RAD18在DNA双链损伤修复中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泛素系统通过对细胞内短期存在蛋白的及时降解而在各项生命活动中起着重要作用。在泛素系统中起主要作用的是三种酶:泛素激活酶E1;泛素缀合酶E2/Ubc和泛素连接酶E3。这三种酶协同作用把泛素分子链作为标签连接在目的蛋白上使之被26S蛋白酶体识别而降解。在DNA损伤修复中,几种泛素系统中的酶起着至关重要的作用。其中复制后修复(PRR)主要是由RAD6上位体系负责的。这一体系的主要成员为Rad6,Rad18,Rad5和Mms2-Ubc13异二聚体。Rad6Ubc2和Ubc13是两种Ubc,Mms2是一种Ubc类似蛋白。Rad18是一种单链DNA结合蛋白,具有许多泛素系统E3所有的典型RING结构,与Rad6(Ubc2)形成结合紧密的异二聚体。Rad5同Rad18一样是具有RING结构的单链结合蛋白,且通过其RING结构与Mms2-Ubc13异二聚体结合。在DNA修复过程中,Rad18和Rad5互相结合并结合于DNA上,这样就把Rad6和Mms2-Ubc13同时招募于DNA损伤部分。但是具体这一修复复合物的泛素化底物蛋白是什么,它们又具体结合于什么样性质的DNA损伤部分,目前并不清楚,而这两点是研究泛素系统在DNA修复中的作用的关键。
     鉴于Rad18在此复合物中起媒介Ubc和DNA作用,同时它本身又可能是一种E3,我们便从Rad18与其它非PRR路径修复的DNA损伤结构的相互关系入手,来探讨泛素系统在其它DNA修复路径中是否也会起作用。利用染色质免疫沉淀技术,我们首次发现了Rad18结合于DNA双链损伤(DSB)的两端。这无疑表明Rad18在DNA各种损伤修复中作用的广泛性。虽然这一发现只是我们工作的一个开端,但是基于这一开端,两个层面的研究工作将被很大程度地拓宽,一是泛素系统不仅只是在DNA修复的PRR路径起作用,而是可能涉及DNA修复的各种不同路径。二是DSB修复的路径中可能又多了一种修复因子Rad18,它与已知的Rad52上位修复体系的关系,以及Rad6等PRR路径中的其它蛋白与已知DSB修复体系的关系将被人们所关注。
In the DNA postreplication repair (PRR) RAD6 epitasis pathway, the error-free group comprises RAD 18, RAD5 and the MMS2-UBC13 heterodimer factors. Both Rad6 and UbclS are ubiquitin-conjugating enzymes, and Mms2 is a UBC-like protein. RadlS and Rad5 are both single strand binding RING linger proteins. RAD6 binds to RadlS and Mms2-UbclS binds to Rad5. The interaction between RadlS and Rad5 mediates the cooperation between the Ubcs, and also localizes the Ubcs on DNA. However, the ubiquitylated substrate protein of these Ubcs remains unknown, and the nature of the DNA to which the repair factors bind is still unclear. So the main objective of my PhD work is to investigate the role played by the ubiquitin system during DNA repair. We intended to use RadlS as a key element to start the work, as RadlS interacts with both Ubc and DNA. We intended to investigate what types of DNA structures RadlS is associated with in vivo.
    The DNA double strand break (DSB) can be rejoined by at least two discrete pathways, i.e., the homologous recombination and the nonhomologous end-joining. At least 10 genes were found involved in NHEJ. Among them, Yku70 (Hdfl) and YkuSO (Hdf2) are break ends binding proteins, and RAD52, MRE11, XRS2 are found both in HR and NHEJ. In Saccharomyces cerevisiae, switching of mating-type is associated with a DSB, created by the site-specific endonuclease HO. It is reported that RAD 18 is found to be involved in Ho degradation via the ubiquitin 26S proteasome system. RAD5 is found involved in the avoidance of non-homologous end-joining of DSB in S. cerevisiae. Therefore, our hypothesis is that RadlS may directly associate with DSB. And also for the establishment of the technique, we were interested in examining whether RAD18 plays a role in this HO-induced DSB repair in S. cerevisiae.
    To measure the association of RadlS with DSB, we used the chromatin immunoprecipitation (CHIP). In this technique, first the specific protein-DNA interaction is crosslinked by formaldehyde, and the proteins bound with the specific DNA are immunoprecipitated by antibodies. Then the precipitated DNA is purified by reversing the
    
    
    protein-DNA with 1% SDS and heat In our experiment, RAD 18 was tagged with 9myc in vivo. We introduced the DSB by the induction of HO expression, which is under the control of the Gal 4 Promoter. Shortly after DSB induction, CHIP was performed with anti-myc antibodies. For multiplex PCR, primers specific for Z and Y a, which are involved in the DSB, were employed. And also, a pair of primers of ACT1 was used as a negative control.
