MBD1/mdr1信号转录调控胰腺癌多药耐药性的实验研究及其临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在胰腺癌的综合治疗过程中,化疗效果始终不尽人意。多药耐药性MDR(multidrug resistance)及mdr1基因(multidrug resistance gene 1)被认为是临床化疗失败的主要原因之一。检测胰腺癌中mdr1基因的甲基化改变并试图应用甲基化CpG结合域蛋白1(methyl-CpG binding domain protein 1, MBD1)进行mdr1基因的甲基化转录调控,从而达到改变胰腺癌多药耐药性的目的。
     实验研究mdr1基因5′端的主要转录区域上游具有启动子活性,富有CAAT-盒和GC-盒,缺乏TATA-盒,其中-110GC盒和-50GC盒分别是转录抑制子和增强子的结合位点,结合位点的甲基化程度与肿瘤多药耐药基因表达有着密切的联系。通过荧光定量聚合酶链反应(FQ-PCR)技术和甲基化特异性PCR(MSP)方法检测mdr1基因在胰腺癌肿瘤组织细胞中的表达及其甲基化水平,发现胰腺癌肿瘤组织细胞中mdr1mRNA与P-gp的表达存在显著相关性,同时mdr1基因转录区域的-110GC盒、-50GC盒结合位点甲基化程度与mdr1mRNA表达也存在显著相关性。所以我们认为mdr1基因转录区域结合位点甲基化可能是一种影响基因表达的重要机制,DNA甲基化状态改变可能是调控肿瘤多药耐药性的重要手段之一。
     我们利用基因芯片技术分析胰腺癌基因表达谱时,发现在差异表达的基因中,多个甲基化相关基因间的异常转录调控机制有重要的研究价值。其中甲基化结合域蛋白MBD1基因在胰腺癌中表达明显上调。作为一个重要的转录调控因子,胰腺癌中MBD1介导的甲基化转录调控作用可能是造成多药耐药基因转录表达增加/下降,以致胰腺癌多药耐药性发生改变的重要原因。
     BxPC-3为原发癌细胞株,且其原始mdr1基因和MBD1基因表达程度均高,因此选择BxPC-3细胞株作为进一步的研究对象。我们利用RNA干扰技术,设计合成了针对MBD1基因的siRNAs,成功构建MBD1siRNAs真核表达质粒Rotro Super-MBD1siRNAs,并成功载入质粒。采用脂质体介导的方法将MBD1siRNAs表达质粒转染胰腺癌细胞系BxPC-3,成功下调了BxPC-3细胞株MBD1基因表达水平。应用免疫组化定量分析法、FQ-PCR技术、MSP方法及MTT比色法检测BxPC-3细胞在调控前后mdr1/P-gp在蛋白水平、基因表达水平、基因甲基化程度以及肿瘤细胞增殖能力变化。研究结果显示MBD1siRNA表达质粒能显著抑制胰腺癌细胞BxPC-3中MBD1的表达,同时P-gp、mdr1基因表达随之下调,转录区域结合位点甲基化表达呈上调,细胞株对于药物的耐药性受到相应的抑制,即药物敏感性提高。
     临床研究应用免疫组织化学法和FQ-PCR技术、MSP方法分别从蛋白和基因水平检测胰腺癌临床组织标本和对应外周血标本中的mdr1基因的表达及转录区域结合位点甲基化水平。研究外周血有核细胞与肿瘤组织细胞的多药耐药基因及其甲基化表达的相关性及一致性。研究结果表明,外周血与肿瘤组织细胞中的mdr1基因及其甲基化表达存在显著的相关性及一致性。推想临床上可根据外周血测定mdr1基因及其甲基化表达水平来预测胰腺癌患者化疗前后多药耐药性的变化及影响。
     结论:研究结果表明,胰腺癌中P-gp与mdr1 mRNA表达呈显著一致,与mdr1基因转录区域结合位点甲基化表达程度也呈显著相关,提示mdr1基因转录区域结合位点甲基化对于胰腺癌的多药耐药性有着重要的意义。当胰腺癌细胞株BxPC-3通过脂质体介导方法转染MBD1siRNAs表达质粒后,MBD1的表达受到有效抑制,改变了mdr1/P-gp在蛋白水平、mRNA水平和基因甲基化的表达,影响了肿瘤细胞对药物的耐药能力,间接调控了胰腺癌的多药耐药性;外周血与肿瘤组织细胞中mdr1基因及其甲基化表达存在相关性及一致性。临床上可根据外周血测定mdr1基因及其甲基化变化程度来预测胰腺癌患者化疗前后多药耐药性的变化,从而指导临床。
In case of pancreatic cancer's combined therapy, the chemo-therapeutic effectwas not satisfactory all the time. We know that MDR (multidrug resistance) and mdr1gene (multidrug resistance gene 1) were the main cause of clinical chemotherapyfailure. In order to alter the multidrug resistance of pancreatic cancer, we tried todetect the alteration of mdr1 gene methylation in pancreatic cancer and to control thetranscription of methylation by using action of the MBD1(methyl-CpG bindingdomain protein 1)
     Experimental study: The upper stream in the main transcription domain of mdr15'-flanking sequence had promoter activity. It was rich of CAAT-box, C-C-box andlack of TATA-box. The -110GC-box and -50GC-box among them were methylatedbinding sites and were bind of transcriptional repressor and enhanser respectively. Wedetected mdr1 and its transcriptional domain binding site methylated expression levelfrom pancreatic cancer tissues by the techniques of FQ-PCR (Real-time fluorescentquantitative PCR)and MSP (methylation—specific PCR). The results showed thatexpressions of mdr1 and P-gp were closely correlated, the methylated expressions of-110GC-box and -50GC-box were correlated significantly also. So we thought thatDNA's methylation was one kind of important mechanism, to influence the geneticexpression. We also supposed that altering the status of DNA's methylation could bethe one of important method to regulate the tumor's multidrug resistance.
