奥利亚罗非鱼DMO和DMT基因的克隆及分子生物学特征和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
罗非鱼是原产于非洲的热带鱼类,现已成为世界性的主要养殖鱼类。在生产上,罗非鱼雄鱼比雌鱼生长快40-50%,因此提高罗非鱼雄性率具有重要实践意义。在各种罗非鱼杂交组合中,奥尼杂交鱼的雄性率最高,为95%,但根据染色体决定性别理论,其雄性率应为100%。由于鱼类的性别决定机制是多样的和易变的,较高等动物要复杂得多,因而通过分子生物学的研究从基因水平进行探讨,是一条揭示罗非鱼性别控制机理的好途径,为进一步提高罗非鱼雄性率奠定基础。本研究利用RT-PCR和RACE方法克隆了奥利亚罗非鱼的DMO和DMT基因,并对它们的表达特性进行了研究,这将有助于了解奥利亚罗非鱼的性别决定机制,从而采取人为控制措施,对奥利亚罗非鱼和尼罗罗非鱼杂交产生全雄杂交后代的理论研究和生产实践具有重要意义。
     利用RT-PCR和cDNA末端快速扩增法分别从奥利亚罗非鱼(Oreochromis aurea)卵巢和精巢分离、克隆DMO和DMT基因,并进行序列测定与生物信息学分析。结果表明,DMO基因cDNA序列全长1571 bp [不含poly(A)],包括148 bp 5’非翻译区,1230 bp阅读框以及含Poly(A)信号AATAAA的193 bp3’非翻译区[不包括Poly(A)],阅读框共编码409个氨基酸,与尼罗罗非鱼DMO进行比较,同源性为96.3%,说明DMO在同物种间差别较小。而与尼罗罗非鱼,红鳍东方豚,虹鳟,青鳉,鼠,人等动物的DMRT1进行比较,同源性分别为:25.7%,25.8%,24.3%,29.7%,22.5%,22.0%。DMT基因cDNA序列全长1260 bp,包括74 bp 5’非翻译区,879 bp阅读框以及含poly(A)信号AATAAA的307 bp 3,非翻译区,阅读框共编码292个氨基酸。序列同源性分析表明,不同进化地位动物的DMRT1基因DM域编码序列存在高度同源性,显示DMRT1基因在系统进化上高度保守。生物信息学分析结果表明,DMO蛋白具有两个亲水性螺旋卷曲区域,97~112,155~168氨基酸区域,没有信号肽,含有两个跨膜结构域,发生跨膜运动。DMT蛋白不含螺旋卷曲区域,没有信号肽,是一个非跨膜的亲水性稳定蛋白,该蛋白以游离形式存在于细胞质内,不会发生跨膜运动。DMO和DMT包含两个相同的保守的功能结构域,分别行使性别调控,使DNA形成二聚体和结合回纹结构的功能。DMO和DMT都含有多个磷酸化位点,推测它们可能在细胞信号传导中发挥作用,且其生物活性可能接受信号途径中多种信号的调控。DMO蛋白N-端第1~5,41~51,65~67,86~89,98~110,154~170,183~203,205~248,258~264,284~291,293~298,270~375,389~392,402~410区域和DMT蛋白N-端第1~9,17~28,77~84,114~123,131~139,157~184,196~207区域可能是B细胞表位优势区域。DMO和DMT的高级结构相似,都含有两个a-螺旋区域。
     采用荧光定量RT-PCR方法,从mRNA水平对奥利亚罗非鱼DMO和DMT基因的时空表达谱进行了研究。结果发现,这两个基因均从原肠胚早期开始转录,一直到出膜,都维持着较高的表达水平,但DMO表达量明显高于DMT。鱼苗性腺分化时期,激素处理可显著提高奥利亚罗非鱼的雌、雄比率,还可影响DMO和DMT基因的表达量,提示它们可能与激素调控有关。在雌、雄鱼的肝和肾等5种组织中均检测不到这两个基因转录本的存在;在脑中仅可检测到DMO基因不同强弱的转录本,呈现出很强的中枢神经系统的表达特异性。此外,在成体的卵巢和精巢中分别只可检测到DMO和DMT基因的大量表达,显示二者在性别决定和分化中的重要功能。奥利亚罗非鱼DMO基因在其中枢神经系统发育及卵巢发生和功能维持上有着重要功能;DMT基因在精巢发生和功能维持上起重要作用。
     为了进一步分析这两种基因mRNA在胞内的表达情况,利用原位杂交分析了奥利亚罗非鱼端脑、下丘脑、垂体、性腺、肝脏、心脏、脾脏、肾脏、肌肉等组织中DMO和DMTmRNA的表达情况,结果表明:DMO只在奥利亚罗非鱼的卵巢中表达;DMT仅在其精巢中表达。在奥利亚罗非鱼卵子发生中,DMO mRNA均匀分布于卵原细胞和各期卵母细胞的胞质中;在卵原细胞和Ⅰ、Ⅱ期卵母细胞中,随着卵母细胞的发育,DMO mRNA的杂交信号逐渐增强,最后充满整个胞质中。Ⅲ期卵母细胞中,DMO均匀分布在卵黄颗粒之间的细胞质中.Ⅳ期以上的卵母细胞胞质中,相对于前三个时期DMO mRNA的杂交信号明显减弱,整个胞质都呈现较淡的黄色,有向胞质外周皮质层迁移集中的趋势。当卵黄充满整个胞质之后,在整个卵母细胞中无DMO mRNA的杂交信号。在奥利亚罗非鱼精子发生中,DMT mRNA可在精原细胞和初级精母细胞中检测到。DMT mRNA的阳性信号在精原细胞中极为强烈,在初级精母细胞中较为微弱,而精子细胞中没有阳性信号。结果初步表明,奥利亚罗非鱼DMO和DMT基因对于生殖干细胞。卵原细胞和精原细胞的维持和正常功能可能起着重要作用。
     为了进一步探讨奥利亚罗非鱼DMO和DMT的功能,本研究采用RT-PCR方法分别从奥利亚罗非鱼卵巢和精巢中克隆出DMO和DMT全长cDNA片断,构建了pMAL-c2x/DMO和pMAL-c2x/DMT重组质粒,成功地表达了DMO和DMT蛋白,发现在IPTG诱导4h后,目的蛋白可达到细菌总蛋白的50%左右。同时通过免疫印迹技术证明了这两种蛋白的免疫原性。经Xa切割、Amylose-sepharose柱层析纯化后作为抗原免疫新西兰白兔制备了DMO和DMT多克隆抗体,并进行纯化。通过对纯化多抗进行Westem blot分析,结果表明获得了高特异性的DMO和DMT抗体。
     为了观察DMO和DMT在组织中的表达谱,首先,本研究制备了多种组织匀浆蛋白,使用纯化的抗体进行Western blot分析,仅分别在卵巢和精巢中检测到DMO和DMT蛋白的表达;制备奥利亚罗非鱼多种组织切片,使用纯化的DMO和DMT多抗进行免疫组织化学分析,发现DMO仅在卵巢表达,而DMT仅在精巢表达,但其特异性低于原位杂交。以上结果有助于阐明DMO和DMT的功能及在鱼类性别调控中的作用.
     本研究首次从奥利亚罗非鱼中克隆到性别调控基因DMO和DMT,并分析了它们的表达特征及可能的功能。奥利亚罗非鱼DMO和DMT基因的成功克隆及分子生物学特征和功能分析不仅为DMRT基因的分子进化和相似性比较研究提供了新的材料,而且对于进一步研究鱼类性别调控及DMRT基因的结构和功能有着重要的理论价值和研究前景。
Tilapia is native to Africa but introduced elsewhere as a valuable food fish. It is very popular all over the world. In aquaculture, the male grows more quickly than the female by 40-50%, so it is very important to improve the male rate. In the hybrid combinations of various cichlid fishes of the genus Tilapia, the male rate of offspring of Oreochromis aurea(♂)×Oreochromis niloticus(♀) is the highest(95%), but it should be 100% according to the chromosomal theory. Sex determination and differentiation in fish is highly variable and complicated, so molecular biology methods are used necessarily to reveal the sex regulatory mechanism and improve the male rate in tilapia at gene level.
     The DMRT genes constitue a new gene family related to sex-determination. Like the Double-sex gene of Drosophila melanogaster and the Mab-3 gene of Caenor habditis elegents, they encode transcription factors characterized by a conserved zinc-finger like DNA-binding motif, the DM domain, which is thought to bind DNA in the process of sex differentiation and development. In 1998, DMRT1 genes were found to regulate sex determination and differentiation in vertebrates extensively. So far, the DMRT genes have been discovered in a wide range of animal species, such as fish, amphibian, reptiles, birds and mammals. These evidently reveal the evolutionary conservation of DMRT gene family.
     The DM domain gene family has multiple members in both invertebrates and vertebrates. For example, up to date, there are at least seven DM domain gene found in mouse, eight in human, four in Drosophila, eleven in C. elegans, and six in fish (DMRT1-5 and DMRT2b). All of them encode putative transcription factors related to the sexual regulator Dsx of Drosophila and Mab-3 of C. elegans. Multiple DM domain genes have been suggested to be involved in mouse sexual development. At least three mouse DM domain genes in addition to DMRT1 are expressed in embryonic gonad, including DMRT3, DMRT4, and DMRT7. However, DMRT2 is expressed in presomitic desoderm and development somites, while DMRT5 and DMRT6 are expressed primarily in the brain, suggesting a role in other developmental precesses.