    In this experiment, we also used Yku70 as a positive control, since it has been well defined as a DSB end binding protein. We found RadlS directly binds to the two ends of DSB. The results suggested that RadlS plays a role in DSB repair, as well as in PRR. This work is also suggestive of the discovery of a novel DSB repair factor.
引文
Ahne F., B. Jha, F. Eckardt-Schupp The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double-strand breaks in the yeast Saccharomyces cerevisiae. Nucl. Acids Res., 1997,25: 743-749.
    Armstrong J. D., D. N. Chadee, B.A. Kunz Roles for the yeast RAD18 and RAD 52 DNA repair genes in UV.mutagenesis. Mutat. Res., 1994,315: 281. 293.
    Aristarkhov A., Eytan E., Moghe A., Admon A., Hershko A., Ruderman J.V. E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proc Natl Acad Sci USA., 1996, 93(9) : 4294-4299.
    Aviel S., Winberg G., Massucci M, Ciechanover A. Degradation of the epstein-barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. J. Biol. Chem., 2000, 275(31) : 23491-23499.
    Bailly V., Lamb J., Sung P., Prakash S., Prakash L. Specific complex formation between yeast RAD6 and RAD 18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes. Dev., 1994, 8(7) : 811-820.
    Bai Y., and L. S. Symington A RAD52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev., 1996, 10: 1025-2037.
    Barnes G. and J. Rine Regulated expression of endonuclease EcoRI in Saccharomyces cerevisiae. Nuclear entry and biological consequences. Proc. Natl. Acad. Sci., 1985, 82: 1354-1358.
    Barnes G., and D. Rio DNA double-strand-break sensitivity, DBA replication and cell cycle arrest phenotypesof Ku-deficient Saccharomyces cerevisiae. Proc. Natil. Acad. SCi., 1997, 94: 867-872.
    Bignell G.R., Warren W., Seal S., Takahashi M., Rapley E., Barfoot R., Green H., Brown C., Biggs P.J., Lakhani S.R., Jones C., Hansen J., Blair E., Hofmann B., Siebert R., Turner G., Evans D.G., Schrander-Stumpel C., Beemer F.A., van Den Ouweland A., Halley D., Delpech B., Cleveland M.G., Leigh I., Leisti J., Rasmussen S. Identification of the familial cylindromatosis tumour-suppressor gene. Nat. Genet., 2000, 25(2) : 160-5.
    Blefort M. and R. J. Roberts Homing endonuclease: keeping the house in order. Nucleic Acids Res., 1997,25:2279-3388.
    Benson F. E., P. Baumann and S. C. West Szynergistic actions of Rad51 and Rad52 in recombination and DBA repair. Nature, 1998,391:401-404.
    Borden K.L. RING domains: master builders of molecular scaffolds? J. Mol. Biol, 2000, 295(5) : 1103-1112. Review.
    
    
    Boulton S. J. and s. P. Jackson Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBOJ., 1996,15: 5093-5103.
    Breitschopf K., Bengal E., Ziv T., Admon A., Ciechanover A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J., 1998,17(20) :5964-5973
    Broomfield S., B, L. Chow, W. Xiao. MMS2, encoding a ubiquitin-conjugating enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl. Acad. Soil, 1998, 95: 5678-5683.
    Broomfield S., T. Hryciw, W. Xiao DNA postreplication repair and mutagenesis. Nutat. Res. 2001,486:167-184.
    Brusky J., Y. Zhu, W. Xiao, UBC13, a DNA-damage-inducible gene, is a member of the error-free postreplication repairpathway in Saccharomyces cerevisiae. Curr. Genet., 2000,37:168-174.
    Bryant P. E. and P. J. Johnston Restriction-endonuclease-induced DNA double-strand breaks and chromosomal aberrations in mammalian cells. Mutat. Res., 1993, 299: 289-296.
    Burch TJ, Haas AL. Site-directed mutagenesis of ubiquitin. Differential roles for arginine in the interaction with ubiquitin-activating enzyme. Biochemistry, 1994, 33(23) :7300-7308.
    Buschmann T, Fuchs SY, Lee CG, Pan ZQ, Ronai Z. SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell, 2000,101(7) : 753-762.
    Cagney G., P. Uetz, S. Fields Two-hybrid analysis of the Sacchromyces cerevisiae 26S Proteasome. Physiol Genomics., 2001, 7:27-34.
    Caprio L. di, B. S. Cox DNA synthesis in UV irradiated yeast. Mutat. Res., 1981, 82: 69-85.
    Cassier-Chauvat C., F. Fabre Asimilar degect in UV-induced mutagenesis conferred by the rad6 and rad18 mutations of saccharomyceds cerevisiae. Mutat, Res., 1991, 254: 247-253.
    Chau V., Tobias J.W., Bachmair A., Marriott D., Ecker D.J., Gonda O.K., Varshavsky A. A. multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science, 1989, 243(4898) : 1576-83.
    Chen J.J., Hong Y., Rustamzadeh E., Baleja J.D., Androphy E.J. Identification of an alpha helical motif sufficient for association with papillomavirus E6. J. Biol. Chem., 1998, 273(22) : 13537-13544.