     By using the technique of cDNA microarray to analyze the pancreatic cancergenetic expression spectra, we found that the abnormal transcription controlmechanism between numerous methylation related gene took very important role inthe genetic expression difference. Among them, the expression of MBD1 wasobviously up-regulated in pancreatic cancer. As a important transcriptional controlfactor, MBD1 mediated methylated transcription control in pancreatic cancer might bethe related reason that made the expression and transcription of multidrug resistancegene up/down, and changed the pancreatic cancer's multidrug resistance.
     BxPC-3 was cultured from pancreatic cancer in situ, and the expression of mdr1 and MBD1 were higher. So BxPC-3 was chosen as a further research platform. ByRNA interference (RNAi) technology, the siRNA was designed and synthesied whichaimed at the MBD1 gene. MBD1 siRNAs eukaryotic expression vector RotroSuper-MBD 1 was constructed and had been successfully integrated into the plasmid.MBD1 siRNAs vector was transfected into BxPC-3 pancreatic cancer cell byliposome and had regulated the level of MBD1 gene expression down ward.Techniques of quantitative immunohistochemical analysis, FQ-PCR, MSP and MTTcolormetric assay was used to detect the difference of mdr1/P-gp protein level, geneticexpression level, genetic methylation level and tumour cell mukiplication activitybefore and after transcription control. It was demonstrated that MBD 1 siRNAs couldsignificantly suppress the expression of MBD 1 mRNA in BxPC-3, which induced thedown-regulation of mdr1 mRNA and P-gp and up-regulation of -110GC-box and-50GC-box's methylation. Among those changes, the MDR (multidrug resistance) ofBxPC-3 were also downgraded and drug sensitivity were upgraded.
     Clinical study: Utilizing methods including quantitative immunohistochemicalanalysis, FQ-PCR and MSP to detect the protein, genetic expression and methylationlevel in pancreatic carcinoma tissue sample and peripheral blood sample accordingly.After investigation, it was proved that the revariation of expression and methylation inmultidrug resistance gene were dependable concordant between tumor tissue sampleand blood sample of pancreatic carcinoma patients. We could predict the effect andchange of multidrug resistance in pancreatic cancer especially after chemotherapythrough the detection of expression and methylation of multidrug resistance genemerely from peripheral blood sample.