     Although some of the DM genes are involved in sexual development, function of most of these genes remains unclear, and we know remarkable little about the evolution of the DM genes. It is still the question that the male-specific role of the DM gene is primordial during their evolution, or independently evolved by convergence. Furthermore, it is essential to understand the roles of the DM genes in regulatory pathway of sex determination, or if any, the roles in other developmental processes.
     There is also few structural and functional analysis concerning DM domain genes of the model fish Oreochromis aurea. We report here cloning, characterization and expression of DMO and DMT of Oreochromis aurea.
     In this study, RT-PCR and RACE were used for the cloning of DMO (DM-domain gene in ovary) and DMT (DM-domain gene in testis) full length cDNA from ovary and testis of Oreochromis aurea, respectively. DMO and DMT genes were sequenced and analyzed by bioinformatics methods. Sequence analysis revealed a 1571 bp cDNA full-length sequence of DMO containing 148 bp 5'-untranslated region, 193 bp 3-untranslated region and 1230 bp ORF encoding 409 amino acid. Homology of DMO from Oreochromis aurea and Oreochromis niloticus was 96.3%. However, we compared the alignment of deduced amino acid sequences between DMO cDNA from Oreochromis aurea and DMRT1 cDNA from Oreochromis niloticus, fugu, rainbow trout, medaka, rat to human. The score was 25.7%, 25.8%, 24.3%, 29.7%, 22.5% and 22.0%, respectively. A 1260 bp cDNA full-length sequence of DMT encoded 292 amino acids, which contained 74 bp 5'-untranslated region, 307 bp 3'-untranslated region and 879 bp ORF. The deduced amino acid sequence aligned with those of DMRT1 genes from different species, high sequence homologies were obtained as revealed in phylogenic tree constructed.
     The amino acid sites of DM domains may form C2/H2 model zinc-finger structure to bind specific DNA sequence and regulate sex differentiation and development. DMT contained a male specific motif, which was well conserved among numerous DMRT1 genes, but was absent in DMO indicating that DMT represented a male-type DM-domain gene and played an important role in sex differentiation and development.
     The bioinformatics analysis revealed that DMO had two helical segments that were 97-112 amino acid sequence and 155-168 amino acid sequence, and did not contained signal peptide. It was a transmembrane and hydrophilic protein. DMT had not helical segment and did not contained signal peptide. It was a non-transmembrane and hydrophilic protein. DMO and DMT included two same functional domains, which played the roles of sex control, dimerising and binding palindromic DNA, respectively. DMO and DMT both included several phosphorylation sites implicating that they could play some roles during cellular signal conduct and their activities might be related to the regulation of many signals during signal route. DMO and DMT had similar advanced structures including two a-helix regions. Moreover the B-cell epitopes possibly localized in or nearby the DMO protein's N-termianl No.1-5, 41-51, 65-67, 86-89, 98-110,154-170,183-203, 205-248, 258-264, 284-291, 293-298, 270-375, 389-392 and No.402-410, and DMT protein's N-termianl No.1-9,17-28, 77-84,114-123,131-139,157-184 and No.96~207.
     The temporal and spatial expression patterns were analyzed by Real-time Quantitative RT-PCR at cellular level. Their transcripts appeared from early gastrulae stage during embryonic development, and maintained a considerable high level till the one day's fry, but level of DMO was higher than that of DMT. Treatment with hormone not noly improved remarkably the female or male rate, but also changed level of DMO and DMT during sex differentiation, implicating that they could be related to hormone regulation. No DMO and DMT transcripts were found in liver, kidney, spleen, heart and muscle, but unequal amount of DMO transcripts were detected in both brains tissues of female and male Oreochromis aurea, which suggested that mRNA expression of DMO was specific in central nervous system (CNS). In addition, we also found the abundant transcripts of DMO in ovary and DMT in testis. This supports that the DMO and DMT genes play important roles not only on the sex determination, but also on the development processes of early embryogenesis. Based on these results, we suggest that DMO should play a key role in CNS and ovary development of Oreochromis aurea and DMT in testis. Study on DMO and DMT expression facilitates the elucidation of the roles of them and the understanding of sex differentiation and development in fish.
     Their mRNA expression was further analyzed at cellular levels using in situ hybridization. The results were as follows: DMO was expressed only in ovary and DMT was observed in testis exclusively. DMO mRNA uniformly dispersed throughout the cytoplasm of oocytes at all stages. With the development of oocytes in oogonia and stage I、II oocytes, the expression signal became stronger. In stage of III oocyte, DMO mRNA was uniformly observed in cytoplasm between grains of yolk. In the later stage, the signals of DMO mRNA significantly decreased in most of the regions while remained strong at cortical region. DMO mRNA signals were not detected throughout the oocytes after the yolk was full of the cytoplasts. During spermatogenesis, the positive signals of DMT mRNA could only be detected in spermatogenia and primary spermatocytes while the signals in the former were much stronger than in the latter. Howerer, no signals could be detected in spermatids.
     The results suggest that DMO and DMT may play an important role in maintenance and functioning of the gernline stem cell-oogonia and spermatogonia.
     To further inquire into the function of DMO and DMT, the intact regions encoding DMO and DMT obtained by RT-PCR were sub-cloned into the vector pMAL-c2x prokaryotic expression system and introduced into the Escherichia coli TB1 cell for efficient fusion expression. It was found that the expression level was about 50% of total protein in the engineered bacteria after IPTG induction for 4h. Immunoblotting proved the immunogenicity of DMO and DMT. After purification and cleavage, DMO and DMT proteins were used to immunize the adult rabbits following standard protocols. Consequently, we found that polyclonal antibodies against DMO and DMT had high specificity by Western blot analysis.
     The expression of DMO and DMT protein was also analyzed using the purified antibodies through Western blot and immunohistochemistry. We found DMO was exclusively expressed in ovary and DMT in testis, but specificy by immunohistochemistry is lower than by in situ hybridization. Study on DMO and DMT expression facilitates the elucidation of the roles of them and the understanding of sex differentiation of fish.
     In general, this is the first time to clone DMO and DMT genes related to sex control from Oreochromis aurea. The cloning, molecular characterization and function of DMO and DMT in Oreochromis aurea provide not only new materials for researches on DMRT molecular evolution and similarity comparison, but also theoretical basis for better understanding the sex control and DMRT in fish.
引文
常重杰,杜启艳,路淑霞,等.泥鳅和大鳞副泥鳅性腺细胞H-Y抗原的检测[J].河南师范大学学报(自然科学版),1994,22(3):60-63.
    常重杰,余其兴.七种鲃亚科鱼Ag-NORs的比较研究[J].遗传,1997,19(4):22-25.
    常重杰,余其兴.大鳞副泥鳅ZZ/ZW型性别决定的细胞遗传学证据[J].遗传,1997,19:17-19.
    常重杰,周荣家,余其兴.两种泥鳅中PdSox8和PdSox9的RFLP分析[J].遗传,2000,22:153-156.
    常重杰,周荣家,余其兴.两种泥鳅中PdSox8和PdSox9的染色体定位[J].遗传学报,2000,27:377-382.
    常重杰,周荣家,余其兴.大鳞副泥鳅中Sox9基因保守区的序列分析[J].遗传学报,2000,27:121-126.
    常重杰,余其兴.大鳞副泥鳅ZZ/ZW型性别决定的细胞遗传学证据[J].遗传,1997,19:17-19.
    陈松林.我国鱼类生物技术的研究现状及前景展望[C].全国首届青年水产学术研讨会论文集.上海:同济大学出版社,1995:11-15.
    范兆廷,宋苏祥.鱼类的雌核发育、雄核发育和杂种发育[J].水产学报,1993,17(2):179-187.
    桂建芳,李渝成,李康,等.中国鲤科鱼类染色体组型的研究Ⅳ:鱼巴科亚科3种四倍体鱼和鲤亚科1种四倍体鱼的核型[J].遗传学报,1985,12(4):302-308.
    桂建芳,肖武汉,梁绍昌,等.静水压休克诱导水晶彩鲫三倍体和四倍体的细胞学机理初探[J].水生生物学报,1995,19(1):49-55.
    郝柏林,张淑誉.生物信息学手册[M].上海:上海科学技术出版社,2000:10.
    赖秋明.罗非鱼鱼苗群体性比测定方法研究[J].淡水渔业,1999,3(29):12-13.
    李传武.鲤和草鱼杂交中雄核发育子代的研究[J].水产学报,1990,14(2):153.
    李奎,余其兴,赵则春,等.二价染色体上黄鳝SRY盒基因的高分辨区域定位[J].中国水产科学,1998,5:101-103.
    李英文,林浩然.鱼类性转变研究的进展[J].水产学报,1984,18(4):344-352.
    刘汉勤.泥锹雄核发育纯和二倍体的产生[J].水生生物学报,1987,11(3):241-247.
    刘建康,顾国彦.鳝鱼性别逆转时生殖腺组织的改变[J].中国水生生物学报,1951,2:85-109.
    刘凌云.BrdU处理的鱼类染色体高分辨G-带带型分析[J].遗传学报,1988,15:117-121.
    楼允东.人工雌核发育及其在遗传学和水产养殖上的应用[J].水产学报,1986,10(1):113-123.
    楼允东.鱼类育种学[M].北京:中国农业出版社,1999:196-201.
