牛8个繁殖性状相关基因cDNA克隆,SNPs及组织表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
繁殖性状是一个重要的经济性状,其中产仔性能是影响生产效率的最主要因素,受多基因控制,具有加性-显性基因作用模式,其遗传力很低,牛的群体双胎遗传力和排卵遗传力分别为0.03和0.07。目前普遍的方法是通过一些实践技术(如激素诱导、激素免疫和胚胎移植等)提高双胎率,但其存在遗传选择进展慢,手段繁琐、成本高等一系列问题,所以借助分子生物技术手段来提高产仔数是人们研究的另一个方向。公牛的精液品质是影响母牛受胎率及种公牛利用效率的重要因素,也是影响生产效益的关键因素。克隆精液品质相关基因并探讨其相关功能,这对于揭示动物繁殖性状调控机制及加快动物育种进展有重要作用。因此,本研究利用生物信息学和分子生物学相关技术,选取了与精液品质有关的ACTN1、Dmrt7、Mina53、Trf2、Tbxa2r、CyclinA1、GDNF和CIB1共8个基因作为候选基因,进行cDNA克隆、组织表达谱和SNPs检测及与母牛产仔数性状关联分析,为进一步研究这些基因与种公牛精液品质奠定了理论基础。取得了以下结果:基因的cDNA克隆方面
     1.利用EST拼接和GenScan技术,结合RT-PCR方法,得到了牛ACTN1、Dmrt7、Mina53、Trf2、Tbxa2r、CyclinA1、GDNF和CIB1共8个候选基因完整的CDS区序列并进行了生物信息学分析。
     2.通过3’RACE的方法,得到了牛Dmrt7基因完整的3’UTR区序列。向GenBank数据库递交了ACTN1、Dmrt7和Trf2基因的cDNA序列,分别获取登录号EF512630、EF534775和EU140625。组织表达方面
     3.用RT-PCR的方法对其中的5个候选基因在肝脏、睾丸、肺、瘤胃、子宫、小肠、脾脏、心脏、脂肪、卵巢、肾脏和肌肉共12个组织中的表达情况进行了研究,结果发现,除Dmrt7基因只在睾丸组织中表达外,其余4个基因都有比较广泛的组织表达。
     4.以SYBR Green I与dsDNA结合后检测荧光强度的方法进行定量。对在睾丸组织中表达量比较高的Trf2和Mina53基因在肝脏、睾丸、肺、瘤胃、子宫、小肠、脾脏、心脏、脂肪、卵巢、肾脏和肌肉共12个组织中表达情况进行了研究。结果发现,Trf2基因在睾丸组织中表达量最高,其次是肝脏和子宫,表达最低的是胃和脾脏。Mina53在睾丸组织中表达最高,其次是肝脏和子宫,表达最低的是卵巢。SNPs检测及关联分析方面
     5.采用PCR-SSCP方法和测序的方法对Dmrt7基因第1内含子、第2外显子和第2内含子;第4内含子、第5外显子和第5内含子;第7内含子,第8外显子和第8内含子进行了SNP扫描,发现在牛Dmrt7基因第2内含子存在G/A和A/T、第4内含子存在C/G和C/T、第7内含子存在C/G共5个单碱基突变位点。在鲁西单胎牛,西门塔尔牛,水牛,晋南牛和海福特牛群体中,对该基因的第4内含子的C/G突变的分布情况进行了研究,结果发现:CC基因型个体在群体中占绝对优势;在水牛和西门塔尔牛群体中没有发现多态现象,其他3个群体均处于中度多态。
     6.采用PCR-RFLP方法和测序的方法对ACTN1基因的第8外显子和第9内含子,第9外显子和第10内含子,第10外显子和第11内含子,第12外显子和第13内含子,第14外显子和第15内含子进行SNPs扫描,发现在牛ACTN1基因的第9内含子存在G/A,第10内含子存在A/G和G/A,第11内含子存在G/C,13内含子存在A/G,在第15内含子存在G/A和A/G共7个单碱基突变位点。以下是对6个地方品种(鲁西单胎牛,鲁西双胎牛,南阳牛,晋南牛,中国西门塔尔牛和荷斯坦牛群体)的群体进行检测多态性并且运用SAS 9.1软件,采用GLM对其基因多态性与产犊数进行了最小二乘均值差异显著性检验。
     对第10内含子的A/G突变位点用ApaⅠ限制性内切酶在6个群体中进行群体遗传学分析及其与产犊数进行关联分析。结果表明:所有群体在该位点都处于低度多态。在内含子10的ApaⅠ酶切位点,AG基因型的产犊数的最小二乘均数极显著(P<0.01)高于基因型GG基因型。
     用HaeⅢ限制性内切酶对13内含子的A/G突变位点在6个群体中进行群体遗传学分析及关联分析。结果表明:在内含子13的HaeⅢ酶切位点,AA基因型个体与AG基因型个体间的产犊数差异不显著(P>0.05)。
     对第15内含子的G/A突变用RsaⅠ限制性内切酶在6个群体中进行群体遗传学分析及其与产犊数进行了关联分析。结果表明:所有群体在该位点都处于中度多态。在内含子15的RsaⅠ酶切位点,产犊数性状在3种基因型间的差异均不显著(P>0.05)。Dmrt7基因原核表达
     7.对在睾丸组织中惟一表达的Dmrt7基因进行构建了Dmrt7基因的pET28a+原核表达载体,并成功地实现了对Dmrt7蛋白的融合表达。探讨其对雄性发育的重要作用。
Reproduction traits are an important economic trait. Calving trait, which is controlled by polygene, is a mostly factor affecting production efficiency. This trait was affected by add-apparent gene model and it has low heredity. The heredity of twinning and ovary are 0.03 and 0.07, respectively. At present, the rate of twinning is increased by hormone inducement, hormone immunity and embryo transfer, but there are some defects, such as slow choose evolve, numerous means and high cost.