     Conclusion: Our experimental result indicated that the expressions of mdr1 andP-gp were closely correlated, the methylated expressions of -110GC-box and-50GC-box were correlated significantly also. So the methylation of mdr1 played avery important role in the process of pancreatic cancer's multidrug resistance. Theexpression of mdr1 and MBD1 in BxPC-3 pancreatic cancer cell were high. Theexpression of MBD1 was down-regulated by transfecting MBD1 siRNAs vector intoBxPC-3 mediated with liposome. The level of mdr1/P-gp protein, genetic expression,genetic methylation and tumour cell multiplication activity had been altered, and eventually also changed pancreatic cancer's multidrug resistance indirectly. Thevariation of expression and methylation in multidrug resistance gene were dependableconcordant between tumor tissue sample and blood sample of pancreatic carcinomapatients. We could predict the effect and change of multidrug resistance in pancreaticcancer especially after chemotherapy through the detection of expression andmethylation of multidrug resistance gene merely from peripheral blood sample.
引文
1. Janes RH Jr, Niederhuber JE, Chmiel JS, et al. Pattern of care for pancreatic cancer: results of a survey by the commission on cancer. Ann Surg, 1996;223-261.
    2. J Simon RB, John PN, et al. Adjuvant chemotherapy in pancreatic cancer. Int J Pancreatol, 1997;21:59-63.
    3. Sandberg AA, Bachman PL, Andersson R. Results of adjuvant therapy in resected pancreatic cancer. Int J Pancreatol, 1997; 21:31-38
    4. Schmutte C,Jones PA.Involvement of DNA methylation in human carcino genesis. Biol Chem, 1998;379:377~388.
    5. Cornwell MM, SmithDE. SP1 activates the MDR1 promoter through one of two distinct G2 rich regions that modulate promote ractivity. J Biol Chem, 1993;268:19505-19511
    6. Ando T, Nishimura M, Oka Y. Decitabine (5-Aza-2'-deoxycytidine) decreased DNA methylation and expression of MDR1 gene in K562/ADM cells. Leukemia, 2000; 14:1915-1920
    7. Huing H, Jeppesen P, Bird A. Active repression of methylated genes by the chromosomal protein MBD1. Molecular and Cellular Bio, 2000;1394-1406.
    8.虞先浚、龙江、傅德良等.利用cDNA微列阵技术分析胰腺癌相关基因表达谱.中华实验外科杂志,2002;19(4):302-303.
    9. Perker R, Wallner J, Geissler K, etal. MDR1 gene expression and treatment out come in acute myeloid leukemia. J.Natl.Caneer Inst, 1991;83:708-712.
    10. Cordon-Cardo C,O'Brien JP, Boccia J, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem, 1990;38(9): 1277-1287
    11.陈旭,李建党,程长铭,等.P-糖蛋白与ER、PR在胰腺癌中的异常表达与临床意义.中国现代医学杂志,1999;9(7):20-23
    12. Greenway BA. Carcinoma of the exocrine pancreas: a sex hormone responsive tumour? Br J Surg, 1987;74(6):441-442.
    13. Zhao Lu, Jorg Kleeff, Shailesh Shrikhande, et al. Expression of the Multidrug-Resistance 1(MDR1)gene and prognosis in human pancreatic cancer. Pancreas, 2000;21(3):240-247
    14. Rosemurgy AS,Serafini FM. New directions in systemic therapy of pancreatic cancer. Cancer Control,2000;7(5): 437-451
    15. Donghui Li,Keping Xie,Robert Wolff,et al. Pancreatic cancer. Lancet,2004;363(9414): 1049-1057
    16. EI-Raeys BF,Philip PA. A review of systemic therapy for advanced pancreatic cancer. Clin Adv Hematol Oncol,2003; 1(7):430-434
    17. Poland J,Schadendorf D,Lage H,et al. Study of therapy resistance in cancer cells with functional proteome analysis. Clin Chem Lab Med,2002;40(3):221-234
    18. Biedler JI. Richm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross resistance, radioautographic, and cytogenetic studies. Cancer Res, 1970;30:1174-1182.