    罗静,张亚平,朱春玲,等.鲫鱼遗传多样性的初步研究[J].遗传学报,1999,26(1):28-36.
    罗琛,刘筠.人工诱导草鱼和鲫鱼雌核发育的研究[J].湖南师范大学自然科学学报,1991,14(2):154-159.
    任莉莉,程汉华,郭一清,等.两栖类、爬行类和鸟类存在一个新的DMRT基因家族[J].科学通报,2001,46(14):1187-1190.
    马慧钦,裴素俭.浅谈动物的性别决定机制[J].生物学教学,2002,27(6):4-5.
    山本时男著,张玉书译,雍文岳校.鱼类性分化的遗传学和发生生理学研究[J].淡水渔业,1979,(4):32-35.
    杨歧生.分子生物学基础[M].杭州:浙江大学出版社,2001:92-93.
    杨永铨.应用三系配套途径生产遗传上全雄莫桑比克罗非鱼[J].遗传学报,1980,7(3):241-246.
    易梅生,余其兴,黄晓,等.人性染色体特异DNA对三种鱼类染色体的描绘[J].遗传学报,2001,28:1-6.
    喻传洲,余梅,龙良启.禽类性别及性别控制的研究进展[J].华中农业大学学报,1994,13(6): 594-600.
    余其兴,樊连春,崔建勋,等.黄鳝二价体高分辨率G-带制备及模式图构建[J1.中国科学(B辑),1993,23:947-954.
    余先觉,周敦,李渝成,等.中国淡水鱼类染色体[M].北京:科学出版社.
    王德寿,吴天利,张耀光.鱼类性别决定及其机制的研究进展[J].西南师范大学学报(自然科学版),2000,25:296-304.
    王蕊芳,施立明,贺维顺.不同地理区域鲫鱼染色体银染核仁组织者的比较研究[J].动物学研究,1988,9(2):165-169.
    王小梅,宋文芹,陈瑞阳,等.利用AFLP技术筛选银杏性别相关的分子标记[J].南开大学学报(自然科学版),2001,34(1):5-9.
    吴清江,桂建芳.鱼类遗传育种工程[M].上海:上海科学技术出版社,1999:3-5.
    张定东.罗非鱼SOX基因PCR扩增分析及其性别决定机制初探[D].南京:南京农业大学硕士论文,2001.
    周荣家,余其兴,程汉华,等.PCR扩增黄鳝和刺鳅SRY盒基因[J].科学通报,1996,41(7):640-642.
    周荣家,余其兴,程汉华.SRY盒基因在斑马鱼和胡子鲶中的保守性分析[J].遗传,1996,18(1):1-3.
    赵寿元,乔守怡.现代遗传学[M].北京:高教出版社,2001:217-219.
    张尚宏,屈良告鸟.基因组的进化与内含子中的基因的进化[J].中山大学学报(自然科学版),1999,38(1):49-58.
    张勇,陈淳,徐晋鳞,等.黄鳝性别决定与SRY基因不相关[J].自然科学进展,2001,11(4):365-367.
    张悦,鲁晓萱,单祥年.性别决定基因的研究进展[J].遗传,2000,22:328-330.
    Aaltonen J, Laitinen M P, Vuojolainen K, et al. Human growth differentiation factor 9(GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis[J]. J Cli Endo Metab, 1999, 84: 2744-2750.
    Achermann J C, Ito M, Hindmarsh P C, et al. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans[J]. Nat Genet, 1999, 22: 125-126.
    AI-Attar L, Noel K, Dutertre M, et al. Hormonal and cellular regulation of sertoli cell anti-mullerian hormone production in the postnatal mouse[J]. J Clin Invest, 1997, 100: 1335-1343.
    Aldridge F J. Marston R Q, Shirenan J V. Induced triploids and tetraploids in bighead carp, Hypophthalmichthys nobilis, verified by multi-embryo cytofluorometric analysis[J]. Aquaculture, 1990, 87: 121-131.
    Allendorf F W, Thorgaard G H. Tetraploidy and the evolution of sahnonid fishes [A]. In: Turner B J. Evolutionary genetics of fishes[C]. New York: 5 Plenum Press, 1983: 1-54.
    Allmeida-Toledo L F, Foresti F, Daniel M F, et al. Sex chromosome evolution in fish: the formation of the neo-Y chromosome in Eigenmannia (Gymnotiformes)[J]. Chromosome, 2000,109: 197-200.
    Amleh A, Dean J. Mouse genetics provides insight into folliculogenesis, fertilization and early embryonic development[J]. Human Repro, 2002, 8: 395-403.
    Andersson S, Bishop R W, Russel D W. Expression cloning and regulation of steroid 5a-Reductase, an enzyme essential for male sexual differentiation[J]. J Biol Chem, 1989, 264: 16249-1655.
    Andersson S, Berman D M, Jenkins E P, et al. Deletion of steroid 5a-Reductase 2 gene on male pseudoheermaphroditism[J]. Nature, 1991, 354: 159-161.
    Aoyama S, Shibata K, Tokunaga S,et al. Expression of Dmrt1 protein in developing and in sex-reversed gonads of amphibians[J]. Cytogenet Genome Res, 2003, 101: 295-301.
    Artoni R F, Falcao J N, Moreira-Filho O, et al. An uncommon condition for a sex chromosome system in Characcidae fish. Distribution and differentiation of the ZZ/ZW system in Tripportheus[J]. Chromosome Res, 2001, 9: 449-456.
    Baker B S, Wolfner M F. A molecular analysis of doublesex, a bifunctional gene that controls both male and female sexual differentiation in Drosophila melanogaster[J]. Genes Dev, 1988,2: 477-489.
    Bardoni B, Zanaria E, Guioli S, et al. A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal[J]. Nat Genet, 1994,7(4): 497-501.
    Baroiller J F, Chourrout D, et al. Temperature and sex chromosomes govern sex ratios of the mouthbrooding cichlid fish Oreocromis niloticus[J]. J Exp Zool, 1995, 273: 216-223.
    Baroiller J F, Toguyeni A. Comparative effects of a natural steroid, 11β-hydroxy-androstenedione(11β-OH-A4) and a synthetic androgen, 17- Methyletestos terone(17a-MT) on sex-ratio in Orechromis niloticus[A]. Third International Symposium on Tilapia in Aquaculture[C]. 1996: 334-351.
    Bathgate R A D , Balvers M, Hunt N, et al. Relaxin-like factor gene is highly expressed in the bovine ovary of the cycle and pregnancy: sequence and messenger ribonucleic acid analysis[J]. Biol. Reprod., 1996,55:1452-1457.
    Bennett C P, Docherty Z, Robb S A, et al. Deletion 9p and sex reversal[J]. J Med Genet, 1993, 30: 518-520.
    Birk O S, Casiano D E, Wassif C A, et al. The LIM Homeobox gene Lhx9 is essential for mouse gonad formation[J]. Nature, 2000,403: 909-913.
    Bitgood M J, Shen L, McMahon A P. Sertoli cell signaling by desert hedgehog regulates the male germline[J]. Curr Biol, 1996,6: 298-304.
    Bodensteiner K J, Clay C M, Moeller C L, et al. Molecular cloning of the ovine growth/differentiation factor-9 gene and expression of growth/differentiation factor-9 in ovine and bovine ovaries[J]. Biol Repro, 1999,60: 381-386.
    Bongers A B J, Zandieh-Doulabi B, Voorthuis P K, et al. Genetic ananlysis of testis development in all-male F_1 hybrid strains of common carp, Cyprinus carpio[J]. Aquaculture, 1997,158: 33-41.
    Brunner B, Hornung U, Shan Z, et al. Genomic organization and expression of the Doublesex-related gene cluster in vertebrates and detection of putative regulatory regions for DMRT1[J]. Genomics, 2001, 77: 8-17.
    Burkardt E, Adham I M, Brosig B, et al. Structural organization of the porcine and human genes coding for a Leydig cell-specific insulinlike peptide (LEY I-L) and chromosomal localization of the human gene (INSL3)[J]. Genomics, 1994, 20:13-19.
    Burtis K S, Baker B S. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides[J]. Cell, 1989, 56: 997-1010.
    Buth D G, Dowling T E, Gold J R. Molecular and cytological investigations[A]. In: Wildfield I J, Nelson J S. Cyprinid fishes: systematics, biology and exploitation [C]. London: Chapman and Hall, 1991: 83-126.
    Cadigan K M, Nusse R. Wnt signaling: A common theme in animal development[J]. Genes Dev, 1997, 11:3286-3305.
    Campos-Ramos R, Harvey S C, Masabanda J S, et al. Identification of putative sex chromosomes in the blue tilapia, Oreochromis aureus, through synaptonemal complex and FISH analysis[J]. Genetica, 2001, 111: 143-153.
    Canto P, Escudero I, Soderlund D, et al. A novel mutation of the insulin-like 3 gene in patients with cryptorchidism[J]. J Hum Genet, 2003,48: 86-90.
    Capel B. The Battle of the Sexes[J]. Mech Dev, 2000, 92: 89-103.
    Caputo V, Machella N, Nisi-Cerioni P, et al. Cytogenetics of nine species of Mediterranean blennies and additional evidence for an unusal multiple sex-chromosome system in Parablennius tentacularis (Perciformes, Blenniidae)[J]. Chromosome Res, 2001,9:3-12.