     How to choose some genes which can improve the sperm quality and/or increase the number of calving is a goog aspect. To open out mechanism of reproduction trait and quicken the course of animal breeding, the genes were cloned about sperm quality. Therefore, 8 genes including ACTN1、Dmrt7、Mina53、Trf2、Tbxa2r、CyclinA1、GDNF and CIB1 were served as candidate genes, theses genes were cloned by RT-PCR technology and bioinformatics means. Tissue expression was employed by RT-PCR technique and real-time PCR .SNP was detected by sequencing and association between the SNPs and the number of calving.
     1. The complete CDS sequence of ACTN1, Dmrt7, Mina53, Trf2, Tbxa2r, CyclinA1, GDNF and CIB1 cDNA were cloned by RT-PCR, EST, Genescan and analyzed by bioinformatics methods.
     2. The entire 3’UTR sequence of Dmrt7 gene was cloned by 3’rapid amplified .And the CDS sequence of ACTN1, Dmrt7 and Trf2 genes were submitted to Genbank, the accession numbers were Ef512630, EF634775 and EU140625, respectively.
     3. The 5 candidate genes were detected in by RT-PCR and the results showed that 4 candidate genes have expression in various tissues except that Dmrt7 gene in specific expressed in testicle.
     4. The syntheses of the first-strand cDNA was followed by PCR using SYBR Green I was combined with dsDNA , twelve different tissues including liver, testicle, lung, rumen, womb, small intestine, spleen, heart, fat ,ovary, kidney and muscle were collected from a mature Simmental bull and cow for genes expression study of Trf2 and Mina53. SYBR Green I analysis was performed to determine the relative mRNA level of Trf2 and Mina53 in various tissues. The housekeeping geneβ-actin was used for endogenous control. Expression data demonstrate that the bovine Trf2 gene expressed in all 12 tissues of interest, it is expressed predominantly in testis, and very low rumen and spleen. Mina53 gene expressed in 12 tissues of interest, it is expressed predominantly in testis, and very low in ovary.
     5. Identification for mutation in the amplified fragments of Dmrt7gene was performed in intron1, exon 2 and intron2, intron4, intron5 and exon5, intron7, exon8 and intron8 area. 5 SNPs including G/A, A/T, C/G/, C/T, C/G mutation in different introns were detected by sequencing. Allele frequencies of 1 SNP that can be detected by PCR-SSCP were analyzed among different bovine population (Luxi cattle, Simmental, buffalo, Jinnan cattle and Hereford) and the results showed that the CC genotype frequencies were high in all population exception Simmental group; 3 populations were located in middle polymorphism.
     6. Identification for mutation in the amplified fragments of ACTN1 gene was performed in exon8 and intron9, exon9 and intron10, exon10 and intron11, exon12 and intron13, exon14 and intron15 area. 7 SNPs including G/A, A/G, G/A, G/C, A/G, G/A, A/G mutation sites in different introns were detected by sequencing. These some domestic breed including Luxi cattle, Luxi twinning cattle, Nanyang cattle, Jinnan cattle, Chinese Simmental and Holstein were used to dectect SNPs. The analysis of least square was used to employ to association between these SNPs and the number of calving by SAS 9.1 software. A/G mutation site in intron10 was detected by ApaⅠrestrition enzyme in domestic breeds. The result showed that, all population was located in low polymorphism. intron10-3124 nt was significant association between the SNPs and the number of calving(P<0.01).
     A/G mutation in intron13 was detected by HaeⅢrestriction enzyme in domestic breeds. The result showed that there were no association between intron 13-669 SNP and the number of calving (P>0.05).
     G /A mutation in intron15 was detected by RsaⅠrestriction enzyme in domestic breeds. The result showed that all population was located in middle polymorphism. There were no association between intron15 -227 SNP and the number of calving (P>0.05).
     7. The prokaryotic expression vector of Dmrt7 genes which was expressed only in testicle was structured using RT-PCR and pET28a+vector, and the Dmrt7 fusion protein was expressed in the BL21 strain.
引文
[1] Johansson Moller M, Chaudhary R, Hellmen E, et al. Pigs with the dominant white coat color phenotype carry aduplication of the KIT gene encoding the mast/stem cell growth factor receptor[J].Mamm Genome,1996,7(11):822-830.