    19. Ambudkar SV,Kimchi-Sarfaty C,Sauna ZE,et al. P-glycoprotein: from genomics to mechanism. Oncogene,2003;22(47):7468-7485
    20. Lee CH. Reversing agents for ATP-binding cassette (ABC) transporters: application in modulating multidrug resistance (MDR). Curr Med Chem Anti-Canc Agents,2004;4(1):43-52
    21. Valera ET,Scrideli CA,Queiroz RG,et al. Multiple drug resistance protein (MDR-1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) gene expression in childhood acute lymphoblastic leukemia. Sao Paulo Med J,2004; 122(4): 166-171
    22. Plasschaert SL,Van Der Kolk DM,De Bont ES,et al. Breast cancer resistance protein (BCRP) in acute leukemia Leuk. Lymphoma,2002;45(4):649-654.
    23. Fojo T, Bates S. Strategies for reversing drug resistance. Oncogene, 2003;22(47):7512-7523
    24. Takara K,Sakaeda T,Okumura K. Carvedilol: a new candidate for reversal of MDR1/P-glycoprotein-mediated multidrug resistance. Anticancer Drugs. 2004;15(4):303-309
    25. Tsuruo T. Molecular cancer therapeutics: recent progress and targets in drug resistance. Intern Med,2003;42(3):237-243
    26. Juliano RL,Ling V. A surface glycoprotein modulating drug permeability in Chinese hamsterovary cell mutants. Biochem Biophys Acta,1976;455(1): 152-162
    27. Roninson IB,Chin JE,Choi KG,et al. Isolation of human mdr DNA sequences amplified in multidrug-resistance KB carcinoma cells. Proc Natl Acad Sci USA, 1986;83(12):4538-4542
    28. Scotto KW, Biedler JL,Melera PW. Amplification and expression of genes associated with multidrug resistance in mammalian cells. Science, 1986;232(4751): 751-755
    29. Gros P, Neriah YB,Groop JM, et al. Isolation and characterization of a complementary DNA that confers multidrug resistance. Nature, 1986;323(6090):728-731
    30. Dean M, Rzhetsky A, Allikmets R. The human ATP-Binding Cassette(ABC) transporter superfamily. Genome Research,2001; 11 (12): 1156-1166
    31. Smyth MJ,Krasovskis E, Sutton VR, et al. The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Prot Natl Acad Sci, 1998;95(12):7024-7029
    32.韩军,许良中,朱雄增.多药耐药基因产物P.糖蛋白在正常人体组织中的分布和细胞定位.上海医科大学学报,1997;24(2):94-96
    33.常新忠,王涛,王占民.耐药相关蛋白P糖蛋白、多药耐药相关蛋白及谷胱甘肽S转移酶π在胰腺癌中的表达及其意义.中华普通外科杂志,2003;18(6):378-379
    34. Suwa H, Ohshio G; Arao S, et al. Im muno histochemical localization of P glycoprotein and expression of the mulitidrug resistance 1 gene in human pancreatic cancer: relevance to indicator of better prognosis. Jpn J Cancer Res. 1996;87:641-649
    35. I u Z, kleeff J, Shrikhande S, et al. Expression of the multidrug resistance 1 (M DR 1) gene and prognosis in human pancreatic cancer. Pancreas. 2000;21:240-247.