    Carabatsos M J, Elvin J, Matzuk M M, et al. Characterization of oocyte and follicle development in growth differentiation factor 9-dificient mice[J]. Dev Biol, 1998,204:373-384.
    Caron K M, Soo S C, Wetsel W B, et al. Targeted disruption of the mouse gene encoding steroidogenic Acute Regulatory protein provides insights into congenital lipoid adrenal hyperplasia[J]. Proc Natl Acad Sci USA, 1997, 92:11540-11545.
    Chen S, Besman M J, Sparkes R S, et al. Human aromatase: cDNA cloning, Southern blot analysis, and assignment of the gene to chromosome 15[J]. DNA, 1988,7: 27-38.
    Choi Y S, Stocco D M, Freeman D M. Diethy lumbellifery phosphate inhibits steroidogenesis by interfering with a long-lived factor acting between protein kinase A activation and induction of the steroidogenic acute regulatory (StAR) protein[J]. Eur J Biochem, 1995,234: 680-685.
    Chung B-C, Matteson K J, Voutilaninen R, et al. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta[J]. Pro Natl Acad Sci USA, 1986, 83: 8962-8966.
    Chung B C, Guo I C, Chou S J. Transcriptional regulation of the CYP11A1 and ferredoxin genes[J]. Steroids, 1997(1): 37-42.
    Clark A, Garland K, Russell L. Desert Hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules[J]. Biol Reprod, 2000,63:1825-1838.
    Clark B J, King S R. The purification, cloning and expression of a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells[J]. J Biol Chem, 1994, 269: 28314-28322.
    Clark B J, Soo S C, Caron K M, et al. Hormonal and developmental regulation of the steroidogenic acute regulatory protein[J]. Mol Endocrinol, 1995, 9:1346-1355.
    Cline T, Meyer B. Vive La Difference: Males Vs Females in Flies Vs Worms[J]. Annu Rev Genet, 1996, 30: 637-702.
    Colvin J S, Green R P, Schmahl J, et al. Male-to-female sex reversal in mice lacking fibroblast growth factor 9[J]. Cell, 2001,104: 875-889.
    Conover D O, Heins S W. Adaptive variation in environmental and genetic sex determination in a fish[J]. Nature, 1987,326: 496-498.
    Coughlan T, Schartl M, honumg U, et al. PCR-based sex test for Xiphophorus maculatus[J]. J Fish Biol, 1999,54: 218-222.
    
    Crews D. The Evolutionary Antecedents to Love[J]. Psychoneuroendocrinology, 1998,23(8): 751-764.
    Dai Y S, Cserjesi P, Markham B E, et al. The transcription factors GATA4 and dHAND physically interact to synergistically activate cardiac gene expression through a p300-dependent mechanism[J]. J Bio Chem, 2002,277(27): 24390-24398.
    Dalton D, Chadwick R, McGinnis W. Expression and embryonic function of empty spiracles, a Drosophila homeobox gene with two patterning functions in the anterior-posterior axis of the embryo[J]. Genes Dev, 1989,3: 1940-1956.
    Dawes H E, Berlin D S, Lapidus D M, et al. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate[J]. Science, 1999, 284:1800-1804. De Smith M H, Van Duin J, Van Knippenberg P H. CCC.UGA: a new site of ribosomal frameshifting in Escherichia coli[J]. Gene. J Mol Biol, 1994a, 143(1): 43-47.
    De Smith M H, Van Duin J, Van Knippenberg P H. Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction[J]. J Mol Biol, 1994b, 235(1): 173-184.
    Denny P, Swift S, Brand N, et al. A conserved family of genes related to the testis determining gene, SRY[J]. Nucl Acids Res, 1992b, 20: 2887.
    Desorez D. Effect of anbient water temperature on sex determinasm in the blue tiplapia, Oreochromis aureus[J]. Aquaculture, 1998,162: 79-84.
    Devlin R H, Stone G W, Smailus D E. Extensive direct-tandem organization of a long repeat DNA on the Y chromosome of chinook salmon (Oncorhynchus tshawytscha)[J]. J Mol Evol, 1998,46: 277-287.
    Devin R H, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological and environmental influences[J]. Aquaculture, 2002,208:191-364.
    Du S J, Devlin R H, Hew C L. Genomic structure of growth hormone genes in chinook salmon (Oncorhynchus tshawytscha): presence of two functional genes, GH-psi[J]. DNA Cell Biol, 1993, 12: 739-751.
    Duchac B, Huber F, Mueller H, et al. Mating behaviour and cytogenetical aspects of sex-inversion in the fish Coris Julis L.(Labridae, Teleostei)[J]. Experientia, 1982,38: 809-810.
    Ellegren H. Evolution of the Avian Sex Chromosomes and Their Role in Sex Determination[J]. Tree, 2000,15:188-192.
    Ellegren H. Hens, cocks and avian sex determination: a quest for genes on Z or W[J]. EMBO reports, 2001, 2 (3): 192-196.
    Ellisen L W. Regulation of gene expression by WT1 in development and tumorigenesis[J]. Int J Hematol, 2002,76(2): 110-116.
    Elvin J A, Clark A T, Wang P, et al. Paracrine actions of growth differentiation factor-9 in the mammanlian ovary[J]. Mol Endoc, 1999a, 13:1035-1048.
    Elvin J A, Yan C N, Wang P, et al. Molecular characterization of the follicle defects in the growth differentiation factor 9-dificient ovary[J]. Mol Endoc, 1999b, 13:1018-1034.
    Emanu Elsson O, Nielsen H, Brunak S, et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence[J]. Mol. Biol., 2000,300(4): 1005-1016.
    Eppig J J. Oocyte control of ovarian follicular development and function in mammals[J]. Reproduction, 2001,122: 829-838.
    Ewert M A, Nelson C E. Sex determination in trutle: diverse patterns and some possible adaptive values[J]. Zool, 1991,270: 3-15.
    Feist G, Schreck CB, Fitzpatrick M S, et al. Sex steroid profiles of coho salmon(Oncorhynchus kisulch) during early development and sexual differentiation[J]. Gen Comp Endocrinal, 1990,80: 299-313.
    Ferris S D. Tetraploidy and the evolution of the catostomid fishes[A]. In: Turner B J. Evolutionary genetics of fishes[C]. New york: Plenum Press, 1983: 55-95.
    Fitzpatrick M S, Gale W L, Schreck C B. Binding characteristics of an androgen receptor in the ovaries of colo salmon, Oncorhynchus kisulch[J]. Gen Comp Endocrinal, 1994, 95:399-408.
    Flajshans M, Linhart O, Kvasnicka P. Genetic studies of tench (Tinca tinca L.): induced triploidy and tetraploidy and first performance data[J]. Aquaculture, 1993,113: 301-312.
    
    Flejter W L, Fergastad J, Gorski I, el al. A gene involved in XY sex reversal is located on chromosome 9.distal to marker D9S1779[J]. Hum Genet, 1998,63: 794-802.
    Forwood J K, Harley V, Jans D A. The C-terminal nuclear localization signal of the sex-determining region Y(SRY) high mobility group domain mediates nuclear import through importin beta 1[J]. J Biol Chem, 2001, 276(49): 46575-46582.
    Foster J W, Dominguez-Steglich M A, Guioli S, et al. Campomelic dsplasia and autosomal sex reversal caused by mutations in an SRY-related gene[J]. Nature, 1994,372: 525-530.
    Fridolfsson A K, Cheng H, Copeland Ng, et al. Evolution of the Avian Sex Chromosomes from an Ancestral Pair of Autosomes[J]. Proc Natl Sci USA, 1998, 95: 8147-8152.
    Friedman A L, Finlay J L. The drash syndrome recisited: Diagnosis and Follow-up[J]. Am J Med Genet, 1987, 23:157-169.
    Fritz I B, Griswold M D, Lousi B F, et al. Similarity of responses of cultured sertoli cells to cholera toxin and FISH[J]. Mol Cell Endoc, 1976, 5: 289-294.
    Fujii T, Pichel J G, Taira M, et al. Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system[J]. Dev Dyn, 1994,199(1): 73-83.
    Fukada S, Tanaka M, Iways M, et al. The sox gene family and its expression during embryogenesis ing the telost fish, medaka (Oryzias latipes)[J]. Dev Growth Differ, 1995,37: 379-385.
    Garrett-Engele C M, Siegal M L, Manoli D S, et al. Intersex, a gene required for female sexual development in Drosophila, is expressed in both sexes and functions together with doublesex to regulate terminal differentiation[J]. Development, 2002,129: 4661-4675.
    Geissler W M, Davis D L, Wu L, et al.. Male pseudohermaphroditism caused by mutations of testicular 17β-hydroxysteroid dehydrogenase 3[J]. Nat Genet, 1994,7: 24-39.
    Gibbons R J, Picketts D J, Villaed L, et al. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia(ATR-X syndrome)[J]. Cell, 1995, 80(6): 837-845.
    Ginili G, Shen W H, Ingraham H A. The nuclear receptor SF-1 mediates sexually dimorphic expression of Mullerian Inhibiting Substance, in vivo[J]. Development, 1997,124(9): 1799-1807.
    Goudie C A, Liu Q, Simo B A, et al. Genetic relationship of growth, sex and glucosephosphate isomerase -B phenotypes in channel catfish(Ictalucus punctatus)[J] Aquaculture, 1995, 138: 119-124.