    [2] Suchi M, San H, Mizumo H, et al. Molecular cloning and structural characterization of the human histidase gene (HAL) [J].Genomics, 1995, 29(1):98-104.
    [3] Adams M D, Kelley J M, Gocayne J D, et al. Complementary DNA sequencing:Expressed sequence tags and human genome project [J]. Science, 1991, 252 (5013): 1651-1656.
    [4] Adams M D, Dubnick M, Kerlavage A R, et al. Sequence identification of 2375 human brain genes [J]. Nature, 1992, 355 (6361): 632-634.
    [5] Bonaldo M F, Lennon G, Soares M B. Normalization and subtraction: two app roaches to facilitate gene discovery [J]. Genome Res, 1996, 6 (9): 791-806.
    [6] Green P, Lipman D, Hillier L, et al. Ancient conserved regions in new gene sequences and the p rotein databases [J]. Science, 1993, 259 (5102): 1711-1716.
    [7] 何志颖,胡以平. EST 技术及其在基因全长 cDNA 克隆上的应用策略[J]. 国外医学,遗传学分册,2002,25(2):67-69.
    [8] 王亚馥,戴灼华. 遗传学[M]. 北京:高等教育出版社,2002.
    [9] Noumi T, Mosher M E, Natori S, et al. A phenyLalanine for serine substitution in the beta subunit of Escherichia Coli F - ATPase affects dependence of its activity on divalentication [J]. J Biol Chem, 1984, 259(16): 10071-10075.
    [10] Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single - strand conformation polymorphisms [J]. Proc Natl Acad Sci USA, 1989, 86(8): 2766-2770.
    [11] Orita M, Suzuki Y, Sekiya T, et al. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction [J]. Genomics, 1989, 5(4): 874-879.
    [12] 郝桂琴, 肖露露. 分子生物学技术在 HLA 分型中的应用[J]. 中国实验血液学杂志,2002,10 (3):268-272.
    [13] Brookes A J. The essence of SNPs [J].Gene, 1999, 234(2):177-186.
    [14] 石先哲,李建华,赵春霞,等. 毛细管电泳-单链构象多态性分析检测 K-ras 基因突变[J].分析化学,2005,33 (6):177-180.
    [15] 张树忠,张宇红,张殿勇,等. 应用变性高效液相色谱技术检测汉族人Ⅰ型多囊肾致病基因突变[J]. 中华医学遗传学杂志,2006,23 (3):283-288.
    [16] 翟仙敦,黄代新,尹慧,等. PCR 结合变性梯度凝胶电泳法检测人血 mtDNA HVⅡ[J].法医学杂志,2007,23 (1):30-32.
    [17] 成玉梅, 邓卫东, 毛华明. 实时荧光定量 PCR 技术在研究反刍动物消化道微生物菌群生态学上的运用[J]. 饲料博览.2006, 13(11):9-11.
    [18] 张广民,文杰. 荧光定量 PCR 技术及其在动物营养中的应用[J]. 中国饲料, 2006,18(10) : 39-41.
    [19] 朱燕, 罗欣, 徐幸莲, 等.中国黄牛背最长肌中 capnl mRNA 表达与嫩度的关系[J].南京农业大学学报,2006,29(2): 89-93.
    [20] Jeffrey H F, Bruce A C, Michael A L, et al. Correction of factor Ⅸ deficiency in mice by embryonic stem cells differentiated in vitro[J].PNAS,2005,102(8) :2958-2963.
    [21] 施开创, 郭鑫, 杨汉春,等.猪繁殖与呼吸综合征病毒和猪圆环病毒 2 型基因重组质粒实时荧光定量 PCR 标准曲线的构建.中国兽医杂志.2007, 43(4):10-12.
    [22] Kumi-Diaka J, Osori D I, Njoku C O, et al. Quantitative estimation of spermatogenesis in bulls (Bos indicus) in a tropical environment of Nigeria[J].Vet Res Commun,1983, 6(3):215-222.
    [23] Winter H, Kalat M, Mayr B, et al. Mithun cross siri hybrids: cyto- and immunogenetic examinations and characterisation of abnormal spermatogenesis [J]. Res Vet Sci, 1988, 45(1):86-100.
    [24] Guraya S S, Bilaspuri G S. Stages of seminiferous epithelial cycle and relative duration of spermatogenic processes in the buffalo (Bos bubalus)[J]. Gegenbaurs Morphol Jahrb,1976, 122(2):147-161.
    [25] McCool C J. Spermatogenesis in Bali cattle (Bos sondaicus) and hybrids with Bos indicus and Bos Taurus [J]. Res Veter Sci, 1990, 48(3):288-294.
    [26] McCool C J. The cycle of the seminiferous epithelium in Bali cattle (Bos sondaicus) [J]. J Reprod Fertility, 1989, 87(1):327-330.
    [27] Brito L F, Silva A E, Rodrigues. et al. Effect of age and genetic group on characteristics of the scrotum, testes and testicular vascular cones, and on sperm production and semen quality in AI bulls in Brazil [J]. Theriogenology. 2002 Oct 1, 58(6):1175-86.