    36. Serman A, Vlahovic M, Serman L, et al. DNA methylation as a regulatory mechanism for gene expression in mammals. Coll Antropol, 2006;30(3):665-671
    37. Campanero MR, Armstrong MI, Flemington EK, et al. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci, 2000; 97:6481-6486
    38. Ambudkar SV, Dey S, Hccy CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug trans-porter. Annu Rev Pharmacol Toxicol, 1999;39:361-367
    39. Nokiham H, Yano S, Nokiham Y, et al. A new quinoline derivative MS-209 reserves multidrug resistance and inhibits mulriorgan metastases by P-glycoprotein expressing human small cell lung cancer cells. Jpn J Cancer Res, 2001;92:785-787
    40. Hilary T, Helen MC. Overcoming Multidrug Resistance in Cancer: An Update on the Clinical Strategy of Inhibiting P-Glycoprotein. Cancer Control , 2003;10(2):159-163
    41. Yano S. Hanibuehi M, Nishioka Y, et al. Comined therapy with anti -P--glycoprotein antibody and macrophagea colony stimulating factor gene transduction for mulriorgan metastases of multidrug resistant human small cell lung cancer in NK cell depletes SCID mice. Im J Cancer, 1999;82:105-108
    42. Nokiham H, Nishioka Y, Yano S, et al. Monocyte chemoattractant protein-1 gene modigication of multidrug resistant human lung cancer enhances antimatastatic effect of therapy with anti-P-glycoprotein antibody in SCID mice. Int J Cancer, 1999;80:773-776
    43. Kurreck J. Antisence technologies. Eur J Biochem,2003;270(8): 1628-1644
    44. Schutte-M, Hruban-RH, Geradts-J, et al. Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas Cancer Research 1997;57:3126-3130
    45. Bouvet-M, Bold-RJ, Lee-J, Evans-DB, et al. Adenovirus-mediated wild-type p53 tumor suppressor gene therapy induces apoptosis and suppresses growth of human pancreatic cancer. Ann surg-oncol, 1998;5(8):681-688
    46. Hwang-RF, Gordon-EM, Anderson-WF, et al. Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wild-type P53 gene. Surgery, 1998;124(2):143-150
    47. Joshi-US, Dergham-ST, Chen-YQ, et al. Inhibition of pancreatic tumor cell growth in culture by P21-WAF1 recombinant adenovirus. Pancreas 1998;16(2):107-113
    48. Simeone DM, Cascarelli A, Logsdon CD. Adenoviral-mediated gene transfer of a constitutively active retinoblastoma gene inhibits human pancreatic carcinoma cells. Oncogene, 1998; 16:1593-1602
    49. Grau-AM, Zhang-L, Wang-WX, et al. Induction of p21wafl expression and growth inhibitions by tramsforming growth factorβ involve the tumor suppressor gene DPC4 in human pancreatic adenocarcinoma cells. Cancer Research, 1997;57:3929-3934
    50. Cerutti-J, Trapasso-F, BattagLia-C, et al. Block of c-myc expression by antisense oligonucleotides inhibits proliferation of human thyroid carcinoma cell lines. Clin Cancer Research, 1996;2:119
    51. Kita-K-I, Satio-S, Morioka-CY, et al. Growth inhibition of human pancreatic cancer cell lines by anti-sense oligonucleoltides specific to mutated K-ras genes. Int-J-Cancer, 1999;80(4):553-558
    52. Bergmann-U, Funatomi-H, Yokoyama-m, et al. Insulin-like growth factor I overexpression in human pancreatic cancer:Evedence for autocrine and paracrine roles. Cancer Research. 1995;55:2007-2011
    53. Cheng JQ, Ruggeri B, Klein WM, et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA, 1996;93:3636-3641
    54. Rosenfeld ME, Vicker SM, Raben D, et al. Pancreatic carcinoma cell killing via adenoviral mediated delivery of the herps simplex virus thymidine kinase gene. Ann Surg. 1997;225:609-620
    55. Carrio-M, Romagosa-A, Mercade-E, et al. Enhanced pancreatic tumor regression by a combination of adenovirus and retrovirus-mediated delvery of the herps simplex virus thymidine kinase gene. Gene-Ther 1999;6(4):547-553
    56. Ohashi-M, Kanai-F, Tanaka-T, et al. In vivo adenovirus-mediated prodrug gene therapy for carcinoembryonic antigen-producing pancreatic cancer. Jpn-J-Cancer 1998;89(4):457-462
    57. Evoy D, Hirschowitz EA, Naama HA, et al. In vivo adenoviral-mediated gene transfer in the treatment of pancreatic cancer. J Surg Res. 1997;69:226-231
