尼罗罗非鱼性别决定机制和性别相关的分子标记
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尼罗罗非鱼(Oreochromis niloticus)已成为世界性的主要养殖对象之一,研究表明其遗传性别决定类型为XX/XY型。对不同遗传型尼罗罗非鱼的有丝分裂中期相染色体进行荧光原位杂交表明,在尼罗罗非鱼中,X与Y染色体之问存在差异。但是到现在为止,没有发现性别特异分子标记。遗传性别的快速鉴定问题是尼罗罗非鱼性别控制研究中的一个难点。本文从DNA水平对雌雄尼罗罗非鱼进行比较,研究其性别控制机理,筛选能区分雌雄的分子标记。主要研究结果如下:
     1.本文参照不同物种DM结构域设计了一对兼并引物,以尼罗罗非鱼精巢RNA为模板,通过RT-PCR方法,扩增出一条带,长约140bp。对扩增产物进行克隆,阳性克隆采用SSCP分析筛选不同基因片段,进一步对筛选的不同基因进行了DNA测序。结果获得2个不同的Dmrt基因,与GenBank联机,采用BLAST方法与人类相应DMRT基因进行序列比对,发现与人类相应DMRT基因的氨基酸序列一致性分别为:89.1%、100%,显示出Dmrt基因在系统进化上具有高度的保守性。根据尼罗罗非鱼(Oreochromis niloticus)的拉丁文名,按习惯将其命名为onDmrt1,onDmrt2。为了探讨Dmrt1和Dmrt2两个基因的功能,根据获得的序列,分别设计一对特异引物,采用RT-PCR技术,对尼罗罗非鱼不同组织Dmrt1和Dmrt2基因的表达进行了研究。结果发现Dmrt2基因在精巢,卵巢,脑,眼,鳃,心脏中都有表达,暗示Dmrt2基因的功能可能主要是参与器官发育,而不是性别决定过程。而Dmrt1只在精巢中特异表达,在其它组织中无表达,显示Dmrt1基因主要在性别决定及性状维持中有重要功能。根据扩增出的Dmrt1 DM-domain的序列,设计上游引物P5,P6,用3‘RACE(rapid amplification of cDNA ends)法从尼罗罗非鱼精巢中分离和测定了Dmrt1 cDNA的序列,3’-RACE扩增得到1108bp的片段,共编码262个氨基酸,奥利亚罗非鱼、虹鳟、新月鱼、青鲻等动物的Dmrt 1的氨基酸序列进行比较,同源性分别为:99%,62%,73%,41%。以Dmrt 1基因组序列为基础,采用Garnier-Robson方法、Chou-Fasman方法和Karplus-Schulz方法预测蛋白质的二级结构;按Kyte-Doolittle方案、Emini方案和Jameson-Wolf方案预测DMRT1蛋白的B细胞表位,为精确地研究DMRT1蛋白的结构和功能,从而揭示他们的性别调控机能提供参考。
     2.参照人SRY基因HMG-box保守区序列,设计一对兼并引物,采用PCR技术扩增了尼罗罗非鱼Sox基因,在雌雄尼罗罗非鱼个体中均扩增出五条带,大小分别约为200 bp,400 bp,600 bp,800 bp,1200bp,回收200bp左右扩增产物进行克隆,阳性克隆采用SSCP分析,筛选不同基因片段。进一步对筛选的不同基因进行DNA测序,结果获得了五个不同的228bp Sox基因,与GenBank联机,采用BLAST方法与人类相应SOX基因进行序列比对,发现其与人类相应SOX蛋白的氨基酸序列一致性分别为97.2%、97.2%、94.4%、96%、88.2%,显示出该基因在分子进化上具有高度的保守性。根据尼罗罗非鱼(Oreochromis niloticus)的拉丁文名,按习惯将其命名为onSox1a、onSox1b、onSox3、onSox4 and onSox12。采用RT—PCR技术,研究了尼罗罗非鱼精巢、卵巢、脑、眼、鳃和心脏等组织中Sox3基因的表达。结果显示,Sox3基因在精巢、卵巢、脑和眼中有不同程度表达,而在鳃和心脏中无表达,,证实Sox3基因在其中枢神经系统的发育,性腺发生和功能维持上有着重要功能。本研究为探索尼罗罗非鱼的性别决定机制和Sox基因表达模式提供了资料。
     3.采用RAPD技术对尼罗罗非鱼雌、雄各11尾个体共22个样本进行性别和遗传多样性检测。从80个寡聚核苷酸随机引物中筛选出17个扩增重复性好、条带清晰、特异性强的引物,对每个个体基因组DNA进行了扩增。得到RAPD产物的分子量在200-2000bp之间,产物总计127个位点,其中,多态位点45个(占35.43%)。计算个体间遗传相似系数平均为0.8648,个体间遗传距离平均为0.1352。用Shannon多样性指数量化的遗传多态度(H_0),雄性群体(0.1910)高于雌性群体(0.1797),平均遗传多态度(Hpop)为0.1854。尼罗罗非鱼遗传多态度所占的比例在群体内为13.63%,而雌、雄群体间为86.37%。在尼罗罗非鱼雌、雄个体RAPD产物中,电泳图谱上不能读出明显的雄性特征带。
     4.利用AFLP技术,应用49个引物组合,检测了尼罗罗非鱼雌雄基因组DNA的多态性,筛选与尼罗罗非鱼性别相关的分子标记。实验中共扩增出2694条带,筛选出候选差异DNA片段748条。挑选出20对引物进行雌雄两代个体进一步的分析。其中引物E4/M5组合产生1个大小约为150bp的片段,在所有两代雄性尼罗罗非鱼均出现这一片段,在F1代的15尾雌尼罗罗非鱼中有仅有1尾出现该片段,对F2代15尾雌尼罗罗非鱼也只有2出现,由此推断此条带可能与性别相连锁。对该特异扩增带经回收和测序,为了将AFLP标记转化为重复性和特异性更好的SCAR(Sequence Characterized Amplified Regions)标记,根据序列分析结果,分别合成了一对20碱基特异性引物,用该特异性引物进行PCR扩增,结果雄性有一条SCAR标记,而雌性没有。尼罗罗非鱼的SCAR分子标记能用于筛选全雄品系。
The Nile tilapia(Oreochromis niloticus) is one of most important species in worldwide fish aquaculture. Research on the sex determination system in O.niloticus has provided evidence for genetic sex determination(GSD) with an XX female and XY male sex determination system. Analysis of the hybridization of probes drived from X and Y chromosomes to different genotype has demonstrated that the sequence differents exist between the sex chromosomes of O.niloticus. The inability to rapidly determine the genotypic sex of an individual is a problem in aquculture, where precocious maruration and subsequent reproduction can be a significant problem under certain conditions. The article tested male and female O. niloticus to search for molecular markers associated with sex chromosome. The major research results of this study are as follows:
     1. the Dmrt genes of O. niloticus were amplified by using a pair of degenerated primers which were designed based on the conservative DM domain of different species. The amplification band of Dmrt gene familay was-observed in testis of O. niloticus whose length was 140bp. Then, PCR products were cloned. To detect the different clones, SSCP technique was used. Two different Dmrt genes were obtained and sequenced respectively. After sequence analysis, those two Dmrt genes are named as onDmrt1, onDmrt2 according to their high homology to corresponding Human DMRT genes because their identities to those human DMRT genes in the amino acid sequence are 89.1%, 100%respectively; This may be concluded that Dmrt genes are highly conserved in phylogenetic. To study the function of Dmrt1 and Dmrt2 in development, we designed specific primers according the sequence of onDmrt1 