    Grandi A D, Calvari V, Bertini V, et al. The expression pattern of a mouse doublesex-related gene is consistent with a role in gonadal differentiation[J]. Mech of Dev, 2000,90: 323-326.
    Grantham R, Gautier C, Gouy M, et al. Codon catalog usage and the genome hypothesis[J]. Nucleic Acids Res, 1980a, 8(1): 49-61.
    Grantham R, Gautier C, Gouy M, et al. Codon frequencies in 119 individual genes confirm consistent choices of degen-erate bases according to genome type[J]. Nucleic Acids Res, 1980b, 8(1): 1893-1912.
    Grantham R, Gautier C, Gouy M, et al. Condon catalog usage is a genome strategy modulated for gene expressivity[J]. Nucleic Acids Res, 1981,9(1): 43-74.
    Graves J A M. Evolution of the mammalian Y chromosome and sex-determining genes[J]. J Exp Zool, 1998a, 281: 472-481.
    Griffiths R, On K. The use of amplified fragment length polymorphism (AFLP) in the isolation of sex-specific markers[J]. Mol Ecol, 1999, 8:671-674.
    Grodin J M, Sillteri P K, MacDonald P C. Source of estrogen production in the postmenopausal woman[J]. J. Clin. Endocrinaol. Metab., 1973,36: 207-214.
    Guan G, Kobayashi T, Nagahama Y. Sexually dimorphic expression of two types of DM (Doublesex/Mab-3)-domain genes in a teleost fish, the Tilapia (Oreochromi niloticus)[J]. Biochem Biophys Res Commun, 2000,272:662-666.
    Gubbay J, Collignon J, Koopman P, et al. A gene mapping to the sex determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes[J]. Nature, 1990,346: 245-250.
    Guerrero R D. Use of synthetic androgens lbr sex reversal of tilapia aures[M]. Presented at 103rd ann. Meet. Am. Fish. Soc Florida, 1973.
    Guo W, Burris T P, McCabe E R. Expression of Dax1, the gene responsible for X-linked adrenal hypoplasia congenital and hypogonadotropic hypogonadism in the hypothalamic-pituitary-adrenal/gonadal axia[J]. Biochem Mol Med, 1995,56: 8-13.
    Guo Y, Gao S, Cheng H, et al. Phylogenetic tree and synteny of DMRTgenes family of vertebrates[J]. Acta Genetica Sinica, 2004,31:1103-1108.
    Harada N, Yamada K, Saito K, et al. Strucure characterization of the human estrogen synthetase (aromatase) gene[J]. Biochem Biophys Res Commun, 1990,166:365-372.
    Harley V R, Jackson D I, Hextall P J, et al. DNA binding activity of recombinant SRY from normal males and XY females[J]. Science, 1992, 255: 453-45.
    Harley V R, Layfield S, Mitchell C L, et al. Defective importin beta recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutation[J]. Proc Natl Acad Sci USA, 2003,100(12): 7045-7050.
    Hastie N D. Life, sex, and WT1 isoforms-threee amino acids can make all the difference[J]. Cell, 2001, 106(4): 391-394.
    Hawkins J R, Taylor A, Berta P, et al. Mutational analysis of SRY: nonsense and missense mutation in XY sex reversal[J]. Hum Genet, 1992, 88(4): 471-474.
    Hew C L, Du S J. Determination of genomic sex in salmonids[M]. United States Patent No.5480447, 1996.
    Hines G A, Watts S A. Non-steroidal chemical sex manipulation of tilapia[J]. Journal of the World Aquaculture Society, 1995, 26: 98-102.
    Hodgkin J. The remarkable ubiquity of DM domain factors as regulators of sexual phenotype: ancestry or aptitude?[J]. Genes Dev, 2002,16: 2322-2326.
    Honda S, Morohashi K, Nomura M, et al. Ad4BP regulationg steroidogenic P-450 gene is a member of steroid hormone receptor superfamily[J]. J Biol Chem, 1993,268:7494-7502.
    Huttenhofer A, Noller H F. Footprinting Mrna-ribosome complexes with chemical probes[J]. EMBO J, 1994,13(16): 3892-3901.
    HuaSu, Chris Lau Y F. Identification of the transcriptional unit, structural organization and promoter sequence of the human sex determining region Y(SRY) gene using reverse genetic approach[J]. AM J Hum Genet, 1993,52(132): 24-30.
    Ikeda Y, Lala D S, Luo X, et al. Characterization of the mouse FTZ-F1 gene, which encodes a key regulator of steroid hybroxylase gene expression[J]. Mol Endoc, 1993, 7: 852-860.
    Ito M, Ishikawa M, Suzuki S, et al. A rainbow trout SRY-type gene expressed in pituitary glands[J]. FEBS Lett, 1995, 377: 37-40.
    Iturra P, Bagley M, Vergara N, et al. Development and characterization of DNA sequence OmyP9 associated with the sex chromosome [J]. Heredity, 2001,86:412-419.
    Ivell R, Bathgate R A. Reproductive biology of the relaxin-like factor (RLF/INSL3)[J]. Biol Reprod, 2002, 67: 699-705.
    Ivell R, Einspanier A. Relaxin peptides are new global players[J]. Trends Endocrinol Metab, 2002,13: 343-348.
    Jenkins E P, Andensson S, Imperato-McGinley J, et al. Genetic and pharmacological evidence for more than one human steroid 5a-Reductase[J]. J Clin Invest, 1992,89: 293-300.
    Jordan B K, Mohammed M, Ching S T, et al. Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am. J. Hum[J]. Genet, 2001,68:1102-1109.
    Josso N. Anti-mullerian hormone: new perspectives for a sexist molecule[J]. Endocr Rev, 1986, 7: 421-433.
    Josso N, Racine C, Clemente N, et al. The role of anti-mullerian hormone in gonadal development[J]. Mol Cell Endo, 1998,145: 3-7.
    Kobayashi T, Matsuda M, Kajiura-Kobayashi H, et al. Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the Medaka, Oryzias latipes[J].Dev Dyn, 2004, 231 (3): 518-526
    Kagawa H, Tanaka H, Okuzawa K, et al. GTH II but not GTH I induces final maturation and the development of maturational competence of oocytes of red seabream in vitro[J]. Gen Comp Endocrinol, 1998, 112:80-88.
    Kallman K D. A new lood at sex determination in Poecillid fishes[A]. Evolutionary genetics of fishes[C]. Plenum Press, New York, 1983: 95-171.
    Katoh-Fukui Y, Tsuchiya R, Shiroishi T, et al. Male to female sex reversal in M33 mutant mice[J]. Nature, 1998, 393: 688-692.
    Kettlewell J R, Raymond C S, Zarkower D. Temperature-dependent expression of turtle DMRT1 prior to sexual differentiation[J]. Genetics, 2000,26 (3): 174-178
    Kim S, Kettlewell J R, Anderson R C, et al. Sexually dimorphic expression of multiple doublesex-related genes in the embryonic mouse gonad[J]. Gene Expression Patterns, 2003,3 (1): 77-82
    Kitano T, Takamune K, Kobayashi T, et al. Suppression of p450 aromatase gene espression in sex-reversed males produced by rearing gengtically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus)[J]. J Mol Endoc, 1999: 23(2): 167-176..
    Kitano T, Takamune K, Nagahama Y, et al. Aromatase inhibitor and 17alpha-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus)[J]. Mol Repred Dev, 2000,56(1): 1-5.
    Kondo M, Nagao E, Mitani H, et al. Differences in recombination frequencies during female and male meioses of the sex chromosome of the medaka, Oryzias Latipes[i]. Genet Res, 2001,78: 23-30.
    Kondo M, Froschauer A, Kitano A, et al. Molecular cloning and characterization of DMRT genes from the medaka Oryzias latipes and the platyfish Xiphophorus maculates[J]. Gene, 2002, 295(2): 213-22.
    Koopman P, Munsterberg A, Capel B, et al. Expression of a candidate sex-determining gene during mouse testis differentiation[J]. Nature, 1990,348:450-452.
    Koopman P, Gubbay J, Vivian N, et al. Male development of chromosomally female mice transgenic for Sry[J]. Nature, 1991,351:117-121.
    Koopman P, Loffler KA. Sex determination: The fishy tale of DMRT1[J]. Current Biology, 2003,13(5): 177-179.
    Kovacs B, Egedi S, Barfai R, et al. Male-specific DNA marks catfish (Clarias gariepinus)[J]. Genetics, 2000,110: 267-276.
    Krausz C, Quintana-Murci L, Fellous M, et al. Absence of mutations involving the Insl3 gene in human idiopatic cryptorchidism[J]. Mol Hum Reprod, 2000, 6: 298-302.
    Laitinen M, Vuojolainen K, Jaatinen R, et al. A novel growth differentiation factor-9(GDF-9) related factor is co-expressed with GDF-9 in mouse oocytes during folliculogenesis[J]. Mech Dev, 1998, 78:135-140.
    Lala D S, Rice D A, Parker K L. Steroidogenic factor 1, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu factor 1[J]. Mol Endocrinol, 1992, 6:1249-1258.
    Lambeth J D, Pember S O. Reduction properties of the substrate-associated cytochrome and relation of the reduction states of heme and iron-sulphur centers to association of the proteins[J]. J Biol Chem, 1983, 258: 5596-5602.