    58. McNeish-IA, Green-NK, GriLLigan-MG, et al. Virus directed enzyme prodrug therapy for ovarian and pancreatic cancer using retriovirally delivered E.Coli nitroreductase and CB1954. GENE-THER. 1998;5(8): 1061-1069
    59. Itoh Y, Koshita Y, Takahashi M, et al. Characterization of tumor-necrosis-factor-gene-transduced tumor in filtrating lymphocytes from ascific fluid of cancer patients:analysis of cytolytic activity growth rate adhesion molecule expression and cytokine production. Cancer Immunol Immunotherapy. 1995;40:95-102
    60. Sato T, Yamauchi N, Sasaki H, et al. An apoptosis-inducing gene threapy for pancreatic cancer with a combination of 55-Kda tumor necrosis factor(TNF) receptor gene transfection and mutein TNF administration. Cancer Res. 1998;58:1677-1683
    61. Kimura-M, Tafawa-M, Takenaga-K, et al. Loss of tumorigenicity of human pancreatic carcinoma cells engineered to produce interleukin-2 or interleukin-4 in nude mice:a potentiality for cancer gene therapy. Cancer-Lett. 1998;128(1):47-53
    62. Yoshida-Y, Tasaki-K, Kimura-M, et al. Antitumor effect of human pancreatic cancer cells transduced with cytokine genes which activate Thl help T cells. Antt Cancer-Res. 1998;18(1):333-335
    63. PeoLinski GR, Tsung K, Meko JB, et al. In vivo gene therapy of a murine panceas tumor with recombinant vaccinia virus encoding human interleukin-1 beta. Surgery. 1995;118:185-191
    64. Rochaix-P, DeLesque-N, Esteve-J-P, et al. Gene therapy for pancreatic carcinoma: local and distant antitumor effects after somastatin receptor sst2 gene transfer. Hum-Gene-Ther. 1999:10(6):995-1008
    65. Wagner-M, Lopes-ME, Cahan-M, et al. Suppression of fibroblast growth factor receptor signaling inhibits pancreatic cancer growth in vivtro and in vivo. Gastroenterology. 1998;114:798-807
    66. Kaiser-A, Herbst-H, Fisher-G; et al. Retinoic acid receptor beta regulates growth and differentiation in human pancreatic carcinoma cells. Gastroenterology. 1997; 113:920-929
    67. SeufferLein-T, Lint-JV, Lipty-S, et al. Transforming growth factor-α activate Ha-Ras in human pancreatic cancer cells with Ki-ras mutations. GastroenteroLogy. 1999; 116:1441-1452
    68. Kusaba H, Nakaya M, Harada T, et al. Maintenance of hypomethylation status and preferential expression of exogenous human MDR1/PGY1 gene in mouse L cells by YAC mediatedt ransfer. Somat Cell Mol Genett, 1997;23(4):259-274
    69. David GL, Yegnasubramanian S, Kumar A, et al. MDR1 promoter hypermethylation in MCF-7 human breast cancer cells: changes in chromatin structure induced by treatment with 5-Aza-cytidine. Cancer Biol Ther, 2004;3 (6):540-548
    70.朱燕,武淑兰,卜定方,等.恶性血液病患者mdr1启动子区甲基化状态及其 与表达的关系.中国实验血液学杂志,2004;12(1):6-10
    71. Cameron EE, Bachman KE, Myohanen S. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet, 1999; 21(1): 103-107
    72. Cross SH, Meehan RR, Nan X, et al. Component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nat. Genet, 1997; 16(8): 256-259
    73. Huing H, Jeppesen P, Bird A. Active repression of methylated genes by the chromosomal protein MBD1. Molecular and Cellular Bio, 2000; 12(4), 1394-1406
    74.傅德良,龙江,金忱,等.利用基因芯片和RT-PCR检测MBDl在胰腺癌中的表达.外科理论与实践,2005;10(3):241-244
    75. Ahujia N, Agingand. DNA methylation in colorectal mucosa and cancer. Cancer Res, 1997; 58(23): 3370-3374.
    76. Wheeler JM, Beck NE, Kim HC, et al. Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of Hmlh1. Proc Natl Acad Sci, 1999, 96(18): 10296-10301.
    77. Ng HH, Bird A. DNA methylation and chromatin modification. Curr Opin Genet Dev, 1999; 9(2): 158-163.
    78. Costello JF, Fruhwald MC. Aberrant CpG island methylation has non random and tumour type specific patterns. Nat Genet, 2000; 24(2): 132-138.
    79. Guru T. A silence that speaks volume. Nature, 2000; 404: 804-808.
    80. Elbashir SM, Lendeckel W, Tuschi T. RNA interference is mediated by 21-and 22-nucleotides RNAs. Genes, 2001; 13(2): 188-200.
    81. Guo S, Kempheus KJ. A gene required for establls - hing polarity in C elegans embryos encodes a putativeSer/Thr kinase that is asymmetrically distributed. Cell, 1995; 81 (4): 611-620.