    
    
    Chen P., Johnson P., Sommer T., Jentsch S., Hochstrasser M. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT alpha 2 represser. Cell, 1993, 74(2) : 357-369.
    Chu G. Double strand break repair. J. Biol. Chem., 1997,272:24097-24100.
    Ciechanover A., Finley D., Varshavsky A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell, 1984, 37(1) : 57-66.
    Clever B., G. Interthal, J. Schmuchli-mauber, J. King, M. Sigrist et al. Recombinational repair in yeast : functional interactions between Rad51 and Rad54 proteins. EMBO J. 1997, 16: 2535-2544.
    Cook W.J., Jeffrey L.C., Xu Y., Chau V. Tertiary structures of class I ubiquitin-conjugating enzymes are highly conserved: crystal structure of yeast Ubc4. Biochemistry, 1993, 32(50) : 13809-13817.
    Cox B. S., J. M. Parry The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast. Mutat. Res., 1968, 6: 37-55.
    Deng L., Wang C., Spencer E., Yang L., Braun A., You J., Slaughter C., Pickart C., Chen Z.J. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 2000, 103(2) : 351-361.
    Deshaies R.J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell. Dev. Biol., 1999,15: 435-467. Review.
    Dohmen R. J., K. Madura, B. Bartel, A. Varshavsky The N-end rule is mediated by the UBC2 (RAD6) ubiquitin-conjugating enzyme. Proc. Natl. Acad. Sci., 1991, 88: 7351-7355.
    Dubiel W., C. Gordon Ubiquitin pathway: another link in the polyubiquitin chain. Curr. Biol.. 1999,9:R554-R557.
    Elias-Arnanz M., A. A. Firmenich and P. BerG Saccharomyces cerevisiae mutants defective in plasmid-chromosome recombination. Mol. Gen. Genet., 1996, 252: 530-538.
    Fang S., Jensen J.P., Ludwig R.L., Vousden K.H., Weissman A.M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem., 2000, 275(12) : 8945-8951.
    Featherstone C., E. L. Winnacker Aputative homologue of the human anutoantigen Ku from Saccharomyces cerevisiae. J. Biol. Chem., 1993,268:12895-12900.
    Feldman R.M., Correll C.C., Kaplan K.B., Deshaies R.J. A complex of Cdc4p, Skplp, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Siclp. Cell, 1997, 91(2) : 221-230.
    Firmenich A. A., m. Elias-Arnenz and P. Berg A novel allele of Saccharomyces cerevisiae
    
    RFA1 that is deficient in recombination and repair and suppressible by RAD52. Morl. Cell.Biol. 1995, 15: 1620-1631.
    Frankenberg-Schwager M. and D. Frankenberg DNA double-strand breaks: their repair and relationship to cell killing in yeast Int J. Radial Biol., 1990,58:569-575.
    Freudenreich C. H., S. M. Kantrow and V. A. Zakian Expansion and length-dependent fragility of CTG repeats in yeast. Science, 1998,279: 852-856.
    Game J. C. DNA double-strand breaks and the RAD50-RAD57 genes in Sacchromyces. Cancer boil. 1993,4:72-83.
    Ganesan A. K. Persistence of pyrimidine dimmers during postreplication repair in ultraviolet light-irradiated Escherichia coli K12. J. Mol. Biol., 1974, 87: 103-119.
    Geigl E. M., F. Eckardt-Schupp Repair of gamma ray-induced S1 nuclease hypersensitive sites in yest depends on homologous mitotic recombination and a RAD18-dependent function. Curr. Genet., 1991, 20: 33-37.
    Ghosh S., May M.J., Kopp E.B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol., 1998, 16: 225-260. Review.
    Giot L., R. Chanel, M. Simon, C. Facca, G. Faye Involvement of the yeast DBA plymersase in DNA repair in vivo. Genetics, 1997,146: 1239-1251.
    Glotzer M., Murray A.W., Kirschner M.W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991, 349(6305) : 132-138.
    Golub E. Il, O. V. Kovalenko, R. C. Gupta, D. C. Ward and C. M. Radding Interaction of human recombination proteins Rad51 and Rad 54. Nuclei Acids Res. 1997, 25: 4106-4110.
    Goodman M. F., B. Tippin Sloppier copier DNA polymerases involved in genome repair. Curr. Opin. Genet. Dev., 2000, 10: 162-168.
    Gordenin D. A. and M. A. Resnick Yeast ARS can reveal sources of genome instability. Mutat. Res. 1998, 400: 45-58.
    Grange T., Hecht A., Orlando V., Thomassin H. EMBO course on in vivo DNA-protein interactions Paris, Sep. 1999.
    Haas A.L., Bright P.M., Jackson V.E. Functional diversity among putative E2 isozymes in the mechanism of ubiquitin-histone ligation. J. Biol. Chem., 1988, 263(26) : 13268-13275.
    Haber J. El Mating-type gene switching in Saccharomyces cerevisiae. Trends Genet. 1992, 8; 446-452.