    [28] Brito L F, Silva A E, Rodrigues L H, et al. Effects of environmental factors, age and genotype on sperm production and semen quality in Bos indicus and Bos taurus AI bulls in Brazil [J]. Anim Reprod Sci. 2002, 15, 70(3-4):181-90.
    [29] 郑新民,张林.精子发生的基因调控[J].临床外科杂志,2006,14(11):732-734.
    [30] Cesare D D, Fimia G M, Brancorsini S, et al. Transcriptional control in male germ cells :general fator TFⅡA pareticipates in CREM-dependent gene activation[J].Mol Endocrinol,2005,17(8):2554-2565.
    [31] Sun Z, Sassone-corsi P, Means A R. Calspermin gene transcription is regulated by two cyclic AMP response elements contained in an alternative promoter in the calmodulin kinase IV gene [J].Mol Cell Biol, 1995, 15(1):561-571.
    [32] Sassone-Crosi P. Transcription factors responsive to cAMP [J].Ann Rev Cell Dev Biol, 1995, 11:355-377.
    [33] Eddy, E M. Male germ cell gene expression [J].Recent Prog Horm Res, 2002, 57:103-128.
    [34] Zhu D, Dix DJ, Eddy EM. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes[J].Development, 1997,124(15):3007-3014.
    [35] Eddy E M, O’Brien D A. Gene expression during mammalian meiosis [J].Curr Top Dev Biol, 1998, 37:141-200.
    [36] Son Y, Hwang SH, Han CT, et al. Specific expression of heart shock protein HspA2, in human male germ cells [J].Mol Hum Reprod, 1999, 5:1122-1126.
    [37] Casale A, Camatini M, Skalli O, et al. Characterization of actin isoforms in ejaculated boar spermatozoa [J]. Gamete Research, 1988, 20:133–144.
    [38] Yagi A, Paranko J. Localization of actin, alpha-actinin, and tropomyosin in bovine spermatozoa and epididymal epithelium [J].The Anatomical Record, 1992, 233:61–74.
    [39] Yagi A, Paranko J. Actin, alpha-actinin, and spectrin with specific associations with the postacrosomaland acrosomal domains of bovine spermatozoa [J]. The Anatomical Record, 1995, 241:77–87.
    [40] Campbell E M, Nonneman D, Rohrer G A. Fine mapping a quantitative trait locus affecting ovulation rate in swine on chromosome 8[J]. J Anim Sci, 2003, 81: 1706–1714.
    [41] King A H, Jiang Z, Gibson J P, et al. Mapping quantitative trait loci affecting female reproductive traits on porcine chromosome 8[J]. Bio Reprod, 2003, 68: 2172–2179.
    [42] Nonneman D J, Rohrer G A. Comparative mapping of a region on chromosome 10 containing QTL for reproduction in swine [J]. Anim Genet, 2003, 34:42–46.
    [43] Zidek V, Pintir J, Musilova A, et al. Mapping of quantitative trait loci for seminal vesicle mass and litter size to rat chromosome 8[J]. J Reprod Fertil, 1999, 116:329–333.
    [44] Zidek V, Musilova A, Pintir J, et al. Genetic dissection of testicular weight in the mouse with the BXD recombinant inbred strains [J]. Mammalian Genome.1998, 9:503–505.
    [45] Le Roy I, Tordjman S, Migliore-Samour D, et al. Genetic architecture of testis and seminal vesicle weights in mice [J]. Genetics, 2001, 158:333–340.
    [46] Blanchard A, Ohanian V, Critchley D. The structure and function of alpha-actinin [J]. J Muscle Res Cell Motil, 1989, 10(4): 280-289.
    [47] Pascual, J, Castresana J, Saraste M. Evolution of the spectrin repeats [J]. Bioessays, 1997, 19(9): 811-817.
    [48] Ylanne, J, Scheffzek K, Young P, et al. Crystal structure of the alpha-actinin rod reveals an extensive torsional twist [J]. Structure (Camb), 2001, 9(7): 597-604.
    [49] Witke W, Hofmann A, Koeppel B, et al. The Ca2+-binding domains in non-muscle type a-actinin: biochemical and genetic analysis [J]. Cell Biology, 1993, 121(3): 599-606.
    [50] Djinovic-Carugo, K, Young P, Gautel M. et al. Structure of the a-actinin rod: molecular basis for crosslinking of actin filaments [J]. Cell, 1999, 98(6): 537-546.
    [51] Djinovic-Carugo, Gautel K M, Ylanne J, et al. The spectrin repeat: a structural platform for cytoskeletal protein assemblies [J]. FEBS Let, 2002, 513(1): 119-123.
    [52] Janssen K P, Eichinger L, Janmey P A, et al. Viscoelastic properties of F-actin solutions in the presence of normal and mutated actin-binding proteins[J]. Arch Biochem Biophys, 1996, 325(2): 183-189.
