent. Journal of Biological Chemistry, 274:33455-33461.
    Hildinger M, Auricchio A. 2004. Advances in AAV-mediated gene dansfer for the treatment of inherited disorders. Eur HumGenet, l2:263-271
    Hillemann M R, Werner J R. 1954. Recovery of a new agent from patients with acute respiratory illness. Proceedings of the Society for Experimental Biology and Medicine, 85: 183-188.
    Hitt M M, Addison C L, Graham F L. 1997. Human adenovirus vectors for gene transfer into mammalian cells. Advances in Pharmacology, 40:137-206.
    J Sambrook, E T Frish, T Maniatis. 1989. Molecular Clone: a Laboratory Manual, Cold Spring Harbor Laboratory Press.金冬雁,黎孟枫译.1992.分子克隆实验指南.第二版.北京:科学出版社.
    Kasamatsu H, Nakanishi A. 1998. How do animal DNA viruses get to the nucleus. Anna Rev Microbiol, 52:627-686
    Kem A, Schmidt K, Leder C. 2003. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. Virol, 77:11072-11081
    Ketner G, Spencer F, Tugendreich S. 1994. Efficient manipulation of the human adenovirus genome as an infectious yeast artificial chromosome clone. Proc Natl Acad Sci, 91: 6186–6190.
    Kim S, Kettlewell J R, Anderson R C. 2003. Sexually dimorphic expression of multiple doublesex-related genes in the embryonicmouse gonad. Gene Expression, 3(1):77-82.
    Kojima H, Ohishi N, Yagi K. 1998. Generation of recombinant adenovirus vector with infectious adenoviral genome released from cosmid-based vector by simple procedure allowing complex manipulation. Biochem Biophys Res Commun, 246: 868–872
    Kondo M, Froschauer A, Kitano A. 2002, Molecular cloning and characterization of Dmrt genes from the medaka Oryzias latipes and the platifish Xiphophorus maculates. Gene, 295 :213- 222
    Kotin R M, Linden R M, Bems K I. 1992. Characterisation of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO, 11:5071-5078
    Krasnykh V, Dmitriev I, Mikheeva G. 1998. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob. J Virol, 72: 1844–1852.
    Lusky M,Chris, M,Rittner K. 1998. In vitro and in vivo biology of recombinant adenovirus vectorswith E1, E1/E2A, or E1/E4 deleted. Journal of Virology, 72:2022-2032.
    Masaki K, Katsuhiko N. 2006. Mice deficient in Dmrt7 show infertility with spermatogenic arrest at pachytene stage. FEBS Letters, 580: 6442-6446.
    Matthews D A, Russell W C. 1995. Adenovirus protein–protein interactions:molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23K protease. Journal of General Virology, 76: 1959-1969.
    Mathews M B, Shenk T. 1991. Adenovirus-associated RNA and translational control. Journal of Virology, 65: 5657-5662.
    Miller C R, Buchsbaum D J, Reynolds P N. 1998. Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res, 58:5738–5748.
    Mizuguchi H, Kay M A. 1998. Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther, 9: 2577–2583.
    Mizuguchi H, Kay MA. 1999. A simple method for constructing E1 and E1/E4 deleted recombinant adenovirus vector. Hum Gene Ther, 10:2013–2017.
    Moorhead J W, Clayton G H, Smith R L. 1999, A replication-incompetent adenovirus vector with the preterminal protein gene deleted efficiently transduces mouse ears. Journal of Virology, 73:1046-1053.
    Muzyczka N. 1992. Use of adeno-associated virus as a generaltransduction vector for mammalian cells. Curt Top Microbiol Immunol, 158:97-129
    Ng P, Parks R J, Cummings D T. 1999. A high-efficiency Cre–loxP-based system for construction of adenoviral vectors. Hum Gene Ther, 10: 2667–2672.
    Ng P, Parks R J, Cummings D T. 2000. An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. Hum Gene Ther, 11:693–699.
    Okada T, Ramsey W J, Munir J. 1998. Efficient directional cloning of recombinant adenovirus vectors using DNA–protein complex. Nucleic Acids Res, 26: 1947–1950.
    Opie S R, Warrington Jr K H, Agbandje-McKenna M. 2003. Identificalion of amino acidresidues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycanbinding. Virol, 77:6995-7006.
    Pickles R J, McCarty D, Matsui H. 1998. Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J Virol, 72:6014–6023.