    Hays S. L., A. A. Firmenich and P. Berg Complex formation in yeast double-stand break repair: participation of Rad51, Rad 52, Rad 55, and Rad 57 proteins. Proc. Natl. Acad. Sci. 1995, 92: 69225-6929.
    Hendrickson E. A. Insights from model systems: cell-cycle regulation of mammalian DNA
    
    double-strand break repair. Am. J. Hum. Genet. 1997, 61: 795-800.
    Hershko A., Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998; 67:425-79. Review.
    Hershko A., Heller H., Elias S., Ciechanover A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem., 1983, 258(13) : 8206-8214.
    Hershko A., Heller H., Eytan E., Reiss Y. The protein substrate binding site of the ubiquitin-protein ligase system. J. Biol. Chem., 1986,261(26) :11992-11999.
    Hicke L. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 1999, 9: 107-12. Review.
    Hochstrasser M. Evolution and function of ubiquitin-like protein-conjugation systems. Nat. Cell. Biol., 2000, (8) : E153-157.
    Hochstrasser M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 1996, 30: 405-39. Review.
    Hofinann R.M., Pickart C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell, 1999, 96(5) : 645-653.
    Hopfner Karl-Peter, C. D. Putnam, and J. A. Tainer DNA double-strand break repair from head to tail. Curr. Opin. Struct Biol., 2002, 12: 115-122.
    Hou D., Cenciarelli C., Jensen J.P., Nguygen H.B., Weissman A.M. Activation-dependent ubiquitination of a T cell antigen receptor subunit on multiple intracellular lysines. J. Biol. Chem., 1994,269(19) : 14244-14247.
    Huang H., A. Kahana, D. E. Gottschling, L. Prakash, S. W. Liebman The ubiquitin-conjugating enzyme Rad6 (Uba2) is required for silencing in Saccharomyces cerevisiae. Mol. Cell. Biol., 1997, 17: 6693-6689.
    Huang J., and W. S. Dynan Reconstitution of the mammalian DNA double-stand break end-joining reaction reveals a requirement for an mre11/Rad50/NB S1-containing fraction. Nucleic Acids Res., 2002, 30: 667-674.
    Huang L., Kinnucan E., Wang G., Beaudenon S., Howley P.M., Huibregtse J.M., Pavletich N.P. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science, 1999, 86(5443) :1321-1326.
    Huibregtse J.M., Scheffner M., Beaudenon S., Howley P.M. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA., 1995, 92(11) : 5249.
    Jentsch S., Pyrowolakis G. Ubiquitin and its kin: how close are the family ties? Trends. Cell. Biol, 2000, 10(8) : 335-342. Review.
    
    
    Jensen J.P., Bates P.W., Yang M., Vierstra R.D., Weissman A.M. Identification of a family of closely related human ubiquitin conjugating enzymes. J. Biol Chem., 1995, 270:30408-30414.
    Jiang F, Basavappa R. Crystal structure of the cyclin-specific ubiquitin-conjugating enzyme from clam, E2-C, at 2. 0 A resolution. Biochemistry, 1999, 38(20) : 6471-6478.
    Joazeiro C.A., Weissman A.M. RING finger proteins: mediators of ubiquitin ligase activity. Cell, 2000, 102(5) : 549-552. Review.
    Joazeiro C.A., Wing S.S., Huang H., Leverson J.D., Hunter T., Liu Y.C. The tyrosine kinase negative regulator c-Cb1 as a RING-type, E2-dependent ubiquitin-protein ligase. Scienc. 1999, 286(5438) : 309-312.
    Johnson R. E., S. Prakash, L. Prakash Requirement of DNA polymerase activity of yeast Rad 30 protein for its biological function. J. Biol. Chem., 1999, 274: 15975-15977.
    Johnson R. E., S. T. Henderson, T. D. Petes, S. Prakash, M. Bankmann, L. Prakash Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase an zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell. Biol, 1992, 12:3807-3818.
    Johnson R. E., S. Prakash, L. Prakash Yeast DBA repair protein RAD5 that promotes instability of simpe repetitive sequences is a DNA-dependent ATPase. J. Biol. Chem., 1994, 169:28259-28262.
    Johnson P.R., Swanson R., Rakhilina L., Hochstrasser M. Degradation signal masking by heterodimerization of MATalpha2 and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Cell, 1998, 94(2) :217-227.
    Johnston S.C., Riddle S.M., Cohen R.E., Hill C.P. Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO J, 1999,18(14) :3 877-3 887.
    Johnzuka K. and H. Ogawa Interaction of Mre1 and Rad 50: two proteins requied for DNA repair for DNA repaired and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics, 1995, 139: 1521-1532.
    Kaiser P., Flick K., Wittenberg C., Reed S.I. Regulation of transcription by Ubiquitination without proteolysis: Cdc34 / SCF (Met30) -mediated inactivation of the transcription factor Met4. Cell, 2000, 102(3) : 303-314.