and onDmrt2 for amplification by RT-PCR of different tissues in O. niloticus Dmrt2 expression is detectable in the brain, eye, gill, heart, testis and ovary. Dmrt1 expression is only detectable in the testis. No expression was detected for other tissues. This indicated that Dmrt2 genes may only play roles in the development of organs and Dmrt1 mainly participates in sex determining and differentiation. Based on DM-domain of in Dmrt1 of O. niloticus, primer P5 and P6 were designed. A rapid amplification of cDNA ends(RACE) was used for isolation of the length cDNA of Dmrt1 from testis of Oreochromis niloticus. We amplified a fragment about 1108bp by 3'RACE-PCR, encoding 262 amino acid. Sequence analysis revealed that the homology of Dmrt1 in O. niloticus and O. aurea is 99%. The secondary structure of Dmrt1 protein was predicted by the methods of Gamier-Robson, Chou-Fasman and Karplus-Schulz based on the amino acid sequence of Dmrt1. And Hydrophilicity plot, Surface probability plot and Antigenic index for Dmrt1 protein were obtained by the methods of Kyte-Doolittle, Emini and Jameson-Wolf, respectively. Theses results are helpful for studies on sex control mechanism of Dmrt1 in O. niloticus
     2. In the part of studies, Using a pair of degenerate primers based on the conservative region, HMG-box, of Human SRY gene, the Sox genes of O. niloticus were amplified. Five DNA bands with the length 200bp, 400bp, 600bp, 800bp, 1200bp were observed in the PCR products of both male and female O. niloticus. To detect the different clones, SSCP technic was used. Five different Sox genes were obtained and sequenced respectively. After sequence analysis, those Five Sox genes are named afer O. niloticus as onSox1a, onSox1b, onSox3, onSox4 and onSox12, according to their high homology to corresponding Human SOX genes because their identities to those human SOX genes in the amino acid sequence are 97.2%、97.2%、94.4%、96%、88.2%respectively, This may be concluded that Sox genes are highly conserved in phylogeny. The Sox3 gene expression analysis of different tissues from O. niloticus was studied by using RT-PCR. An expression was observed in testis in male, ovary in female, brain, eye in both male and female, no expression in gill, heart in both male and female. Based on these results, we suggest that Sox3 should play a key role in central nervous system development and gonad of O. niloticus. This research provided molecular data for the sex-determining mechanism of O. niloticus and expression pattern of Sox gene.
     3. RAPD analysis was applied to study sex and genetic diversity in O. niloticus. A total of 20 samples, which are 10 males and 10 females, were used in the test. Of 80 random oligonucleotide primers for the amplification of O. niloticus genomic DNA, 17 could produce reproducible, distinctive and characteristic bands from 200-2000 bp. 127 sites were detected, 45 of which(35.43%) were polymorphic. The average genetic similarity index and the average genetic distance were 0.8688 and 0.1312 respectively. Genetic diversity quantified by Shannon index(H_0) was 0.1910(male) and 0.1797 (female) respectively, with an average of 0.1854 Partition of genetic variation indicated that 13.63%was distributed within groups and 86.37%among male and female groups.. Difference bands can not be detected between male and female from the electrophoresis profiles.
     4. In this paper genomic DNA polymorphism of female and male O. niloticus were detected using amplified fragment length polymorphism(AFLP) technique with 49 primer combinations. It produced a total of 2694 and an average of 55 bands. 20 primer combina tions were selected for further analysis. One AFLP band about 150bp related to the male was obtained with primer E4/M5, which was present in all males and absent in 14 of the 15 females of F_1 and 13 of the 15 F_2, it could have relations with sex.. The male associateed fragment about 150bp was cloned and sequenced. In order to convert the AFLP marker into SCAR(Sequence Characterized Amplified Regions) marker, one pair of 20-mer specific primer was constructed and used for PCR amplifing. The male-linked dominant SCAR marker was obtained.
引文