    Lanchance Y, Luu-The V, Verrault H, et al. Structure of human type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase(3β-HSD) gene: adrenal and gonad specificity[J]. DNA cell Biol, 1991,10: 701-711.
    Lavallie E R, McCoy J M. Gene fusion expression systems in Escherichia coli[J]. Curr Opin Biotechnol, 1995, 6(5): 501-506.
    Lee M M. Donahoe P K, Hasegawa T, et al. Mullerian inhibiting substance in human: normal levels from infancy to adulthood[J]. J Clin Endocrinol Metab, 1996, 81:571-576.
    Liang O, De Windt L J, Witt S A, et al. The transcription factors GATA4 and GATA6 regulate cardiomocyte hypertrophy in vitro and in vivo[J]. J Biol Chem, 2001,276(32): 30245-30253.
    Lim H N, Berkovitz G D, Hughes H A, et al. Mutation analysis of subjects with 46, XX sex reversal and 46, XY gonadal dysgenesis does not support the involvement of Sox3 in testis determination[J]. Hum Genet, 20002,107: 650-652.
    Lim H N, Raipert-de Meyts E, Skakkebaek N E, et al. Genetic analyis of the Insl3 gene in patients with maldescent of the testis[J]. Eur J Endoc, 2001, 144: 129-137.
    Lin D, Sugawara T, Strauss J F, et al. Role of steroidogenic acute regulatory protein in adrenal and gonadol steroidogenesis[J]. Science, 1995, 267:1828-1831.
    Ling-Jim N G, Susan W, George E O. Sox9 brinds DNA activates transcription and co-expresses with type 2 collagen during chondrogenesis in the mouse[J]. Developmental Biology, 1997, 183(21): 108-121.
    Lints R, Emmons SW. Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family[J]. Genes Dev, 2002,16(18): 2390-402.
    Little M, Holmes G, Walsh P. WT1: what has the last decade told us?[J]. Bioessays, 1999, 21: 191-201.
    Liu Q, Goudie C A, Simo B A, et al. Sex-linkage of glucosephosphate isomerase-B and mapping of the sex-determining gene in channel catfish(Ictalucus punctatus) [J]. Cytogenet Cell Genet, 1996, 73: 282-285.
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method [J]. Method, 2001,25: 402-408.
    Lloyd M A, Field M J, Thorgaard G H. BKM minisatellite sequences are not sex associated byt reveal DNA fingerprint polymorphism[J]. Genome, 1989, 32 (5): 865-868.
    Loffler K A, Koopman P. Charting the course of ovarian development in vertebrates[J]. Int J Dev Biol, 2002, 46: 503-510.
    Lorence M C, Corbin C J, Kaminmura N, et al. Structural analysis of the gene encoding human 3βhydroxysteroid dehydrogenase/Δ~(5-4) isomerase[J]. Mol Endoc, 1990a, 4:1850-1855.
    Luo X, Ikeda Y, Parker K L. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation[J]. Cell, 1994, 77:481-490.
    Lutffalla G, Roest Crollius H, Brunet F G, et al. Inventing a sex-specific gene: a conserved role of DMRT1 in teleost fishes plus a recent duplication in the medaka Oryzias latipes resulted in DMY[J]. J Mol Evol, 2003, 57 Suppl 1: S148-153.
    Luu-The V, Labrie C, Zhao H F, et al. Characterization of cDNA for human esteasiol 17β-hydroxysteroid dehydrogenase and assignment of the gene to chromosome 17: evidence of two mRNA species with distinct 5'-termini in human placenta[J]. Mol Endocrinol, 1989b, 3:1301-1309.
    Luu-The V, Sugimoto Y, Libertad P, et al. Characterization, expression and immunohistochemical localization of 5a-Reductase in human skin[J]. J Invest Dermantol, 1994,102:221-226.
    Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish[J]. Nature, 2002,417: 559-563.
    Mair G C, Scott A G, Penman D J, et al. Sex determination in the genes Oreochromis I .Sex reversal, hybridization, gynogenesis, and triploidy in O. niloticus( L.)[J]. Theor Appl Genet, 1991, 82: 144-152.
    Makoff A J, Smallwood A E. The use of two-cistron constructions in improving the expression of a heterologous gene in E. coli[J]. Nucleic Acids Res, 1990,18(7): 1711-1718.
    Marchand O, Govoroun M, D'Cotta H, et al. DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss[J]. Biochim Biophys Acta, 2000, 1493(1-2): 180-187.
    Margaril E, Dolors C M, et al. SRY gene transferred to he long arm of the X chromosome in a Y-positive XX true hermaphrodite[J]. Anim Genet, 2002, (90): 25-28.
    
    Marin I, Backer B S. The evolutionary dynamics of sex determination[J].Science, 1998, 281:1990-1994.
    Marin P, Ferlin A, Mora E, et al. Novel insulinlike 3 (Insl3) gene mutation associated with human cryptorchidism[J]. Am J Med Genet, 2001,103: 348-349.
    Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish[J]. Nature, 2002,417: 559-563.
    Matteson K J, Picado-Leonard J, Chung B C, et al. Assignment of the gene for a adrenal P450cl7 (steroid 17 alpha-hydroxylase/17, 20 lyase) to human chromosome 10[J]. J Clin Endocrinol Metab, 1986, 63(3): 789-791.
    Meng A, Moore B, Tang H, et al. Drosophila doublesex-related gene, terra, is involved in somitogenesis in vertebrates[J]. Development, 1999,126:1259-1268.
    McElreavey K, Vilain E, Abbas N, et al. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development[J]. Proc Natl Acad Sci USA, 1993,90:3368-3372.
    McGrath S A, Esquela A F, Lee S J. Oocyte-specific expression of growth differentiation factor-9[J]. Mol Endoc, 1995, 9:131-136.
    McNatty K P, Baird D T, Bolton A, et al. Concentration of oestrogens and androgens in human ovarian venous plasma and follicular fluid throughout the menstrual cycle[J]. J Endoc, 1976,71: 77-85.
    Means G D, Mahendroo M S, Corbin C J, et al. Structural analysis of the gene encoding human aromatase cytochrome P-450, the enzyme responsible for estrogen biosynthesis[J]. J Biol Chem, 1989,264:19385-19391.
    Meeks J J, Weiss J, Jameson J. Dax1 is required for tesits determination[J]. Nature Genet, 2003, 34: 32-33.
    Mellon S H, Deschepper C F. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain[J]. Brain Res, 1993, 629: 283-292.
    Miki Y, Swenson J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1[J]. Science, 1994, 266: 66-71.
    Miller W L. Why nobody has P450scc (20,22 desmoslase) deficiency[J]. J Clin Endoc Metab, 1998, 883(4): 1399-1400.
    Miller J R, Hocking A M, Brown J D, et al. Mechanism and function of signal transduction by the Wnt/betacatenin and Wnt/Ca21 pathways[J]. Oncogene, 1999,18:7860-7872.
    Miller S W, Hayward D C, Bunch T A, et al. A DM-domain protein from a coral, Acropora millepora, homologous to proteins important for sex determination[J]. Evol Dev, 2003,5:251-258.
    Moniot B, Berta P, Scherer G, et al. Male specific expression suggests role of DMRT1 in human sex determination[J]. Mech of Dev, 2000,91: 323-325
    Moore R J, Griffin J E, Wilson J D. Diminished 5a-Reductase activity in extracts of fibroblasts cultured from patients with familial incomplete male pseudohermaphroditism, type 2[J]. J Biol Chem, 1975, 250: 7168-7172.
    Morita T, Nitta H, Kiyama Y, et al. Differential expression of two zebrafish emx homeoprotein mRNAs in the developing brain[J]. Neurosci Lett, 1995,198:131-134.
    
    Morohashi K. The ontogenesis of the steroidogenic tissues[J]. Genes cells, 1997,2: 95-106.
    Morohashi K. Sex differentiation of the gonads-factors implicated in testiscular and ovarian development[J]. Evironmental Science, 2002,9(1): 13-22.
    
    Mount S M. A catalogue of splice junction sequence[J]. Nucleic Acids Res, 1982,10 (2): 459.
    Mount, Hemkoffs. Nested gene take flight[J]. Curr Biol, 1993,3: 372-374.
    Murakami M, Fujitani H. Polyploid-specific repetitive DNA sequences from tripoid ginbuna(Japanese silver crucian carp, Carassius auratus langsdorfi)[J]. Genes Genet Sys, 1997,72:107-113.
    Muscatelli F, Strom T M, Walker A P, et al. Mutations in the Dax1 gene give rise to both X-linked adrenal hypoplasia congenital and hypogonadotrophic hupogonadism[J]. Nature, 1994, 372: 672-676.
    Musterberg A, Lovell-Badge R. Expression of the mouse anti-mullerian hormone gene suggests a role in both male and female sexual differentiation[J]. Development, 1991,113:613-624.
    Nanda I, Schartl M, Epplen J T, et al . Primitive sex chromosomes in Poeciliid fishes harbor simple repetitive DNA sequences[J]. J Exp Zool, 1993, 265:301-308.
    Nanda I, Shan Z, Schartl M, et al. 300 million years of conserved synteny between chicken Z and human chromosome 9[J]. Nat Genet, 1999,21(3): 258-259.
    Nanda I, Volff J N, Weis S, et al. Amplification of a long terminal repeat-like element on the chromosome of the platyfish, Xiphophorus mculates[J]. Chromosome, 2000,109:173-180.