    Kao W.H., Beaudenon S.L., Talis A.L., Huibregtse J.M., Howley P.M. Human papillomavirus type 16 E6 induces self-ubiquitination of the E6AP ubiquitin-protein ligase. J. Virol., 2000, 74(14) : 6408-6417.
    Kishino T., Lalande M., Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat. Genet., 1997, 15(1) : 70-73.
    
    
    Koegl M., Hoppe T., Schlenker S., Ulrich H.D., Mayer T.U., Jentsch S. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell, 1999,96(5) : 635-644.
    Koepp D.M., Harper J.W., Elledge S.J. How the cyclin became a cyclin: regulated proteolysis in the cell cycle. Cell, 1999, 97(4) : 431-434. Review.
    Kuo M., Allis C.D. In vivo cross/linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods, 1999, 19: 425-433.
    Lahav-Baratz S., Sudakin V., Ruderman J.V., Hershko A. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase. Proc Natl Acad Sci USA., 1995, 92(20) : 9303-9307.
    Lam Y.A., Pickart C.M., Alban A., Landon M., Jamieson C., Ramage R., Mayer R.J., Layfield R. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc Natl Acad Sci USA, 2000, 97(18) : 9902-9906.
    Laney J.D., Hochstrasser M. Substrate targeting in the ubiquitin system. Cell, 1999, 97(4) : 427-430. Review.
    Larimer F. W., J. R. Perry, A. A.Hardigree The REV1 gene of Saccharomyces cerevisiae: isolation, sequence, and functional analysis. J. Bacteriol., 1989, 171:230-237.
    Lawrence C. W., J. W. Stewart, F. Sherman, R. Christensen. Specificity and frequency o fultraviolet-induced reversion of an iso-1-cytochrome c ochre mutant in radiation-sensitive strains of yeast. J. Mol. Biol, 1974, 85: 137-162.
    Lawrence C. W., R. Christensen UV-mutagenesis in radiation-sensitive strains of yeast. Genetics, 1976, 82: 207-232.
    Lawson T.G., Gronros D.L., Evans P.E., Bastien M.C., Michalewich K.M., Clark J.K., Edmonds J.H., Graber K.H., Werner J.A., Lurvey B.A., Cate J.M. Identification and characterization of a protein destruction signal in the encephalomyocarditis virus 3C protease. J. Biol. Chem., 1999,274 (14) : 9871-9880.
    Lee S, J.K. Moore, A. Holmes, K. Umezu, R.D. Kolodner, and J. E. Haber Sacharomyces Ku70, Mre/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell., 1998,94: 399-409.
    Lehmann A. R. Postreplication repair of DNA in ultra-violet-irradiated mammalian cells. J.Mol. Biol., 1972, 66: 319-337.
    Lewis L. K., J. M. Kirchner and M. A. Resnick Requirement for end-joining and checkpoint functions, but not RAD52-mediated recombination, after EcoRI endonuclease cleavage of Saccharomyces cerevisiae DNA. Mol. Cell Biol., 1998,18: 1891-1902.
    Lewis L. K., Resnick M. A. Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat Res., 2000,451: 71-89.
    Liefshitz B., R. Steinlauf. A. Friedl, F. Eckardt-Schupp, M. Kupiec Genetic interactions
    
    between mutants of the error-prone repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mutat. Res., 1998,407: 135-145.
    Liu J., T. Wu and M. Lichten The location and structure of double-strand DBA breaks induced during yeast meiosis: evidence fro a covalently linked DNA-protein intermediate. EMBO J.,1995,14: 4599-4603.
    Loda M., Cukor B., Tam S.W., Lavin P., Fiorentino M., Draetta G.F., Jessup J.M., Pagano M. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat. Med., 1997,3:231-234.
    Lorick K.L., Jensen J.P., Fang S., Ong A.M., Hatakeyama S, Weissman AM. RING fingers mediate ubiquitin-conjugating enzyme (E2) -dependent ubiquitination. Proc. Natl. Aca. Sci. USA., 1999,96(20) : 11364-11369.
    Malkova A., E. J. Ivanow and J. E. haber Double-strand break repair in the absence of RAD51 in yeast: a possible role for break induced DNA replication. Proc. Natl. Acad. Sci., 1996,93:7131-7136.
    Mastrandrea L.D., You J., Niles E.G., Pickart C.M. E2/E3-mediated assembly of lysine 29-linked polyubiquitin chains. J. Biol. Chem., 1999,274(38) : 27299-27306.
    Mathias N., Steussy C.N., Goebl M.G. An essential domain within Cdc34p is required for binding to a complex containing Cdc4p and Cdc53p in Saccharomyces cerevisiae. J. Biol. Chem., 1998, 273(7) : 4040-4045.
    Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, Rommens JM, Beaudet AL. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet., 1997;15(1) :74-77.
    Maxwell P.H., Wiesener M.S., Chang G.W., Clifford S.C., Vaux E.C., Cockman M.E., Wykoff C.C., Pugh C.W., Maher E.R., Ratcliffe P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 1999, 399(6733) : 271-275.