1.常重杰.PCR扩增泥鳅和大鳞副泥鳅SRY盒基因.动物学杂志,1998,33(1):13-17
    2.常重杰,余其兴.大鳞副泥鳅ZZ/ZW型性别决定的细胞遗传学证据.遗传,1997,19(3):17-19
    3.常重杰,周荣家,余其兴.大鳞副泥鳅中Sox9基因保守区的序列分析.遗传学报,2000,27:121-126
    4.常重杰,周荣家,余其兴.两种泥鳅中PdSox8和PdSox9的RFLP分折.遗传,2000,22:153-156
    5.陈冬生,聂刘旺,程双怀.扬子鳄4个Sox基因保守区的克隆及序列分析动物学研究.2003,24(2):127-131
    6.戴庆年,张其永,聚友义,张杰.福建沿岸海域赤点石斑鱼年龄和生长的研究.海洋与湖沼,1988,19(3):215-225
    7.董在杰.运用DOP-PCR制备鱼类染色体原位杂交探针.中国水产科学,2003,10(7):14-18
    8.杜长斌,孙孝文,楼允东等.应用微卫星技术对野鲤和两种鲤选育品系的遗传多样性分析.上海水产大学学报,2000,9(4):220-224
    9.杜晓东,邓岳文,叶富良,王辉.广东和广西地区野生文蛤的遗传多样性.中国水产科学,2004,11(1):41-47
    10.桂建芳,肖武汉,陈丽.人工三倍体水晶彩鲫的性腺发育.动物学报,1991,37(3):297-304
    11.郭丽琼,林俊芳,杨丽卿.单酶切cDNA-AFLP改良法分离草菇冷诱导基因.菌物学报,2004,23(2):241-247
    12.韩双艳,郭勇.AFLP在分子生物学研究中的应用.生物技术通报,2002,2:22-24
    13.何宁佳,鲁成,周泽扬.家蚕SADF标记的可靠性与遗传方式.西南农业大学学报,1999,21(5):403-407
    14.洪云汉,周暾.短颌鲚的核型及其ZZ/ZO型性染色体.遗传,1984,6(4):12-14
    15.胡隐昌,宋平,李懋,胡珈瑞.尼罗罗非鱼RAPD标记及其遗传多样性分析华中科技大学学报(自然科学版),2002,30(5):94-97
    16.金丽华.鲤鱼自身免疫血清的精子凝集试验.淡水渔业,1991,6:31-31
    17.李奎,余其兴,赵则春.二价染色体上黄鳝SRY盒基因的高分辨区域定位.中国水产科学,1998,5:101-103
    18.李爱丽,马峙英.AFLP分子标记与作物改良.河北农业大学学报,2001,24(1):89-94
    19.李明云,张海琪,薛良义,竺俊全,钟爱华.网箱养殖大黄鱼遗传多样性的同工酶和RAPD分析.中国水产科学,2003,10(6):523-525
    20.李文彬,周小梅,张健.水稻三系及其杂种的RAPD指纹图谱分析.农业生物技术学报,1995,3(2):1-6
    21.梁智勇,史景泉,魏泓.10个品系小鼠的AFLP分析.第三军医大学学报,2003,25(2):155-159
    22.刘汉勤,易泳兰,陈宏溪.泥鳅雄核发纯合二倍体的产生.水生生物学报,1987,(3):341-348
    23.刘少军,刘筠.雌二醇诱导革胡子鲇性转化及性腺发育.湖南师范大学自然科学学报,1994,(1):75-78
    24.楼允东.应用自身免疫控制鲤鱼性腺发育.中国农业生物术,1989,38(8):183-186
    25.搂允东.鱼类育种学.北京中国农业出版社,1999,196-201
    26.宋平,潘云峰,向筑.黄颡鱼RAPD标记及其遗传多样性的初步分析.武汉大学学报(理学版),2001,47(2):233-237
    27.宋平,周伟,潘云峰.普通鲫鱼的RAPD标记及其遗传多样性.武汉大学学报(自然科学版),2000,46(6):721-725
    28.孙其信,黄铁城,倪中福.小麦杂种优势群体研究:I利用RAPD标记研究小麦品种间遗传差异.农业生物技术学报,1996,4(2):103-109
    29.王楚松.奥尼鱼(0.nilotica ♀×0.aurea ♂)杂种优势利用的研究.淡水渔业,1989,(6):14-15
    30.王剑伟,王伟,崔迎松.野生和近交稀有魩鲫的遗传多样性.生物多样性,2000,8(3):241-247
    31.王京兆,王斌,徐琼芳.用RAPD方法分析水稻光敏核不育基因.遗传学报,1995,22(1):53-58
    32.吴清江.鱼类的H-Y抗原及其意义.水产学报,1985,9(4):389-392
    33.吴仲庆.水生生物遗传学.厦门大学出版社,1995
    34.夏德全,曹萤,吴婷婷,王涛.用RAPD分析对罗非鱼遗传变异的研究及其对杂种优势的应用.水产学报,1999,23(1):27-32
    35.夏德全,吴晓渊.两种不同地方种群尼罗罗非鱼遗传差异和分子遗传标记.中国水产科学,1997,4(3):7-12
    36.杨永栓,张中英,林克宏.应用三系配套途径产生遗传上全雄莫桑比克罗非鱼.遗传学报,1980,7:241-246
    37.易梅生,余其兴,黄晓.人性染色体特异DNA对三种鱼类染色体的描绘.遗传学报,2001,28:1-6
    38.余其兴,樊连春,崔建勋.黄鳝二价体高分辨G-带制备及模式图构建.中国科学(B辑),1993,23:947-954
    39.余先觉,周暾,李渝.中国淡水鱼类染色体.北京:科学出版社,1989
    40.张勇,陈淳,徐晋麟.黄鳝性别决定与SRY基因不相关.自然科学进展,2001,11(4):365-367
    41.张悦,鲁晓董,单祥年.性别决定基因的研究进展.遗传,2000,22:328-330
    42.张留所,孔晓瑜,喻子牛,孔杰.AFLP技术在水生动物遗传学研究中的应用及前景展望.高技术通讯,2003,4:95-98
    43.张民照,康乐.AFLP标记的特点及其在昆虫学研究中的应用.昆虫学报,2002,45(4):538-543
    44.张德春,张易元,余来宁.长江鳙鱼遗传多样性研究.武汉大学学报(自然科学版),1999,45(6):857-860
    45.赵振山,吴清江,黄峰.冷休克诱导大鳞副泥鳅雄核发育纯合二倍体的产生.华中农业大学学报,1997,25(增刊):55-61
    46.周荣家,余其兴,程汉华.PCR扩增黄鳝和刺鳅SRY盒基因.科学通报,1996(7):640-642
    47.周荣家,余其兴,程汉华.SRY盒基因在斑马鱼和胡子鲶中的保守性分析.遗传,1996,18(1):1-3
    48.J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯.分子克隆实验指南(第2版).北京科学出版社,464-467
    49.任莉莉,程汉华,郭一清.两栖类爬行类和鸟类存在一个新的Dmrt基因家族.科学通报,2001,46(14):1187-1190
    50. Abucay J S, Mair G C, Skibinski D O F, Beardmore J A. Environmental sex determination: the effect of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture, 1999, 173:219-234
    51. Alneida-Toledo L F, Foresti F, Daniel M F, Toledo-Filedo S A. Sex chromosome evolution in fish: the formation of the neo-Y chromosome in Eigenmannia(Gymnotiformes). Chromosoma, 2000, 109:197-200
    52. Andreata A A, Almeida-Yoledo L F, Oliveira C, Toledo Fihho S A. Chromosome studies in hypoptopomatinae(Pisces, Siluriformes, Loricariidae): 1. XX/XY Sex Chromosome Heteromorphism in Pseudotocinclus tietensis. Cytologia, 1992, 57:369-372
    53. Andrew P, Jennifer A, Marshall G Sex chromosomes and sex-determinating genes: insights from marsupials and monotremes. Genes and mechanisms in vertebrate sex determination. Birkhauser Verlag, Basel, 2001, 71-95
    54. Artoni R F, Bertollo L A. Trends in the laryotype evolution of Loricariidae fish (Siluriformes). Hereditas, 2001, 134: 201-210
    55. Artoni R F, Falcao J D N, Moreira-Filho O, Bertollo L A C. An uncommon cordition for a sex chromosome system in Characcidae fish. Distribution and differentiation of the ZZ/ZW system in Tripportheus. Chromosome Research, 2001, 9: 449-456
    