    Nanda I, Kondo M, Homung U, et al. A duplicated copy of DMRT1 in the sex-determining region of the Y-chromosome of the medaka, Oryzias latipes[J]. Proc Natl Acad Sci USA, 2002,99:11778-11783.
    Nakamura M. Dosage-dependent changes in the effect oral adminislrationo of methyltestosterone on gonadal sex differentiation in Tilapia mossambica[J]. Bull Fac Fish Hikaide Univ, 1975, 26: 99-108.
    Nakayama I, Foresti F, Tewari R, et al. Sex chromosome polymorphism and heterogametic males revealed by two cloned DNA probes in the ZW/ZZ fish Leporinus elongates[J]. Chromosome, 1994, 103(1): 31-39.
    
    Nef S, Parada L F. Cryptorchidism in mice mutant for Insl3[J]. Nature Genetics, 1999,22:295-299.
    Nielsen H, Engelbrecht J, Brunak S, et al. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites[J]. Protein Eng, 1997,10:1-6.
    Ohbayashi F, Suzuki M G, Mita K, et al. A homologue of the Drosophila doublesex gene is transcribed into sex-specific mRNA isoforms in the silkworm, Bombyx mori[J]. Comp Biochem Physiol Biochem Mol Biol, 2001,128:145-158.
    Ohmuro-Matsuyama Y, Matsuda M, Kobayashi T, et al. Expression of DMY and DMRT1 in various tissues of the medaka (Oryzias latipes)[J]. Mech Dev, 2004,121 (7-8): 997-1005.
    Ohno S. Patterns in genome evolution[J]. Curr Opin Genet Dev, 1993,3:911-914.
    Ojima Y, Kashiwagi E. Chromosomal evolution associated with Robertsonian fusion in genus Daseyllus (Chrominae, Pisces)[J]. Proc Jpn Acad, 1981,57:368-370.
    Ojima Y. Fish chromosome data retrieval list[M]. CDR file, Kwansei Gakuin University, Nishinmiya. Japan, 1985.
    Ota K, Kobayashi T, Ueno K, et al. Evolution of heteromorphic sex chromosome in the Aulopiformes [J]. Gene, 2000, 259: 25-30.
    Ottolenghi C, Veitia R, Barbieri M, et al. The human doublesex-related gene, DMRT2, is homologous to a gene involved in somitogenesis and encodes a potential bicistronic transcript[J]. Genomics, 2000, 64(2): 179-86.
    Ottolenghi C, Fellous M, Barbieri M, et al. Novel paralogy relations among human chromosomes support a link between the phylogeny of doublesex-related genes and the evolution of sex determination[J]. Genomics, 2002,79:333-343.
    Pandey N, Lakra W S. Evidence of female heterogamety, B-chromosome and natural tetraploidy in the Asian catfish, Clarias batrachus, used in aquaculture[J]. Aquaculture, 1997,149: 31-37.
    Pannese M, Lupo G, Kablar B, et al. The Xenopus Emx genes identify presumptive dorsal telencephalon and are induced by head organizer signals[J]. Mech Dev, 1998, 73:73-83.
    Parker K L. The roles of steroidogenic factor 1 in endocrine development and function[J]. Mol Cell Endocrinol, 1998,140:59-63.
    Parkhurst S, Meneely P. Sex Determination and Dosage Compensation: Lessons From Files and Worms[J]. Science, 1994,264:924-932.
    Pask A, Renfree M B, Marshall-Graves J A. The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implication for the evolution of mammalian sex determination[J]. Proc Natl Acad Sci USA, 2000, 97:13198-13202.
    Patarnello T, Bargelloni L, Boncinelli E, et al. Evolution of Emx genes and brain development in vertebrates[J]. Proc R Soc Lond B Biol Sci, 1997,264:1763-1766.
    Patino R. Manipulation of the reproductive system of fishes by means of exogenous chemicals[J]. The Progressive Fish-Culturists, 1997,59:118-128.
    Pelletier J, Bruening W, Kashtan C E, et al. Germline mutation in the wilm's tumor suppressor gene are associated with abnormal urogentital development in denys-drash syndrome[J]. Cell, 1999a, 67: 437-447.
    Pelletier J, Bruening W, Li F P, et al. WT1 mutation contribute to abnormal genitial system development and hereditary wilm's tumor[J]. Nature, 1991b, 353: 431-434.
    Phillip R B, Konkol N R, Reed K M, et al. Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmo and Salvelinus (Salmonidae)[J]. Genetica, 2001, 111: 119-123.
    Pieau C, Dorizzi M, Richard-Mercier N. Temperature-Dependent Sex Determination And Gonadal Differentiation In Reptiles[J]. EXS, 2001, 91:117-141.
    Pieau C M, Girondot M, Richard Mercier N, et al. Temperature sensitivity of sexual differentiation of gonads in the European pond turtle: Hormonal involvement[J]. J Exp Zool, 1994,270:86-94.
    Piferrer F, Zanuy S, Carrillo M, et al. Sex steroid profiles of coho salmon(Oncorhynchus kisulch) during early development and sexual differentiation[J]. Gen Comp Endocrinol, 1990, 80: 299-313.
    Price D J. Genetics of sex determination in fishes-A Brief Reviews[M]. In: Fish Reproduction. Academic Press I nc Lond Ltd, 1984,77-89.
    Randall V A. Role of 5a-Rdcustase in health and disease: Bailliere's Clinical Endocrinology and Metabolism[M].(eds MC Sheppard, PM Stewart), Bsulliere Tindall, London, 1994:405-431.
    Raymond C S, Shamu C E, Shen M M, et al. Evidence for evolutionary conservation of sex-determining genes[J]. Nature, 1998,391:691-695.
    Raymond C S, Kettlewell J R, Hirsch B, et al. Expression of DMRT1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development[J]. Dev Biol, 1999a, 215: 208-220.
    Raymond C S, Parker E D, Kettlewell J R, et al. A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators[J]. Hum Mol Genet, 1999b, 8: 989-996.
    Raymond C S, Murphy M W, O'Sullivan M G, et al. Dmrt1, a gene related to worm and fly sexual regulations, is required for mammaliam testis differentiation[J]. Genes Dev, 2000,14: 2587-2595.
    Reddy PVGK, Kowtal G V, Tantia M S. Preliminary observation on induced polyploidy in Indian major carps, Labeo rohita(Ham.) and Catla catla (Ham.) [J]. Aquaculture, 1990, 87: 279-287.
    Ren II, Cheng H H, Guo Y Q, et al. Evolutionary conservation of Dmrt gene family in amphibians reptiles and birds[J]. Chin Sci Bull, 2001,46(23): 1992-1996.
    Rhen T, Lang J W. Temperature dependent sex determination in the snapping turtle: Manipulation of the embryonic sex steroid environment [J]. Gen Comp Endocrinol, 1994, 96: 243-254.
    Richard I, Brooux O, Allamand V, et al. Mutations in the proteolytic enzyme calpum 3 cause bmb-gurdle muscular dystrophy 2A[J]. Cell, 1995, 81(1): 27-40.
    Sakamoto T, Danzmann R G, Gharbi K, et al. A microsatellite linkage map of rainbow trout (Oncorhynchus tshawytscha)[J]. Cytogenet Cell Genet, 2001, 92:108-110.
    Sambeok J, Fritsch E F, Maniatis T. Molecular Cloning [M]. Third Edition. New York: Cold Spring Harbor Laboratory Press, 2002.
    Schutt C, and Nothiger R. Structure, function and evolution of sex-determining systems in Dipteran insects[J]. Development, 2000,127:667-677.
    Shan Z, Nanda I, Wang Y, et al. Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1, in birds[J]. Cytogenet Cell Genet, 2000, 89: 252-257.
    Shapiro D Y. Sex-Changing Fish As A Manipulable System For The Study Of The Determination, Differentiation, And Stability Of Sex In Vertebrates[J]. J Exp Zool, 1990,4:132-136.
    Shawlot W, Behringer R. Requirement for Lim1 in Head-organizer function[J]. Nature, 1995, 374: 425-430.
    Shen M M, Hodgkin J. Mab-3, a gne required for sex-specific yolk protein expression and a male-specific lineage in C. elegans[J]. Cell, 1988,54:1019-1031.
    Shetty S, Kirby P, Zarkower D, et al. DMRT1 in a ratite bird: evidence for a role in sex determination and discovery of a putative regulatory element[J]. Cytogenet Genome Res, 2002, 99: 245-251.
    Shibata K, Takase M, Nakamura M. The DMRT1 expression in sex-reversed gonads of amphibians[J]. General and Comparative Endocrinology, 2002,127(3):232-241.
    Shinimiya A, Otake H, Togashi K, et al. Field survey of sex-reversals in medaka, Oryzias latipes: genotypic sexing of wild populations[J]. Zoological Science, 2004,21(6): 613-619.
    Simeone A, Gulisano M, Acampora D, et al. Two vertebrate genes related to Drosophila empty spiracles gene are expressed in embryonic cerebral cortex[J]. EMBO J, 1992a, 11:2541-2550.
    Simeone A, Acampora D, Gulisano M, et al. Nested expression domains of four homoobox genes in the developing rostral brain[J]. Nature, 1992b, 358: 687-690.
    Smith C A, MeCLive P J, Western P S, et al. Conservation of a sex-determining gene[J]. Nature, 1999, 402:601-602.