    McDonald J. P., A.S. Levine, R. Woodgate The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel errow-free postreplication repair mechanism. Genetics, 1997, 147: 1557-1568.
    McGrath JP, Jentsch S, Varshavsky A. UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J., 1991, 10(1) : 227-236.
    Madura K., Dohmen R.J., Varshavsky A. N-recognin/Ubc2 interactions in the N-end rule pathway. J Biol Chem. 1993,268(16) : 12046-12054.
    Milne G. T., S. Jin., K. B. Schannon an dD. T. Weaver Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell Biol., 1996, 16:4189-4198.
    
    
    Miura T., Klaus W., Gsell B., Miyamoto C., Senn H. Characterization of the binding interface between ubiquitin and class I human ubiquitin-conjugating enzyme 2b by multidimensional heteronuclear NMR spectroscopy in solution. J. Mol. Biol, 1999, 290(1) :213-228.
    Moore J. K. and J. E. Haber Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol, 1996,16:2164-2173.
    Morrison A., E. J. Miller, L. Prakash Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol. Cell. Biol, 1988, 8: 1179-1185.
    Mossessova E., Lima C.D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell, 2000, 5(5) : 865-876.
    Mowat M. R., W. J. Jachymczyk, P. J. Hastings, R. C. von Borstel Repair of gamma-ray induced DNA strand breaks in the radiation-sensitive mutant rad18-2 of Saccharomyces cerevisiae. Mol. Gen. Genet., 1983, 189:256-262.
    Nag D. K. and A. Kurst A 140bp-long palindromic sequence induces double-strand breaks during meiosis in the yeast Saccharomyces cerevisiae. Genetics, 1997,146: 835-847.
    Nelson J. R., C. W. Lawrence, D. C. Hinkle Thymine-thymine dimmer bypass by yeast DNA polymerase . Science, 1996, 272:1646-1649.
    New J. H., T. Sugiyama, E. Zattseva and S. C. Kowalczykowski Rad52 protein stimulates DNA strand exchang by Rad 51 and replication protein. Nature, 1998, 391: 407-410.
    Nuber U., Schwarz S., Kaiser P., Schneider R., Scheffner M. Cloning of human ubiquitin-conjugating enzymes UbcH6 and UbcH7 (E2-F1) and characterization of their interaction with E6-AP and RSP5. J. Biol. Chem., 1996,271(5) : 2795-2800.
    Ober G., C. Johnannes and D. Schulte-Frohlinde DBA double strand breaks induced by sparsely ionizing radiation and endonucleases critical lesions for cell death, chromosomal aberrations, mutations and oncogenic transformation. 1992, 7:3-12.
    Orlando V., Strutt H., Paro R. Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods, 1997, 11:205-214.
    Page A.M., Hieter P. The anaphase-promoting complex: new subunits and regulators. Annu. Rev. Biochem., 1999,68: 583-609. Review.
    Paulovich A. G., C. D. Armour, L. H. Hartwell The Saccharomyces cerevisiae RAD9, RAD17, RAD24, and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics, 1998,150: 75-93.
    Peters J. M., Harris J. R., Finle D. eds. Ubbiquitin and the biologz of the cell. New York; Plenum. 472pp
    
    
    Pickart C.M., Kasperek E.M., Beal R., Kim A. Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (El). J. Biol. Chem., 1994,269(10) : 7115-7123.
    Pickart C.M. Ubiquitin enters the new millennium. Mol. Cell., 2001; 8(3) : 499-504. Review.
    Prakash L. Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad 6, rad 18, rev3, and rad52 mutations, mol. Gen. Genet.. 1981, 184: 471-478.
    Prakash L. Lack of chemically-induced mutation in repair-deficient mutants of yest. Genetics, 1974,78: 1101-1118.
    Prakash S., P. Sung, L. Prakash DNA repair genes and proteins of Saccharomyces cerevisiae. Ann. Rev. Genet., 1993, 27: 33-70.
    Prakash L., S. Prakash Isolation and characterization of MMS-sensitive mutants of Saccharomyces cerevisiae. Genetics, 1977, 86: 33-35.
    Rajapurohitam V., Morales C.R., El-Alfy M, Lefrancois S., Bedard N., Wing S.S. Activation of a UBC4-dependent pathway of ubiquitin conjugation during postnatal development of the rat testis. Dev. Biol, 1999,212(1) : 217-228.
    Rajpal D. K., X. Wu, Z. Wang Alteration of ultraviolet-induced mutagensis in yeast through molecular modulation of the REV3 and Rev7 gene expression. Mutat. Res., 2000, 461: 133-143.
    Ramsden D. A., and M. Genllert Formation and resolution of double-strand break intermediates in V(D)J rearrangement. Genes. Dev., 1995, 9: 2409-2420.
    Rattray A. J. and L. S. Symington Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics, 1995,139: 45-56.
    Resnick m. A. The repair of double-strand breaks in DNA: a model involving recombination. J. Theor Biol. 1976, 59: 97-106.