    56. Avtalion R R, Hammerman I S. Sex-determination in Sarotherodon(Tilapia).I. Introduction to a theory of autosomal influences. Bamidgeh, 1978, 30: 110-115
    
    57. Balazs K, Sandor E, Richard B, Laszlo O. Male-specific DNA markers from African catfish {Clarias gariepinus). Genetica, 2001,110: 267-276
    
    58. Bardakei F, Skibinshi D O F. Application of the RAPD technique in tilpia fish: species and subspecies identification. Heredity, 1994, 73: 117-123
    
    59. Baroiller J F, Chourrout D, Fostier A. Tenperature and sex chromosomes govern sex ratios of the mouthbrooding cichlid fish Oreochroomis niloticus. J Exp Zool, 1995, 273: 216-233
    
    60. Baroiller J F, D'Cotta H. Enviroment and sex determination in farmed fish. Comparative Biochemistry and Physiology Part C, 2001,130: 399-409
    
    61. Baroiller J F, Nakayama I, Foresti F. Sex determination studies in two species of teleost fish, Oreochromis niloticus and Leporinus elongates. Zool Stud, 1996, 35: 279 -285
    
    62. Baroiller J F, Toguyeni A. Conparative effects of a natural steroid, 11β -hydroxy -androstenedione(11β-OH-A4) and a synthetics androgen, 17α-Methyltestes terone (17α-mt) on sex-ratio Oreochromis niloticus. Third International Symposium on Tilapis in Aquaculture, 1996:334-351
    63. Barret P, Delourme R , Foisset N. Development of a SCAR (sequence characterrized amplified regions) marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus L. Theor Appl Genet, 1998,97: 828-833
    64. Billot C, Boury S, Benet H. Development of RAPD markers forparentage analysis in Laminaria digitata. Bot Mar, 1999,42: 307-314
    
    65. Bogart M H. Sex determination: a hypothesis based on steroid ratios. J Theor Biol, 1987, 128:349-357
    66. Bongers A B J, Zandieh-Doulabi B,Voorthuis P K. Genetic analysis of testis development in all male F1 hybrid strains of common carp, Cyprinus carpio. Aquac, 1997, 158: 33-41
    
    67. Borkhsenius S N, Chernov VM. A family of repetitive nu-cleotide sequences (Sau3A family) in the genome of 2 forms of the sockeye salmon Oneorhynchus nerka. Mol Biol(Mosk), 1988,22(2): 439-445
    
    68. Born G G, Bertollo L A. An XX/XY sex chromosome system in a fish species, Hopias malabaricus, with a polymorphic NOR bearing X chromosome. Chromosome Res, 2000, 8:111-118
    
    69. Bradeen J M, Simon P W. Conversion of an AFLP fragment linked to the carrot Y- locus to a simple, codominant, PCR-based marker form.. Theor Appl Genet, 1998, 97: 960-967
    
    70. Brigite M, Philippe B, Gerd S, Peter S, Francis P. Male specific expression suggests role of DMRT1 in human sex determination. Mechanisms of Development . 2000, 91: 323-325
    71. Brunner B, Hornung U, Shan Z. Genomic organization and exp ression of the Doublesex relatedgene cluster in vertebrates and detection of putative regulat ory regions for DMRT1. Genomics, 2001,77: 8-17
    
    72. Campos-Ramos R, Harvey S C, Masabanda J S. Identification of putative sex chromosomes in the blue tilapia, Oreochromis aureus, through synaptonemal complex and FISH analysis. Genetica, 2001, 111: 143-153
    73. Caputo V, Machella N, Nisi-Cerioni P. Cytogenetics of nine species of Mediterranean blennies and additional evidence for an unusal multiple sex-chromosome system in Parablennius tentacularis (Perciformes, Blenniidae). Chromosome Res, 2001, 9: 3-12
    74. Carlosa Strussmann,Tsuyoshi Saito,Meisei Usui. Thermal thtesholds and critical period of thermolabile sexmination in two atherinid fishes ,Odontesthes bonariensis and Patagonina hatchery. J Exp Zool, 1997, 278: 167-177
    75. Cervera M T, Cabezas J A, Sancha J C. Application of AFLPs to the characterization of grapevine (Vitis vinifera L) genetic resources: a case study with accessions from Rioja (Spain). Theor Appl Genet, 1998,97: 51-59
    76. Chen F Y. Preliminary studies on the sex-determining mechanism of Tilapia mossambisa peters and T. hornorum Trewavs. Verh. Int Verein theor. Angrew. Limnol., 1969, 17: 719 -724
    77. Conover D, Du S J, Devlin R H, Hew C L. Genomic structure of growth hormone genes in Chinook salmon (Oncorhynchus tshawytscha):presence of two functional genes, GH-I and GH-11, and a male-specific pseudogene, GH-psi. DNA and Cell Biol, 1993, 12: 739 -751
    78. Conover D O, Heins S W. Adaptive variation in environmental and genetic sex determination in a fish. Nature, 1987,326: 496-498
    79. Coughlan T, Schartl M, Hornung U. PCR-based sex test for Xiphophorus maculates. J Fish Biol, 1999, 54: 218-222
    