    [53] Mills M N, Yang R, Weinberger D L, et al. Differential expression of the actin-binding proteins, alpha-actinin-2 and -3, in different species: implications for the evolution of functional redundancy [J]. Hum. Mol. Genet, 2001, 10:1335–1346.
    [54] Thomas G H, Newbern E C, Korte C C, et al. Intragenic duplication and divergence in the spectrin superfamily of proteins[J]. Mol. Biol. Evol, 1997, 14:1285–1295.
    [55] Viel A. a-Actinin and spectrin structures: an unfolding family story [J]. FEBS Lett, 1999, 460:391–394.
    [56] Baines A J, Comprehensive analysis of all triple helical repeats in beta-spectrins reveals patterns of selective evolutionary conservation [J]. Cell Mol. Biol. Lett, 2003, 8:195–214.
    [57] Masaki K, Katsuhiko N. Mice deficient in Dmrt7 show infertility with spermatogenic arrest at pachytene stage [J]. FEBS Letters, 2006, 580: 6 442–6 446.
    [58] Raymond C S, Shamu C E, Shen M M, et al. Evidence for evolutionary conservation of sex-determining genes [J]. Nature, 1998, 391: 691–695.
    [59] Erdman S E, Burtis KC. The Drosophila doublesex proteins share a novel zinc finger relatedDNA-binding domain [J]. Embo J, 1993, 12: 527–535.
    [60] Raymond C S, Kettlewell J R, Hirsch B, et al. Expression of Dmrt1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development [J]. Dev Biol, 1999, 215: 208-220.
    [61] Kim S, Kettlewell JR, Anderson RC, et al. Sexually dimorphic expression of multiple doublesex-related genes in the embryonic mouse gonad [J]. Gene Expr Patterns, 2003, 3: 77–82.
    [62] Smith CA, McClive PJ, Western PS, et al. Conservation of a sex-determining gene [J]. Nature, 1999, 402: 601–602.
    [64] Shinseog Kim, Satoshi H. Namekawa, et al. A Mammal-Specific Doublesex Homolog Associates with Male Sex Chromatin and Is Required for Male Meiosis [J].Plos Genetics.2007, 3(4):559-571.
    [65] Moens P B, Kolas N K, Tarsounas M, et al. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA–DNA interactions without reciprocal recombination [J]. J. Cell Sci, 2002, 115: 1 611–1 622.
    [66] Dobson M J, Pearlman R E, Karaiskakis A, et al. Synaptonemal complex proteins: occurrence, epitope mapping and chromosome disjunction[J]. J. Cell Sci. 1994, 107: 2 749–6 027.
    [67] Raymond C S, Murphy M W, O’Sullivan M G, et al. Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation [J]. Gene Dev, 2000, 14: 2 587-2 595.
    [68] Seo K W, Wang Y, Kokubo H, et al. Targeted disruption of the DM domain containing transcription factor Dmrt2 reveals an essential role in somite patterning [J]. Dev Boil, 2006, 290:200-210.
    [69] Flejter W L, Fergestad J, Gorski J, et al. A gene involved in XYsex reversal is located on chromosome 9, distal to marker D9S1779 [J]. Am J Hum Genet, 1998, 63:794-802.
    [70] Guioli S, Schmitt K, Critcher R, et al. Molecular analysis of 9p deletions associated with XY sex reversal: refining the localization of a sex2determining gene to the tip of the chromosome [J]. Am JHum Genet, 1998, 63:905-908.
    [71] Raymond C S ,Parker E D , Kettlewell J R ,et al. A region of human chromosome 9p required for testis development contains two genes related to known sexual regulators [J].Human Molecular Genetics, 1999, 8:989-996.
    [72] Ottolenghi C, Veitia R, Barbieri M, et al. The human doublesex2related gene , DMTR2 , is homologous to a gene involved in somitogenesis and encodes a potential bicistronic transcript [J].Genomics ,2000 ,64 :179-186.
    [73] Tsuneoka M, Koda Y. et al. A novel MYC target gene, mina53 that is involved in cell proliferation [J] .J Biol Chem.2002, 277(38): 35450-35459.
    [74] Tsuneoka M, Nishimune Y, Ohta K, et al. Expression of Mina53, a product of a Myc target gene in mouse testis [J]. Int J Androl, 2006, 29(2):323-330.
    [75] Teye K, Tsuneoka M. et al. Increased expression of a Myc target gene Mina53 in human colon cancer [J]. Am J Pathol, 2004, 164(1): 205-216.
    [76] Tsuneoka M, Fujita H. et al. Mina53 as a potential prognostic factor for esophageal squamous cell carcinoma [J]. Clin Cancer Res.2004, 10(21): 7347-7356.
    [77] Suzuki M, An K. Yoshinage K. et al. Specific arrest of apermatogenesm caused by spoptosis cell death in tranagenic mice [J].Genes Cell, 1996, 1(12), 1077.
    [78] Fukahori, S. H. Yano, et al. Immunohistochemical expressions of Cap43 and Mina53 proteins inneuroblastoma [J]. J Pediatr Surg. 2007(42): 1831-1840.