    Smith C A, Hurley T M, McClive P J, et al. Restricted expression of DMRT3 in chicken and mouse embryos[J]. Mech Dev, 2002 Dec, 119 Suppll: S73-6.
    Smith C A, Sinclair A H. Sex determination: insights from the chicken[J], Bio Essays, 2004, 26 (2): 120-132.
    Sinclair A H, Berta P, Palmer M S, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif[J]. Nature, 1990,346: 240-244.
    Sparkers R S, Kilsak I, Miller W L. Regional mupping of genes encoding human steroidgenic enzymes: P450scc to 15q23-24, adrenodoxin to 11q22; adrenodxin reductase to 17q24-q25; and P450oc17 to 10q24-10q25[J]. DNA Cell Biol, 1991,10: 359-365.
    Sreenivasulu K, Ganesh S, Raman R. Evolutionarily conserved, DMRT1, encodes alternatively spliced transcripts and shows dimorphic expression during gonadal differentiation in the lizard, Calotes versicolor[J]. Gene Expr Patterns, 2002, 2: 51-60.
    Stanley J G, Martin J M, Jones. J B. Gynogenesis as a possible method of producing monosex grass carp(Ctenopharyngodon idella)[J]. Prog Fish Cult, 1975,37:25-26.
    Stein J, Phillips R B, Devilin R H. Identification of the Y chromosome in chinook salmon (Oncorhynchus tshawytscha)[J]. Cytogenet Cell Genet, 2001,92:108-110.
    Stevanovic M, Lovell-Badge R, Collignon J, et al. Sox3 is an X-linked gene related to SRY[J]. Hum Mol Genet, 1993,2: 2013-2018.
    Stocco D M. A StAR search: implications in controllingsteroidogenesis[J]. Biol Reprod, 1997, 56: 328-336.
    Strussmann C A, Patino R. Temperature manipulation of sex differentiation in fish. In: Proceedings of the Fifth International Symposium on the Reproductive Physiology of Fish (F W Goetz, P Thomas, eds) [C], FishSymp Austin, TX.1995:153-157.
    Strussmann C A. Saito T, Takashima F. Heat induced germ cell deficiency in the teleosts Odontesthes bonariensis and Patagonina hatchery [J]. Comp Biochem Physical, 1998,119A(2): 627-644.
    Swain A, Lovell-Badge R. Mammalian Sex Determination: A Molecular Drama[J]. Genes Dev, 1999,13: 755-767.
    Swain A, Narvaez S, Burgoyne P, et al. Dax1 antagonizes SRY action in mammalian sex determination[J]. Nature, 1998, 391(6669): 761-767.
    Takamatsu N, Kanda H, Ito M, et al. Rainbow trout Sox9: cDNA cloning, gene structure and expression[J]. Gene, 1997, 202:167-170.
    Tevosian S G, Albrecht K H, Crispino J D, et al. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2[J]. Development, 2002,129: 4627-4634.
    Thigpen A E, Davis D L, Milatovich A, et al. Molecular genetics of steroid of steroid 5a-Reductase deficiency[J]. J Clin Invest, 1992,90: 799-809.
    Tiersch T R, Sinco B A, Davis K B, et al. Molecular genetics of sex determination in channel catfish: study on SRY, ZFY, BKM, and human telomeric repeats [J]. Biol Report, 1992,47:185-192.
    Thomas J L, Frienden C, Nash W E, et al. An NADH-induced conformational change that mediates the sequential 3 beta-hydroxysteroid dehydrogenase/isomerase activities is supported by affinity labeling and the time-dependent activation of isomerase[J]. J Biol Chem, 1995,270: 21003-21008.
    Thorgaard G H. Sex chromosome in sockeye salmon: a Y-autosome fusion[J]. Can J Genet Cytol, 1978, 20 (3): 349-354.
    Toda K, Terashima M, Kawamoto T, et al. Structural and functional characterization of human aromatase P450 gene[J]. Eur J Biochem, 1990,193: 559-565.
    Tomboc M, Lee P A, Mitwally M F, et al. Insulin-like 3/relaxin-like factor gene muations are associated with cryptorchidism[J]. J Clin Endocrinol Metab, 2000,85: 4013-4018.
    Torres Maldonado L C, Landa Piedra A, Moreno Mendoza N, et al. Expression profiles of Dax1, Dmrt1, and Sox9 during temperature sex determination in gonads of the sea turtle Lepidochelys olivacea[J]. Gen Comp Endocrinol, 2002,129:20-26.
    Traut W, Winking H. Meiotic chromosomes and stages of sex chromosome evolution in fish: zebrafish, platfish and guppy[J]. Chromosome Res, 2001,9(8): 659-72.
    Trombka D, Avtalion R. Sex Determination in Tilapia A Reviews[J]. The Israeli Journal of Aquaculture Bamidgeh, 1993,45(1): 26-27.
    Ueno K, Tta K, Kobayashi T. Hetermorphic sex chromosomes of lizardifish (Synodontidae): focus on the ZZ-ZW1W2 system in Trachinocephalus myops[J]. Genetica, 2001, 111: 133-142.
    Vainio S, Heikkila M, Kispert A, et al. Female development in mammanls is regulated by WNT-4 signalling[J]. Nature, 1999,397(6718): 405-409.
    Valladares L E, Payne AH. Induction of testicular aromatization by luteinizing hormone in mature rats[J]. Endocrinology, 1979,105:431-436.
    Veith A M, Froschauer A, Korting C, et al. Cloning of the dmrtl gene of Xiphophorus maculates: dmY/dmrt1 Y is not the master sex-determining gene in the platyfish[J]. Gene, 2003,317: 59-66.
    Vidal V P, Chaboissier M C, De Rooij D G, et al. Sox9 induces testis development in XX transgenic mice[J]. Nature Genet, 2001, 28: 216-217.
    Volff J N, Schartl M. Sex determination and sex chromosome evolution in the medaka, Oryzias latipes, and the platyfish, Xiphophorus maculates[J]. Cytogenet Genome Research, 2003,99:170-177.
    Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting[J]. Nucleic Acids Res, 1995, 23: 4407-4414
    Voutilainene R, Miller W L. Developmental expression of genes for the steroidogenic enzymes P450scc (20,22-desmolase), P450c17 (17a-hydroxylase/17, 20 lyase) in cultured human granulose cells[J]. Clin Endoc Metab, 1986,63:202-207.
    Wachteld S, Demas S, Tiersch T, et al. BKM satellite DNA and ZFY in the coral reef fish Anthias squamipinnis [J]. Genome, 1991, 34:612-617.
    Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutation in and around the SRY-related gene SOX9[J]. Cell, 1994,79:1111-1120.
    Whitwortha D J, Paskb A J, Shawb G, et al. Characterization of steroidogenic factor 1 during sexual differentiation in a marsupial[J]. Gene, 2001,277:209-219.
    Wigley W C, Prihida J S, Mowszowicz I, et al. Natural mutagenesis study of the human steroid 5a-Reductase 2 isozyme[J]. Biochemistry, 1994,33:1265-1270.
    Wright E M, Snopek B, Koopman P. Seven new members of the SOX gene family expressed during mouse development[J]. Nucl Acids Res, 1993,21:744.
    Wright E, Hargrave M R, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos[J]. Nature Genet, 1995,9:15-20.
    Wu C J, Chen R D, Ye Y Z, et al. Production of all-female carp and its application in fish cultivation [J]. Aquaculture, 1990,85:327.
    Yamaguchi A, Lee K H, Fujimoto H, et al.Expression of the DMRT gene and its roles in early gonadal development of the Japanese pufferfish Takifugu rubripes[J]. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2006,1(1): 59-68
    Yamamoto T, Kajishima T. Sex hormone induction of sex reversal in the gold fish and evidence for male heterogamety [J]. J Exp Zool, 1968,168:215-222.
    Ye C Z, Guan M, Zhang F L Expression and purification of secreted form TNF-related activation-induced cytokine in E.coli as a Maltose-binding protein fusion[J]. Journal of Fudan University (Medicial Science), 2001,28 (4): 307-310.
    Yu R N, Ito M, Saunders T L, et al. Role of Ahch in gonadal development and gametogenesis[J]. Nat. Genet., 1998,20: 353-357.
    Yuki Ohmuro-Matsuyama, Masaru Matsuda, Tohru Kobayashi, et al. Expression of DMY and DMRT1 in Various Tissues of the Medaka(Oryzias Latipes)[J]. Zool Sci, 2003,20:1395-1398.
    Zanaria E, Muscatelli F, Bardoni B, et al. An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenital[J]. Nature, 1994,372: 635-641.
    Zarkower D. Establishing sexual dimorphism: conservation amidst diversity?[J]. Nature Rev Genet, 2001, 2:175-185.
    Zhang J. Evolution of DMY, a newly emergent male sex-determination gene of medaka fish[J]. Genetics, 2004,166:1887-1895.
    Zhao Z, Hua Z, Meng Z. Genomic organization and expression in E. coli of zebrafish terra[J]. Tsinghua Sci and Tech., 2001,6 (3): 265-268.
    Zimmermann S, Schottler P, Engel W, et al. Mouse Leydig insulin-like (Ley I-L) gene: structure and expression during testis and ovary development[J]. Mol Reprod Dev, 1997,47: 30-38.
    Zimmermann S, Steding G, Emmen J M, et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism[J]. Mol Endocrinol, 1999,13: 681-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700