    80. Coughlan T, Smith C A, McCLive P J, Western P S, Reed K J, Sinclar A H. Conservatio of a sex determing gene. Nature, 1999,402: 601- 602
    
    81. Cushwa W T, Medrano J F. Applications of the randomamplified polymerphic DNA (RAPD) assay for genetic analysis of livestock species. Animal Biotechnology, 7: 11-31
    
    82. de Almeida-Toledo L F, Daniel-silva M F, Lopes C E. Sex chromosome evolution in fish II .Second occurrence of an XX-XYsex chromosome system in Gymnotiformes. Chromosome Res, 2000, 8: 335-340.
    
    83. de Almeida-Toledo L F, Foresti F. Morphologically differentiated sex chromosome in neotropical freshwater fish. Genetica, 2001, 111: 91-100
    
    84. Desprez D. Effect of anbient water temperature on sex determination in the blue tilapia, Oreochromis aureus. Aquaculture, 1998,162: 79-84
    
    85. Devlin R H, Biagi C A, Smailus D E. Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica, 2001, 111: 43-58
    
    86. Devlin R H, Stone G W, Smailus D E. Extensive direct-tandem organization of a long repeat DNA on the Y chromosome of Chinook salmon (Oncorhynchus tshawytscha). J Mol Evol, 1998,46(3): 277-287
    87. Du S J, Devlin R H, Hew C L. Genomic structure of growth hormone genes in Chinook salmon (Oncorhynchus tshawytscha): presence of two functional genes, GH-I and GH-11, and a male-specific pseudogene, GH-psi. DNA Cell Biol, 1993,12: 739-751
    
    88. Ezaz M T, Simon C H, Chuta B. Isolation and physical mapping of sex-linked AFLP markers in Nile Tilapia(Oreochromis niloticus L). Mar biotechnol, 2004,6: 435-445
    
    89. Feist G, Schreck C B, Fitzpatrick M S. Sex steroid profiles of coho salmon (Oncorhynchus kisulch) during early development and sexual differentiation. Gen Comp Endocrinol, 1990, 80: 299-313
    90. Fitzpatrick M S, Gale W L, Schreck C B. Binding characteristics of an androgen receptor in the ovaries of coho salmon, Oncorhynchus kisulch. Gen Comp Endocrinol, 1994, 53: 399-408
    
    91. Fukada S, Tanaka M, Iwaya M. The Sox gene family and its expression during embryo genesis in the teleost fish,medaka(Oryziaslatipes). Dev Growth Differ, 1995, 37: 379-385
    92. Gilbert J E, Lewis R V, Wilkinson M J. Developing an appreciate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet, 1999, 98: 1125-1131
    93. Goudie C A, Liu Q, Simco B A. Genetic relationship of growth, sex and glucose phospjate isomerase-B phenotypes in channel catfish (Ictalucus punctatus). Aquaculture, 1995,138:119-124
    94. Grave J A. Evolution of the mammalian Y chromosome and sex determining genes. J Exp Zool, 1998,281(5):472-481
    95. Griffiths R, Orr K J , Adam A. DNA sex identification in the three-spined stickleback. Journal of Fish Biology, 2000, 57:1331-1334
    96. Griffiths R, Orr K. The use of amplified fragment length polymorphism(AFLP) in the isolation of sex-specific markers. Mol Ecol, 1999, 8: 671-674
    
    97. GriYths R, Tiwari B. The isolation of molecular genetic markers for the identification of sex. Proceedings of the National Academy of Sciences of the USA, 1993, 90: 8324-8326
    
    98. Guan G , Kobayashi T , Nagahama Y. Sexually dimorp hic exp ression of two types of DM(Doublesex/Mab-3)-domain genes in a teleost fish, the tilapia (Oreochromis niloticus). Biochem Biophys Res Commun, 2000, 272: 662-666
    99. Gutuierrez-Adan A W, Cushwa G B, Anderson J F. Use of an ovine specific Y cliromosome RAPD marker for PCR sexing of ovine embryos. Animal Genetics, 1997, 28: 135-138
    100. Haaf T, Schmid M. An early stage of ZW/ZZ sex chromosome differentiation in Poe -cilis sphenops var.melanistica(Poecoiliidae, Cypeinodontiformes). Chromosoma(Berl), 1984, 89:37-41
    101. Harvey S C, Kwon J Y, Penman D J. Physical mapping of the brain and ovarian aromatase genes in the Nile Tilapia, Oreochromis niloticus, by fluorescence in situ hybridization. Animal Genetics, 2003, 34: 62-64
    102. Haymes K M, Van de Weg W E, Arens P. Development of SCAR markers linked to a Phytophthora fragariae resistance gene and their assessment in European and north American strawberry genotypes. J Amer Soc Hort Sci, 2000,125 (3): 330-339
    103. Hew C L, Du S J. Determination of genomic sex in salmonids. United States Patent NO.5480774, 1996
    104. Hickling C F. The Malacca Tilapia hybrids. J Genet, 1960, 57: 1-10
    105. Hines G A, Watts S A. Non-steroidal chemical sex manipulation of tilapia. Journal of the World Aquaculture Sosiety, 1995,26: 98-102
    106. Horejsi T, Box M J, Staub E J. Efficiency of randomly amplified polymorphic DNA to sequence characterized amplified region marker conversion and their comparative polymerase chain reaction sensitivity in cucumber. J Amer Soc Hort Sci, 1999, 124 (2): 128-135
    107. Hormaza J I, Dollo L, Polito V S. Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theoretical Applied Genetics, 1994, 89: 9-13
    108. Huang X Q, Borner A, Roder M S. Assessing genetic diversityof wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet, 2002, 105 (5): 699 -707
    109. Hulata G, Wohlfarth G W, Karplus I. Evaluation of Oreochromis niloticus x O.aureus hybrid progeny of different geographical isolates, reared under varying management regimes. Aquaculture, 1993,115:253-271
    110. Hulata G, Wohlfarth G W, Rothbard S. Progeny-testing selection of tilapia broods tocks producing all-male hybrid progenies-preliminary results. Aquaculture, 1983, 33:263-268
    111. Ikeuchi T, Todo T, Kobayashi T, Nagahama Y. cDNA cloning of a novel androgen receptor subtype. J Biol Chen, 1999, 274(36): 25205-25209
    112. Ito M, Ishikawa M, Suzuki S. A rainbow trout SRY-type gene expressed in pituitary glands .FEBS Lett, 1995, 377: 37-40
    113. Iturra P, Bagley M, Vergara N. Development and characterization of DNA swquence OmyP9 associated with the sex chromosome. Heredity, 2001, 86: 412-419
    