    82. Fire A, Xu S, Mello CC, et al. Potent and specific geneticinterference by double-stranded RNA in caenorhabditis elegans. Nature, 1998; 391: 806-811.
    83. Hammond S, Bernstein E, Hannon G, et al. An RNA - directed nuclease mediates post-transcriptional gene silencing in drosophila cells. 2000; 404 (6775): 293-298
    84. Sayda M, Elbashir, Winfried, et al. Duplexes of 21 -uncleotideRNAs mediate RNA interference in culturedmammalian cells. Nature, 2001; 411-494.
    85. Hutvagner G, Zamore PD. RNAi: nature abhors a double- strand. Curr Opin Genetics and Development, 2002,12:225-232
    86. Sharp PA, RNA Interferenc. 2001.Genes Dev, 2001,15:485-490
    87. Lipardi C, Wei Q, Paterson BM. RNAi as randon, degradative PCR:siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell, 2001,107:297-307
    88. Holen T, Amarzguioui M, Prydz H, et al. Positional effects of short interferning RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res, 2002;308:1757-1766.
    89. Miyagishi M, Taira K. U6-promoter-driven siRNAs with four uridine 3'overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnol, 2002;20:497-500.
    90. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science, 2002;296:550-553.
    91. Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov, 2002; 1 (4):287-299
    92. Marks PA, Rifkind RA, Richon VM, et al. Histonedeacetylase and cancer: cause and therapies. Nat Rev Cancer, 2001; 1 (3): 194-202
    93. Varghese S, Gupta D, Baran T, et al. Alkyl-substituted polyaminohydroxamic acids: a novel class of targeted histone deacetylase inhibitors. J Med Chem, 2005;48 (20):6350-6365
    94. Karoly T, Mary M V, Nancy S, et al. amer J Pathol,1994;144(2):227
    95. Soeni Y, Virkajarvi N, Raunio H, et al. J Clin pathol,1996;49(6):470
    96. Karoly Tm Mary M V, Nanct S, et al. amer J Pathol,1996;149(3):385
    97. Charpin C P, Vielh D, Devictor B L, et al. J Nat Caner inst,1994;86(20):1539
    98. Cynthia E, Herzog J B, Trepel L, et al. J Nat Cancer inst,1992;84(9):711
    99. Bernard J, et al. Anticancer Res, 1990;10:1297-302
    100. Hirofumi S, et al. Jpn J Cancer Res, 1996;87:641-9
    101. Trock BJ, LeonessaF, ClarkeR. Multidrug resistance in breast cancer:A meta analysis of MDR1/gp-170 expression and its possible functional significance. J Natl Cancer Inst, 1997;89:917-920.
    102.白符,隋丽华,娄阁.用外周血、腹水代替卵巢组织检测mdr1可行性研究.中国肿瘤临床,2001;28:18-22.
    103.朱雪琼,张颖,岳天孚,等.宫颈癌组织及外周血耐药相关基因的表达及其相 关性研究.肿瘤防治杂志,2001;8:470-474.