    Resnick M. A., and P. Martin The repair of double-strand breaks in the nuclear DBA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet., 1976,143: 119-129.
    Robzyk K., J. Recht. M. A. Osley Rad6-dependent ubiquitination of histone H2B in yeast. Science. 2000, 287: 501-504.
    Rock K.L., Goldberg A.L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 1999, 17: 739-779. Review.
    Roush A. A., M. Suarez, E.C. Friedberg, M. Radman, W. Siede Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolg confers UV radiation sensitivity and altered mutability. Mol. Gen. Genet., 1998, 257: 686-692.
    Rupp W. D., C. E. Wilde, D. L. Reno, P. Howard-Falandrs Exchanges between DNA strands
    
    in ultraviolet-irradiated. Escherichia coli. J. Mori. Biol, 1971,61:25-44.
    Saigoh K., Wang Y.L., Suh J.G., Yamanishi T., Sakai Y., Kiyosawa H., Harada T., Ichihara N., Wakana S., Kikuchi T., Wada K. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nat. Genet., 1999, 23(1) : 47-51.
    Sarasin A. R., P.C. Hanawalt Replication of ultraviolet-irradiated simian virus 40 in monkey kidney cells. J. Mol. Biol., 1980, 138: 229-319.
    Schar p., G. Herrmann, G. Daly and T. Lindahl Anewly identified DBA ligase of SAccharomyces cerevisiae involved in RAD52-independent repair of DBA double-strand breaks. Genes Dev., 1997, 11: 1912-1924.
    Scheffner M., Werness B.A., Huibregtse J.M., Levine A.J., Howley P.M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell, 1990,63(6) : 1129-1136.
    Scherer D.C., Brockman J.A., Chen Z., Maniatis T., Ballard D.W. Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci USA., 1995, 92(24) : 11259-11263.
    Schiestl R. H., J. Zhu and T. D. Petes Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol., 1994, 14: 4493-4500.
    Shakibai N., V. Kumar, S. Eisenberg The Ku-like protein from Saccharomyces cerevisiae is required in vitro for the assembly of a stable multiprotein complex at a eukaryotic origin of replication. Proc. Natl. Acad. Sci. 1996, 93: 11569-11574.
    Shen Z., P. E. Pardington-Purtymun, J. c. Comeaux, PI. K. Moyzis and D. J. Chen Associations of UBE21 with RAD51, UBL1, p53, an dRAD51 proteins in a yeast two-hybird system. Genomics, Genomics, 1996b, 367: 183-186.
    Shimura H., Hattori N., Kubo S., Mizuno Y., Asakawa S., Minoshima S., Shimizu N., Iwai K., Chiba T., Tanaka K., Suzuki T. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet., 2000,25(3) : 302-305.
    Shinahara A., and T. Ogawa Stimulation by Rad 52 of yeast Rad 51-mediated recombination. Nature, 1998, 391: 404-407.
    Skowyra D., Craig K.L., Tyers M., Elledge S.J., Harper J.W. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell, 1997, 91(2) : 209-219.
    Song A., Wang Q., Goebl M.G., Harrington M.A. Phosphorylation of nuclear MyoD is required for its rapid degradation. Mol. Cell. Biol., 1998, 18(9) :4994-4999.
    Spence J, Gali RR, Dittmar G, Sherman F, Karin M, Finley D. Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell, 2000, 102(1) : 67-76.
    
    
    Spence J., Sadis S., Haas A.L., Finley D. A. ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell Biol, 1995, 15(3) : 1265-273.
    Spence J., S. Sadis, A. L. Haas, D. Finley Aubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cel. Boil, 1995, 15: 1265-1273.
    Sung P., E. Berleth, C. Pickart, S. Prakash, L. Prakash Yeast RAD6 encoded ubiquitin-conjugating enzyme mediates protein degradation dependent on hte N-end-recognizing E3 enzyme. EMBO J., 1991,10:2187-2193.
    Sung P., S. Prakash, L. Prakash Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugation activity and its various biological functions. Proc. Natel. Acad. Sci., 1990, 87: 2695-2699.
    Sung P., S. Prakash, L. Prakash TheRAD6 protein of saccaromyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes Dev., 1988,2:1476-1485.
    Staub O., Gautschi I., Ishikawa T., Breitschopf K., Ciechanover A., Schild L., Rotin D. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination.EMBO J., 1997,16(21) :6325-6336.
    Swanson R., Hochstrasser M. A viable ubiquitin-activating enzyme mutant for evaluating ubiquitin system function in Saccharomyces cerevisiae. FEBS Lett., 2000, 477(3) : 193-198.
    Szostak J. W., T. L. Orr-Weaver, R. J. Rothstein and F. W. Stahl The break repair model for recombination. Cell, 1983, 33: 25-35.
    Thaler D.S., F.W. Stahl DNA double-chain breaks in recombination of phage lambda and of yeast. Annu. Rev. Genet, 1998,22: 169-197.