    114. Iturra P, Medrano J F, Bagley M. Identification of sex chromosome molecular markers using RAPDs and fluorescent in situ hybridization in rainbow trout. Genetica, 1998, 101:209-213
    115. Jorge L C, Moreira-Filho O. Cytogenetic studies on Apareiodon affinis (Pisces, Cha -raciformes) from Parara river basin: sex chromosomes and polymorphism. Genmetica, 2000,109: 267-273
    116. Kallman K D. A new look at sex determination in Poeciliid fishes. Evolutionary genetics of fishes. Plenum Press, New York, 1983: 95-111
    117. Kamachi Y, Uchikawa K, Collignon J. Involvement of Sox1 ,2and 3 in the early and subsequent molecular events of lens induction. Development, 1998 ,125: 2521-2532
    
    118. Kanai Y, Kanai - Azuma M, Noce T. Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and they' re differential expression in mouse spermato genesis. The Journal of Cell Biol, 1996,133: 667-681
    
    119. Kanda H, Kojima M, Miyomoto N. Rainbow trout Sox24, a novel member of Sox family, is a transcriptional regulator during oogenesis. Gene, 1998,211 (2): 251-257
    
    120. Kasai K, Morikawa Y, Sorri V A. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome, 2000,43: 1-8
    
    121. Kazuyuki S, Minoru T, Mashisa N. Dmrtl expression in sex-reversed gonad of amphibians. General & Compararive Endocrinologe, 2002,127(3): 232-242
    
    122. Kent J, Wheatley S C, Andrews J E, Sinclair A H, Koopman P. A male-specific role for Sox9 in vertebrate sexdetermination. Development, 1996,122: 2813-2822
    
    123. Kitano T, Takamune K, Kobayashi T. Suppression of p450 aromatase gene espression in sex-reversed males produced by rearing gengtically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder(Paralichthys olivaceus). J Mol Endocrinol, 1999,23(2): 167-176
    124. Kitano T, Takamune K, Nagahama Y. Aromatase inhibitor and 17alpha-methyltestosterone cause sex-reversal from genetical females to phenotypic male and suppression of P450 aronatase gene expression in Japanese flounder(Paralichthys olivaceus). Mol Repred Dev, 2000, 56(1): 1-5
    125. Konda M, Nanda I, Hornung U. Absence of the candidate male sex- determining gene dmrtlb(Y) of medaka from other fish species. Current Biol, 2003,13(5): 416-420
    
    126. Kondo M, Nagao E, Mitani H. Differences in recombination frequencies during female and male meioses of the sex chromosome of the medaka, Oryzias latipes. Genet Res, 2001, 78: 23-30
    127. Kovacs B, Egedi S, Bartfai R. Male-specifis DNA markers from African catfish (Clarias gariepinus). Genetica, 2000,110: 267-276
    
    128. Lahn B T, Page D C. Four evolutionary strata on the human X chromosome. Science, 1999, 286: 964-967
    129. Lahogue F, This P, Bonquet A. Identification of a codominant SCAR marker linked to the seedlessness character in grapevine. Theor Appl Genet, 1998,97: 950-959
    
    130. Levin I, Crittenden L B, Dodgson J B. Genetic map of the chicken Z chromosome using random amplified polymorphic DNA(RAPD) markers. Genomics, 1993,16: 224-230
    131. Ling P, Duncan L W, Deng Z. Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Gene, 2000,100: 1010-1017
    
    132. Liu Q, Goudie C A, Simco B A. Sex-linkage of glucosephospjate isomerase-B and mapping of the sex-determining gene in channel catfish. Cytogenet Cell Genet, 1996, 73: 282-285
    133. Liu Z, Sun Q, Ni Z. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breeding, 1999,118: 215-219
    
    134. Liu Z, Nichols A, Li P. Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I.furcatus), and their F1, F2 and backcross hybrids. Mol Gen Genet, 1998, 258: 260-268
    135. Lloyd M A, Field M J, Thorgaard G H. BKM minisatellite sequences are not sex associated but reveal DNA fingerprint polymorphism .Genome, 1989, 32 (5): 865-868
    136. Lu R, Rank G H. Use of RAPD analysis to estimate population genetic parameters in the alfalfa leaf-cutting bee, Megachile rotundata. Gemome, 1996,39: 655-663
    137. Lynch M. The similarity indexand DNA fingerprinting. Mol Biol Evol, 1990, 7: 478 -484
    138. Mair G C, Scott A G, Penman D J. Sex determination in the genus Oreochromis 1. Sex reversal, gynogenesis and triploidy in O.niloticus(L). Theor Appl Genet, 1991, 82: 144-152
    139. Mair G C, Scott A G, Penman D J. Sex determination in the genus Oreochromis.1. Sex reversal, hybridization, gynogenesis and triploidy in O.aureus. Theor appl Genet, 1991, 82:153-160
    140. Makino S, Ojima Y. Formation of the diploid egg nucleus due to suppression of the second maturation division, induced by refrigeration of fertilixed egg of the carp (Cyprinus carpio). Cytologia, 1943, 13(1): 55-60
    141. Marchand O, Gororoun M D, Cotta H. DMRT1 expression duringgonadal diff -erentiation and spermat ogenesis in the rainbow trout, Oncorchynchus mykiss Biochim Biophys Acta, 2000,1493: 180-187
    142. Marsuda M, Nagahama Y, Shinomiya A. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 2002, 417: 559-563.
    143. Matin C, Muhammad A E, Hans C. Roles of Sox4 in central nervous system development. Gene, 2000,23(6): 180-191
    144. Matsuda M, Sato T, Toyazaki Y. Oryzias cruvinotus has DMY, a gene that is required for male development in the madaka, O.latips. Zoolog Sci, 2003,20(2): 159-161
    