    Qing K, Mah C, Hansen J. 1999. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adenoassociated virus 2. NatMed, 5:71-77
    Rolling F, Samulski R J. 1995. AAVa s a viral vector for human gene therapy.Generation of recombinant vims . Mol Biotechnol, 3:9-15
    Raymond C S, Kettlewell J R, Hirsch B. 1999. Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Developmental Biology, 215 :208-220
    Raymond C S, Murphy M W, O Sullivan M G.2000. Dmrtl,a gene related to worm and fly sexual regulators,is required for mammalian testis differentiation. Gene Dev, 14:2587—2595.
    Raymond C S, Shamu C E, Shen M M. 1998. Evidence for evolutionary conservation of sex determination genes. Nature, 391 :691-695
    Rekosh D M, Russell W C, Bellet A J. 1977. Identification of a protein linked to the ends ofadenovirus DNA. Cell, 11:283-295.
    Ren L L, Cheng H H, Guo Y Q. 2001. Evolutionary conservation of Dmrt gene family in amphibians reptiles and birds. Chinese Science Bulletin, 46 (23) :1992-1996
    Rosenfeld M, Siegfried A W, Yoshimura K. 1991. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo. Science, 252:431–434.
    Russell W C. 2000. Update on adenovirus and its vectors . Journal of General Virology, 81: 2573-2604.
    Sanlioglu S, Benson P K, Yang J. 2000. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by racl and phosphatidylinositol-3 kinese activation. Virol, 74:9184-9196
    Seisenberger G, Ried M U, Endress T. 2001. Real-time single-moleculeimaging of the infection pathway of an adeno-associated virus. Science, 294:1929-1932
    Smith C A, Sinclair A H. 2004. Sex determination insights from the chicken. BioEssays, 26(2) :120-132
    Seo K W, Wang Y, Kokubo H. 2006. Targeted disruption of the DM domain containing transcription factor Drnrt2 reveals an essential role in somite patterning.Dev Boii, 290:300
    Souza D W,Armentano D. 1999. Novel cloning method for recombinant adenovirus construction in Escherichia coli. Biotechniques, 26: 502–508.
    Stewart P L, Fuller S D, Burnett R M. 1993. Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. Embo Journal, 12:2589 -2599.
    Stilwell I L, Samulski R J. 2003. Adeno-associated virus vectors for therapeutic gene transfer. Biotechniques, 34:148-150,152, 154
    Summerford C, Samulski R J. 1998. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. Virol, 72:1438-1445
    Summerford C, Bartlett J S, Samulski R J. 1999. A1phaVbetaS integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med, 5:78-82
    Tashiro F, Niwa H, Miyazaki J. 1999. Constructing adenoviral vectors by using the circular form of the adenoviral genome cloned in a cosmid and the Cre–loxP recombination system. Hum Gene Ther, 10:1845–1852.
    Tomko R P, Xu R, Philipson L. 1997. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adeno- viruses and group B coxsackieviruses. Proc Natl Acad Sci, 94:3352–3356.
    Weber J. 1976. Genetic analysis of adenovirus type 2. Temperature sensitivity of processing viral proteins. Journal of Virology, 17: 462-471.
    Webster A, Russell S, Talbot P. 1989. Characterization of the adenovirus proteinase: substrate specificity. Journal of General Virology, 70: 3225-3234.
    Weitzman M D, Fisher K J, Wilson J M. Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers.Virol, 1996, 70:1845-1854
    Wickham T J, Mathias P, Cheresh D A. 1993. Nemerow, Integrins avb3 and avb5 promote adenovirus internalizatio but not virus attachment. Cell, 73:309–319.
    Wickham T J, Filardo E J, Cheresh D A. 1994. Nemerow, Integrin avb5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol, 127:257–264.
    Wickham T J, Tzeng E, Shears L L. 1997. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol, 71: 8221–8229.
    Wistuba A, Kem A, Weger S. 1997. Subcellular compartmentalization of adeno-associated virus type 2 assembly. Virol, 71:1341-1352
    Yarosh O K,Wandeler A I, Graham F L. 1996. Human adenovirus type 5 vectors expressing rabies glycoprotein. Vaccine, 14:1257-1264.
    Yoshida Y, Sadata A, Zhang W. 1998. Generation of fiber-mutant recombinant adeno- viruses for gene therapy of malignant glioma. Hum Gene Ther, 9: 2503–2515.
    Zabner J, Freimuth P, Puga A. 1997. Lack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection. J Clin Invest, 100:1144–1149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700