    [79] Ishizaki H, Yano H, et al. Overexpression of the myc target gene Mina53 in advanced renal cell carcinoma [J]. Pathol Int, 2007, 57(10):672-80.
    [80] Berk A J. TBP-like factors come into focus [J]. Cell, 2000, 103:5–8.
    [81] Dantonel J C, Quintin S, Lakatos L, et al. TBP-like factor is required for embryonic RNA polymerase II transcription in C. elegans[J]. Mol. Cell, 2000, 6:715–722.
    [82] Kaltenbach L, Horner M A, Rothman J H, et al. The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis [J]. Mol. Cell, 2000, 6:705–713.
    [83] Muller F, Lakatos L, Dantonel J, et al. TBP is not universally required for zygotic RNA polymerase II transcription in zebrafish [J]. Curr. Biol, 2001, 11:282–287.
    [84] Ohbayashi T, Kishimoto T, Makino Y, et al. Aoki, T. Kawata, S. Niwa, et al. Isolation of cDNA, chromosome mapping, and expression of the human TBP-like protein[J]. Biochem. Biophys. Res. Commun, 1999,255:137–142.
    [85] Rabenstein M D, Zhou S, Lis J T, et al. TATA box-binding protein (TBP)-related factor 2 (TRF2), a third member of the TBP family[J]. Proc. Natl. Acad. Sci, 1999, 96:4791–4796.
    [86] Teichmann M, Wang Z, Martinez E, et al. Human TATA-binding protein-related factor-2 (hTRF2) stably associates with hTFIIA in HeLa cells[J]. Proc. Natl. Acad. Sci, 1999, 96:13720–13725.
    [87] Veenstra G J, Weeks D L, Wolffe A P. Distinct roles for TBP and TBP-like factor in early embryonic gene transcription in Xenopus[J]. Science, 2000, 290:2312–2315.
    [88] Nakadai T, Shimada M, Shima D, et al. Specific interaction with transcription factor IIA and localization of the mammalian TATA-binding protein-like protein (TLP/TRF2/TLF) [J]. J. Biol.Chem, 2004, 279:7447–7455.
    [89] Maldonado E, Transcriptional functions of a new mammalian TATA binding protein-related factor [J]. J. Biol. Chem. 1999, 274:12963–12966.
    [90] Moore P A, Ozer J, Salunek M, et al. A human TATA binding protein-related protein with altered DNA binding specificity inhibits transcription from multiple promoters and activators. Mol. Cell. Biol. 1999, 19:7610–7620.
    [91] Zhang D,Penttila TL,Morris PL,et al. Spermatogenesis deficiency in mice lacking the Trf2 gene [J]. Science,2001,292(5519):1153-1155.
    [92] Martianov I,Fimia G M,Dierich A. et al. Late arrest of spermatogenesis and germ cell apoptosis in mice lacking the TBP-like TLF/ TRF2 gene[J]. Mol Cell, 2001, 7(3):509-515.
    [93] Sassone-Corsi P. Unique chromatin remodeling and transcriptional regulation in spermatogenesis [J].Science, 2002, 296:2176-2178.
    [94] Ozer J,Moore P A,Lieberman P M. A testis-specific transcription factor ⅡATFⅡAtau stimulates TATA-binding protein-DNA binding and transcription activation [J]. J Boil Chem,2000 ,275(1):122-128.
    [95] Hickman E S,Moroni M C, Helin K.The role of p53and pRB in apoptosis and cancer [J].Curr Opin Cenet Dev, 2002, 12(1):60-66.
    [96] Smogorzewska A, de Lange T. Different telomere damage signaling pathways in human and mouse cells [J].EMBO J, 2002, 21(16):4338-4348.
    [97] Liu J,Zou WG,Lang MF,et al. Cancer specific killing by the CD suicide gene using the humantelomerase reverse transcriptase promoter [J]. Int J Oncol, 2002, 21(3): 661-666.
    [98] Biroccio, A., Rizzo A., et al. "TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells." Eur J Cancer, 2006, 42(12): 1881-1888.
    [99] Blanco, R., P. Munoz, et al.Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev, 2007, 21(2): 206-20.
    [100] Wolgemuth D J, Rhee K, Wu S, et al. Genetic control of mitosis, meiosis and cellular differentiation during mammalian spermatogenesis[J].Repord. Fertil.1995, 7:669-683.
    [101] Wolgemuth D J, LaurionE, Lele K M. Regulation of the mitotic and meiotic cell cycles in the male germ line [J].Rec Prog Horm Res, 2002, 57, 75-101.
    [102] Pines J. Cyclins and their associated cyclin-dependent kinases in the human cell cycle [J].Biochem.Soc.Trans, 1993, 21,921-925.
    [103] Solomon M J. Activation of the various cyclin/cdc2 protein kinases [J].Curr. Opin.Cell Biol. 1993, 5, 180-186.
    [104] Ekholm, Reed. Ekholm, S.V. Reed, S. I. Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle[J]. Cell Biol, 2000, 12,676-684.