    145. Mcgowan C, Davidson W S. The RAPD technique fails to detect a male-specific genetic marker in Atlantic salmon. Journal of Fish Biology, 1998, 53: 1134-1136
    
    146. Meng A, Moore B, Tang H, Yuan B, Lin S A. Drosophila doublesex related gene, terra, is involved in somitogenesis in vertebrates. Development, 1999,126: 1259-1268
    147. Morals da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell- Badge R. Sox9 expression during gonadal development implies a conserved role for the gene in testis diferentiation in mammals and birds. Nat Genet, 1996,14: 62-68
    
    148. Nagahama Y. Gonadal steroid hormones: Major regulators of gonadal sex differentiation and gametogenesis in fish. In: Norberg B, Kjesbu O S, Taranger G L, Andersson E, Stefansson S O. Reproductive Physiology of fish. Bergen: John Grieg A S, 211-222
    149. Nakajima Y, Oeda K, Yamamoto T. Characterization of genetic diversity of nuclear and mitochondrial genomes in Daucus varieties by RAPD and AFLP. Plant Cell Reports, 1998,17: 848-853
    150. Nakayama I, Foresti F, Tewari R. Sex chromosome polymorphism and heterp gametic males revealed by two cloned DNA probes in the ZW//ZZ fish Leporinus elongates. Chromosoma, 1994,103(1): 31-39
    151. Nanada I, Schart M, Epplen J T. Primitive sex chromosomes in poeciiliid fishes harbor simple repetitive DNA sequences. J Exp Zool, 1993,265(3): 301-308
    152. Nanda I, Volff J N, Weis S. Amplification of a long terminal repeat-like element on the Y chromosome of the platyfish, Xiphophorus maculates. Chromosoma, 2000, 109: 173-180
    153. Nanda I, Kondo M, Hormung U. A supplicated copy of DMRT1 in the sex-determining region of the Y-chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA, 2002,99:11778-11783
    154. Nicolosi E, Deng Z N, Gentile A. Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet, 2000, 100: 1155-1166
    
    155. Nie L W, Shan X N, Wang M. The conservative region sequence analysis of four sox genes in the trionyx sinensis. Acta Hydrobiologica Sinica, 2001,25 (3): 245 -250
    156. Ohno S. Patterns in genome evolution. Curr Opin Genet Dev, 1993, 3: 911-914
    157. Oriane M, Marina G, Helena D. Dmrtl expression during gonadal differentiation and spermatogenesis in the rambow trout, Oncorhynchus mykiss. Biochimicaet Biophysica Acta, 2000,1493:180-187
    158. Ota K, Kobayashi T, Ueno K. Evolution of heteromorphic sex chromosomes in the order Aulopiformes. Gene, 2000,259: 25-30
    159. Pejic I, Ajmone-Marsan P, Morgante M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl Genet, 1998, 97: 1248-1255
    160. Penman D J, Shah M S, Beardmore J A. Sex ratios of gynogenetic and triploid tilapia. In: Tiews K, ed. The Proceedings of a World Symposiumon Selection, Hybridization and Genetic Engineering in Aquaculture, Vol.2. Rome ,Italy, Copen -hagen, Denmark, 1987 , 267-276
    161. Pevny L H, Lovell-Badge R. Sox genes find their feet. Curr Opin Genet Dov, 1997, 7(3): 338 -344
    162. Phillip R B, Konkol N R, Reed K M. Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmo and Salvelinus (Salmonidae). Genetica, 2001,111:119-123
    163. Piferrer F, Zanuy S, Carrillo M. Brief treatment with an aromatase inhibitor during sex differentiation causes chromosomally female salmon to develop as normal, functional males. J Exp Zool, 1994, 270: 255-262
    164. Powell W, Morgante M, Andre C. The comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Mol Breeding, 1996,2: 225-228
    165. Price D J. Genetics of Sex Determination in Fishes-A Brief Review. In: Fish Reproduction. Academic Press 1nc Lond Ltd, 1984, 77-89
    166. Pruginin Y, Kanylt E S. Mono-sex culture of Tillapia through hybridization. S.R.T.C. Symposium on Fish Farming, Nairobi, 1965,1-3
    167. Pruginin Y, Rothbard S, Wohlfarth G All male broods of Tilapia nilotica x O. aurea hybrids. Aquaculture, 1975,6: 11-21
    168. Raymond C S, Shamu C E, Shen M M. Evidence for evolutionary conservation of sex -determining genes. Nature, 1998, 391: 691 -695
    
    169. Raymond C S, Kettlewell J R, Hirsch B. Expression of Dmrtl in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development. Developmental Biology, 1999,215: 208-220
    170. Raymond C S, Murphy M W, O'Sullivan M G, Bardwell V J, Zarkower D. Dmrtl, a gene related to worm and fly sexual regulators, is required for mammalian testis diferentiation. Gene & Development, 2000,14(20): 2587-2595
    171. Renll, Cheng H H, GuoY Q. Evolutionary conservation of Dmrt gene family in amphibians reptiles and birds. Chinese Science Bulletin, 2001,46 (23): 1992-1996
    172. Rhen T, Lang J W. Temperature dependent sex determination in the smapping turtle: Manipulation of the embryonic sex steroid environment. Gen Comp Endocnnol, 1994, 96: 243-254
    173. Sabo T J, Kesseli R, Halverson J L, Nisbet I C T, Hatch J J. PCR-based method for sexing roseate terns {Sterna dougallii). The Auk, 1994, 111: 1023- 1027
    
    174. Sakamoto T, Danzmann R G, Gharbi K. A microsatellite linkage map of rainbow trout(Oncorhynchus mykiss) characterized by large sex-apecific differences in recombination rates. Gene, 2000,155: 1331-1345
    175. Sanjay S, Hemant T, Robert C E. On estimating the heterozy gosity and polymer phism information content value. Theoretical Population Biology, 2000, 57: 265-271
    