    Tong H., Hateboer G., Perrakis A., Bernards R., Sixma T.K. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem., 1997, 272(34) : 21381-21387.
    Torres-Ramos C. A., B. L. Yoder, P. M. Bergers, S. Prakash, L. Prakash Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc. Natl. Acad. Sci., 1996, 93: 9676-9681.
    Tran H. T., N. P. Degtyareva, N. N. Koloteva, A. Sugino, H. Masumoto et al. Replicationslippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes. Mori. Cell. Biol., 1995, 15: 5607-5617.
    Treier M., Staszewski L.M., Bohmann D. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell, 1994, 78(5) : 787-798.
    Tsukamoto Y., J. Kato and H. Ikeda, Budding yeast Rad 50, mre11, Xrs2, and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid. Mol. Gen.
    
    Genet. 1997b, 255: 5343-5347.
    Turner G.C., Du F., Varshavsky A. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature, 2000,405(6786) :579-583.
    Ulrich H. D., S. Jentsch Two RING finger proteins mediated cooperation between ubiquitin-conjugating enzymes in DBA repair. EMBO J., 2000,19: 3388-3397.
    van Leeuwen F.W., de Kleijn D.P., van den Hurk H.H., Neubauer A., Sonnemans M.A., Sluijs JA., Koycu S., Ramdjielal R.D., Salehi A., Martens G.J., Grosveld F.G., Peter J., Burbach H., Hol E.M. Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science, 1998, 279(5348) : 242-247.
    Walker G. SOS-regulated proteins in translsional DNA synthesis and mutagenesis. Trends Biochem. Sci., 1995, 20: 416-420.
    Waterman H., Levkowitz G., Alroy I., Yarden Y.. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor. J. Biol. Chem., 1999, 274(32) : 22151-221514.
    Watkins J.F., Sung P., Prakash S., Prakash L. The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation. Genes. Dev., 1993, 7(2) : 250-261.
    Wefes I, Mastrandrea LD, Haldeman M, Koury ST, Tamburlin J, Pickart CM, Finley D. Induction of ubiquitin-conjugating enzymes during terminal erythroid differentiation. Proc. Natl. Acad. Sci. USA, 1995,92(11) : 4982-4986.
    Whitby FG, Xia G, Pickart CM, Hill CP. Crystal structure of the human ubiquitin-like protein NEDD8 and interactions with ubiquitin pathway enzymes. J. Biol. Chem., 1998, 273(52) : 34983-34991.
    Wilkinson K.D., Smith S.E., O'Connor L., Sternberg E., Taggart J.J., Berges D.A., Butt T. A specific inhibitor of the ubiquitin activating enzyme: synthesis and characterization of adenosyl-phospho-ubiquitinol, a nonhydrolyzable ubiquitin adenylate analogue. Biochemistry, 1990, 29(32) : 7373-7380.
    Worthylake D.K., Prakash S., Prakash L, Hill C.P. Crystal structure of the Saccharomyces cerevisiae ubiquitin-conjugating enzyme Rad6 at 2. 6 A resolution. J. Biol. Chem., 1998, 273(11) : 6271-6276.
    Xiao W., B. L. Chow, T. Gontanie, L. Ma, S. Bacchetti, T. Hryciw, S. Broomfireld Genetic interactions between error-prone and error-free postreplication repair pathways in Saccharomyces cerevisiae. Mutat. Res., 1999,435:1-11.
    Xiao Wei et al.. Genetics 2000,155:1633-1641.
    Xiao Wei et al, Mut Res 2001,486:167-184.
    Xie Y., Varshavsky A. The E2-E3 interaction in the N-end rule pathway: the RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J., 1999,
    
    18(23) : 6832-6844. Yamanaka A., Hatakeyama S., Kominami K., Kitagawa M, Matsumoto M, Nakayama K. Cell cycle-dependent expression of mammalian E2-C regulated by the anaphase-promoting complex/cyclosome. Mol. Biol. Cell., 2000, 11(8) : 2821-2831.
    Yamano H., Tsurumi C., Gannon J., Hunt T. The role of the destruction box and its neighbouring lysine residues in cyclin B for anaphase ubiquitin-dependent proteolysis in fission yeast: defining the D-box receptor. EMBOJ., 1998, 17(19) : 5670-5678.
    Yaron A., Hatzubai A., Davis M., Lavon I., Amit S., Manning A.M., Andersen J.S., Mann M., Mercurio F., Ben-Neriah Y. Identification of the receptor component of the IkappaBalpha-ubiquitin ligase. Nature, 1998, 396(6711) : 590-594.
    Yu H., King R.W., Peters J.M., Kirschner M.W. Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation. Curr. Biol., 1996, 6(4) : 455-466.
    Zacksenhaus E., Sheinin R. Molecular cloning, primary structure and expression of the human X linked A1S9 gene cDNA which complements the ts A1S9 mouse L cell defect in DNA replication. EMBOJ., 1990, 9: 2923-2929.
    Zheng N., Wang P., Jeffrey P.D., Pavletich N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell, 2000, 102(4) :533-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700