    [105] Liu D, Matzuk M M, Sung W K, et al.CyclinA1 is required for meiosis in the male mouse[J].Nature, Genet, 1998, 20,377-380.
    [106] Sweeny C, Murphy M, Kubelka M, et al. A distinct cyclinA is expressed in germ cells in the mouse [J]. Development, 1996, 122, 53-64.
    [107] Yang R, Morosetti R, Koeffler H P. Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines [J].Cancer Res, 1997, 57,913-920.
    [108] Kim J M, McGaughy J T, Bogle R K, et al. Meiotic expression of the cyclin H/Cdk7 complex in male germ cells of the mouse [J].Biol Reprod,2001,63,1400-1408.
    [109] Muller C, Readhead C, Diederich S, et al. Methylation of the cyclin A1 promoter correlates withgene silencing in somatic cell lines, while tissue specific expression of cyclin A1 is methylation independent [J].Mol Cell Biol,2000,20,3316-3329.
    [110] Ravnik S E, Wolgemuth D J. The developmentally restricted pattern of expression in the male germ line of a murine cyclin A, cyclin A2,suggests roles in both mitotic and meiotic cell cycles[J] .Dev Biol,1996,173,69-78.
    [111] Ravnik S E, Wolgemuth D J. Regulation of meiosis during mammalian spermatogenesis: the A-type cyclins and germ cell lineage [J].Dev Biol, 1999, 207,408-418.
    [112] Wang J,ChenivesseX,Henglein B, et al.Hepatis Bvirus integration in a cyclinA gene in a hepatacellular carcinoma[J].Nature,1990,343:555-557.
    [113] Yu H Y, Shi C G, Zhu J J, et al. CyclinA expression in non-small cell lung carcinoma as related to proliferative activity and prognosis[J]. Chin J Cancer, 2001, 20:38-40.
    [114] Zhang Y, Peng Z H, Qiu G Q, et al. Overexpression of cyclinA in hepatocelluar carcinoma and its relationship with HBs gene integrateion[J].China J Oncol,2002,24: 353-355.
    [115] Lin L F, Doherty D H, Linle J D, et al. GDNF:a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons[J].Science,1993,260:1130-1132.
    [116] Zurm A D, Baetge E E, Hammang J P, et al. GDNF(glial cell line-derived neurotrophic factor): A new neurotrophic factor for motoneurons[J]. Neuroreport, 1994, 6:113-118.
    [117] Sariola H, Sainio K, Bard J. Fates of the metanephric mesenchyme. In: the Kidney: from Normal Development to Congentiatl Diseaseed Vize P Woolf AS, Bard JBL [J]. London, Academic Press, 2003:181-482.
    [118] Meng X, Lindahl M, Hyv?nen M E. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF[J].Science,2000,87:1489-1493.
    [119] Meng X, Pata I, Pedrono E, et al. Transient disruption of spermatogenesis by deregulated expression of neurturin in testis[J].Mol Cell Endocrinol, 2001a; 183:33-39.
    [120] Meng X, de Rooij D G, Westerdahl K et al. Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis[J].Cancer Res2001b;61:3267-3271.
    [121] McDonald N Q, Lapatto R, Murray Rust J, et al. New protein fold revealed by a 2-3-A resolution drystal structure of nerve growth factor [J]. Nature, 1991, 354 (6352): 411.
    [122] Eigenbrot C, Gerber N. X-ray structure of glial cell derived neurotropic facto rat 1. 9 A resolution and implications for receptor binding [J]. N at Struct Bio l, 1997, 4 (6): 435.
    [123] Trupp M , Ryden M , Jornvall H, et al. Peripheral expression and biological activities of GDN F, a new neurotrophic factor foravian and mammalian peripheral neurons[J]. J Cell Biol, 1995, 130(1): 137.
    [124] Kotzbauer P T, L ampe P A , Heuckeroth R O, et al. Neurtrin, a relative of glial cell derived neurotroph in factor[J]. Nature, 1996, 384 (6608): 467.
    [125] Xian C J, Huang B R, Zhou X F. Distribution of neurturin mRNA and immuno reactivity in the peripheral tissues of adult rats[J].Brain res, 1999, 835 (2) : 247.
    [126] Grimm L, Holinski-Feder E, Teodo ridis J, et al. A nalysis of the human GDN F gene revelas an inducible promoter, three exons, a trip let repeat with in the 3’- UTR and alternative splice products [J]. Hum Mol Genet, 1998, 7 (12) : 18735.
    [127] Woodbury D, Schaar D G, Ramak rishnan L , Black I B. Novel structure of the human GDN F gene[J]. Brain Res, 1998, 803 (122): 956.
    [128] Baecker P A , L ee W H, Verity An, et al. Characterization of a promoter for the human glial cell line derived neurotrophic factor gene[J]. Brain ResMol Brain Res, 1999, 69 (2): 209.
    [129] Trupp M , Ryden M , Jornvall H, et al. Peripheral expression and bio logical activities of GDNF, a new neurotrophic factor foravian and mammalian peripheral neurons[J]. J Cell Biol, 1995, 130(1) : 13711.