    176. Sara D M, Yi - Lin Y, Trevor J. Expression of Sox11 gene duplicates in zebrafish suggests the reciprocal loss of ancestral gene expression patterns in development. Developmental Dynamics, 2000,217 (3): 279-292
    
    177. Sarder M R I, Penman D J, Myers J M. Production andpropagation of fully inbred clonal lines in the Nile tilapia(Oreochromis niloticus L. ). Journal of Experimental Zoology, 1999,284:675-685
    178. Shapiro D Y. Sex-changing fish as a manipulable system for the study of the determination, differentiation, and stability of sex in vertebrates. J Exp Zool, 1990, suppl.(4): 132-136
    180. Sinclair A H, Berta P, Palmer M S. A gene from the human Sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 1990, 346 (6281): 240-245
    181. Slavica S, Milena S. The human SOX18 gene: cDNA clone and high resolution mapping. Bio Chemica et Biophysica Acta, 2000,1492(1): 237-241
    
    182. Spotila J R, Spotila L D, Kaufer N E. Molecular mechanism of TSD in reptiles: A search for the magic bullet. J Exp Zool, 1994,270(1): 117-127
    
    183. Stein J, Phillips R B, Devlin R H. Identification of the Y chromosome in Chinook salmon (Oncorhynchus tshawytscha). Cytogenet Cell genet, 2001,92: 108-110
    
    184. Stevanovic M, Zuffardi O, Collignon J. The cDNA Sequence and chromoso mal -location of the human SOX2 gene. Mammal Genome, 1994, 5(10): 640-642
    
    185. Strussmann C A, Patino R. Sex determination, Enviromental. In: Encyclopedia of Reproduce. Acatemic press, 1999,4: 402-409
    
    186. Takamatsu N, Kanda H, Ito M. Rainbowt trout Sox9: cDNA cloning, genestructur and expression. Gene, 1997, 202: 167-170
    
    187. Takase M, Noguchi S, Nakamura M. Two Sox9 messenger RNA is forms: Isolation of cDNAs and their expression during gonadal development in the frog Rana rugosa. FEBS Lett, 2000,466: 249 -254
    
    188. Thierry M L, Panaud O, Toupance B. Assessment of genetic relationships between Setariaitalica and its wild relative S .viridis using AFLP markers. Theor Appl Genet, 2000, 100: 1061-1066
    189. Thorgaard G H. Sex chromosome in sockeye salmon: a Y-autosome fusion. Can J Genet Cytol, 1978,20(3): 349-354
    190. Thorgrard .Heteromorphic sex chromosome in male rainbow trout. Science, 1997, 196 : 900-902
    191. Tiersch T R, Sinco B A, Davis K B. Molicular genetics of sex detemination in channel catfish: study on SRY, ZFY, BKM and human telomeric repeat. Biol Reprod, 1992, 47: 185-192
    193. Ueno K, Ota K, Kobayashi T. Heteromorphic sex chromosome of lizardfish (Synod-ontidae): focus on the ZZ-ZWW system in Tmchinocephatus myops. Genetica, 2001, 111: 133-142
    194. Uwauogno D, Rex M, Carturight E S. Embryonic expression of the chicken Sox2, Sox3 and Sox11 gene suggests an interactive role inneuronal development. Mech Dev, 1995, 49:23-26
    195. Vos P, Hogers R, Blecker M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23:4407-4414
    196. Wachira F N, Waugh R, Hackett C A. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers. Genome, 1995, 38:201-210
    197. Wachteld S, Demas S, Tiersch T. BKM satellite DNA and ZFY in the coral reef fish Anthias squamipinnis. Genome, 1991, 34:612-617
    198. Wang Jianwei, Wang Wei, Cui Yingsong. Genetic diverstty of three gobiocypris rarus populations and one inbreeding stock. Chinese Biodiversity, 2000, 8(3): 241-247
    199. Wang Tianqi, Li Zhizhong, Xia Dequan. Analysis of the gene polymorphism of O.aureus and O.niloticus by using RAPD. Developmental & Reproductive Biology, 1999, 8(2): 19-24
    200. Wardell B, Sudweeks J D, Meeker N D, Estes S S, Woodward S R, Teuscher C. The identification of Y chromosomelinked markers with random sequence oligonucleotide primers. Mammalian Genome, 19934:109-112
    201. Waycott M, Barnes P A G. AFLP diversity within and between populations of the Caribbean seagrass Thalassia testudinum (Hydrocharitaceae). Marine Biology, 2001, 139:1021-1028
    202. Westen P S, Harry J L, Graves J A. Temprature-dependant Sox determining up regulation of SOX9 expression after commitment to male development. Development Dynamics, 1999, 214 (3): 171-177
    203. Williams J G K, Kubelik A R, Livak K J. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18:6531-6535
    204. Wohlfarth G W, Hulata G, Halevy A. Survial, sex ratio and growth of some tilapia species and their interspecific hybrids. Eur Aqyacult Soc Spec Publ, 1990, 11: 87-101
    205. Wohlfarth G W. The unexploited potential of tilapia hybrids in aquaculture. Aquacult Fish Manage, 1994, 25:781-788
    206. Wright E, Hargrave M R, Christiansen J. The styrelated gene Sox9 is expressed during chondrogenesis in mouse embryos. Nature Genet, 1995, 9:15-20
    207. Yamamoto Y A. YY male goldfish from mating estrone-induced XY female and normal male. J Hered, 1975, 66:2-4
    208. Yamamoto T, Kajishima T. Sex homone induction of sex teversal in the gold fish and evidence for male heterogamety. J Exp Zool, 1968, 168:215-222
    209. Zabeau M, Vos P. Selective restrict ion fragment amp lification, a general method for DNA fingerprintings. European Patent Applification. Publication No: 858A1, 1993-9-23
    
    210. Zhang Q, Nakayama I, Fujiwara A. Sex identification by male-specific growth hormone pseudogene (GH-psi) in Oncorhynchus masou complex and a related hybrid. Genetica, 2001,111:111-118
    
    211. Zhao Z, Hua Z, Meng A. Genomic organization and expression in E. coli of zebra fish terra. Tsinghua. Sci and Tech, 2001, 6 (3): 265-268

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700