    104.姜立,张万广,陈孝平.外周血mdrl荧光定量检测与肝癌近期转移复发的相关性分析.腹部外科,2004;17(4):247-249
    1. Parker SL, et al. CA Cancer J Clin 1997; 47(1): 5-27
    2. Buchler M, et al. Cancer 1991; 68:1507-1512
    3. Wagener, D. J., et al. Ann Oncol 1994; 5 (1): 81
    4. Gerraann UA, et al. Semin Cell Biol 1993; 4(1): 63-76
    5. Kazuya E, et al. Cancer 1996;77 (supple); 1681
    6. Cheng EH, et al. Science 1997; 278: 1966-1968
    7. Aszalos, A., et al. Anticancer Res 1998;18:2937
    8. Victor L. Pharmacol 1997; 40: S3-S8.
    9. Cole SP, et al. Science 1992; 258 (5087):1650-1654.
    10. Doyle LA, et al. Proc Natl Acad Sci USA 1998; 95 (26): 15665-15670.
    11. Johns tone RW, et al. Blood 1999;93 (3): 1075-1085
    12. Symth MJ, et al. Prot Natl Acad Sci 1998;95:7024-7029
    13. Cordon-Cardo C, et al. J Histochem 1990;38:1277-1287.
    14.Goldstein LJ. Eur J Cancer 1996; 32:1039
    15. Bernard J, et al. Anticancer Res 1990;10:1297-302
    16. Hirofumi S, et al. Jpn J Cancer Res 1996;87:641-9
    17. Loe D, et al. Eur J Cancer 1996; 32A: 945-957.
    18. Dingemans AM, et al. Ann Oncol 1996; 7:625-630
    19. Broxtermans HJ, et al. J Int Med 1997;740:S147-151
    20. Zhao Lu, et al. Pancreas 2000; 21(3): 240-247
    21. Cole, et al. Scince 1992; 258:1650-1654
    22. Zaman, et al. Proc. Natl. Acad. Sci. USA 1994; 91:8822-8826
    23. Kruh, et al. J Natl. Can Inst. 1995; 87:1256-1258
    24. Donald W. M., et al. Cancer Letters 1996; 107:301-306
    25. Liu B, et al. J Surg Res 2001; 99 (2): 179-86
    1. Perker R, Wallner J, Geissler K, etal. MDR1 gene expression and treatment out come in acute myeloid leukemia. J.Natl.Cancer Inst, 1991;83:708-712.
    2. Cordon-Cardo C,O'Brien JP, Boccia J, et al. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem, 1990;38(9): 1277-1287
    3.陈旭,李建党,程长铭,等.P.糖蛋白与ER、PR在胰腺癌中的异常表达与临床意义.中国现代医学杂志,1999;9(7):20-23
    4. Greenway BA. Carcinoma of the exocrine pancreas: a sex hormone responsive tumour? Br J Surg, 1987;74(6):441-442.
    5. Zhao Lu, Jorg Kleeff, Shailesh Shrikhande, et al. Expression of the Multidrug-Resistance 1(MDR1)gene and prognosis in human pancreatic cancer. Pancreas, 2000;21(3):240-247
    6. Schmutte C,Jones PA.Involvement ofDNA methylation in human carcino genesis. Biol Chem, 1998;379:377-388.
    7. Cornwell MM, SmithDE. SP1 activates the MDR1 promoter through one of two distinct G2 rich regions that modulate promote ractivity. J Biol Chem, 1993;268:19505-19511
    8. Suwa H, Ohshio G, Arao S, et al. Im muno histochemical localization of P glycoprotein and expression of the mulitidrug resistance 1 gene in human pancreatic cancer: relevance to indicator of better prognosis. Jpn J Cancer Res. 1996;87:641-649
    9. I u Z, kleeff J, Shrikhande S, et al. Expression of the multidrug resistance 1 (M DR 1) gene and prognosis in human pancreatic cancer. Pancreas. 2000;21:240-247.
    10. Serman A, Vlahovic M, Serman L, et al. DNA methylation as a regulatory mechanism for gene expression in mammals. Coll Antropol, 2006;30(3):665-671
    11. Campanero MR, Armstrong MI, Flemington EK, et al. CpG methylation as a mechanism for the regulation of E2F activity. Proc Natl Acad Sci, 2000; 97:6481-6486
    12. Ando T, Nishimura M, Oka Y. Decitabine (5-Aza-2' -deoxycytidine) decreased DNA methylation and expression of M DR1 gene in K562/ADM cells. Leukemia, 2000;14:1915-1920
    13. Trock BJ, LeonessaF, ClarkeR. Multidrug resistance in breast cancer:A meta analysis ofMDR1/gp-170 expression and its possible functional significance. J Natl Cancer Inst, 1997;89:917-920.
    14.白符,隋丽华,娄阁.用外周血、腹水代替卵巢组织检测mdr1可行性研究.中国肿瘤临床,2001;28:18-22.
    15.朱雪琼,张颖,岳天孚,等.宫颈癌组织及外周血耐药相关基因的表达及其相关性研究.肿瘤防治杂志,2001;8:470-474.
    16.姜立,张万广,陈孝平.外周血mdr1荧光定量检测与肝癌近期转移复发的相关性分析.腹部外科,2004;17(4):247-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700