    [130] Schaar D G, Sieber B A, Sherwood A C, et al. Multiple astrocyte transcripts encode nigraltrophic factors in rat and human [J].Exp Neuro, 1994, 130 (2): 38712.
    [131] Springer J E, M u X, Bergmann L W, et al. Expression of GDNF mRNA in rat and human nervoustissue[J]. Exp Neuro, 1994, 127 (2): 167.
    [132] Josso N, diClemente N. Serine?th reonine kinase receptors and ligans [J]. Curr Opin Gene Dev, 1997, 7 (3): 371.
    [133] Airaksinen M S, itievshy T A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant [J]. Mo l Cell Neuro sci, 1999, 13 (5): 313.
    [134] Nüsing R M, Hirata M, Kakizuka A, et al. Characterization and chromosomal mapping of the human thromboxane A2 receptor gene [J]. J Biol Chem, 1993, 268: 25252-25259.
    [135] Kinsella BT. Tromboxane A2 signalling in humans: a ‘tail’ of two receptors [J]. Biochem Soc Trans. 2001, 29(6): 641-654.
    [136] Chiang N, Tai H H. The role of N2 glycosylation of human thromboxane A2 receptor in ligand binding [J]. Arch Biochem Biophys, 1998, 352: 207-213.
    [137] D’Angelo D D, Eubank JJ, Davis MG, et al. Mutagenic analysis of platelet thromboxane receptor cysteines: roles in ligand binding and receptor effectors coupling [J ] . J Biol Chem, 1996, 271: 6233.
    [138] Funk C D, Furci L, Moran N, et al. Point mutation in the seventh hydrophobic domain of the human thromboxane A2 receptor allows discrimination between agonist and antagonist binding sites [J]. Mol Pharmacol, 1993, 44: 934-939.
    [139] Turek JW, Halmos T, Sullivan N L, et al. Mapping of a ligand bing site for the human thromboxane A2 receptor protein [J]. J Biol Chem, 2002, 277: 16791-16797.
    [140] Miggin S M, Kinsella BT. Expression and tissue distribution of the mRNAs encoding the human thromboxane A2 receptor (TP) α and β isoforms [J]. Biochim Biophys Acta, 1998, 1425:543-559.
    [141] Katugampola S D, Davenport A P. Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentration by the AT1 receptor antagonist losartan [J ] . Br J Pharmacol, 2001, 134:1385-1392.
    [142] Naik U P, Patel P M, Parise L V. Identification of a novel calcium binding protein that interacts with the integrin alpha IIb cytoplasmic domain [J]. J Biol Chem, 1997, 272:4651–4654.
    [143] Shock D D, Naik U P, Brittain J E, et al. Calcium-dependent properties of CIB binding to the integrin alphaIIb cytoplasmic domain and translocation to the platelet cytoskeleton [J]. Biochem J, 1999, 342:729–735.
    [144] Barry W T, Boudignon-Proudhon C D, Shock D, et al. Molecular basis of CIB binding to the in- tegrin alpha IIb cytoplasmic domain [J]. J Biol Chem, 2002, 277:28877–28883.
    [145]Gentry H R, Singer A U L, Betts C, et al. Structural and biochemical characterization of CIB1 delineates a new family of EF-hand-containing proteins [J]. J Biol Chem, 2005, 280:8407–8415.
    [146] Leisner T M, Liu M, Jaffer Z M, et al. 2005. Essential role of CIB1 in regulating PAK1 activation and cell migration [J]. J Cell Biol, 170:465–476.
    [147] Naik M U, Naik U P. Calcium-and integrin-binding protein regulates focal adhesion kinase activity during platelet spreading on immobilized fibrinogen. Blood [J]. 2003a, 102:3629–3636.
    [148] 赵建国.鸡解偶联蛋白(UCP)基因与生长和体组成性状关系的遗传学研究[C],哈尔滨:东北农业大学图书馆,2003.
    [149] Li J, Yan C, Liaw D. PTEN,a putative protein tyrosine phosphatase gene mutated in human brain, breast, and peostate cancer[J].Science,1997,275:1943-1947.
    [150] Shook G E. Approaches to summarizing somatic cell counts which improve interpretability [A]. Proc Natl Mastitis Countil[C], Arlington, VA, 1982,150-166.
    [151] 赵春江,李宁,邓学梅.应用创造酶切位点法检测单碱基突变[J].遗传,2003, 25(3):327-329.
    [152] Kwok S, Kellogg D E, McKinney N, et al. Effects of primer-template mismatches on the polymerase chain reaction:Human immunodeficiency virus type1 model studies [J] .Nucleic Acids Res,1990,18:999-1005.
    [153] ZIPPER H, BRUNNER H, BERNHAGEN J, et al. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological imp licatins [ J ]. Nucleic Acids Res, 2004, 32: 103.
    [154] TIAN H J, EDENBERG H J. High2throughput quantitation of double-stranded DNA using the AB I Prism 7 700 sequence detection system [J]. Anal Biochem, 2004, 326: 287 - 288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700