nano-TiO_2与PbAc联合诱导人胚肝细胞氧化应激和凋亡作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型科技产物,nano-TiO2被广泛应用于涂料、化妆品、水污染处理等行业。但是大量研究证明nano-TiO2对人体健康和环境存在着危害作用。nano-TiO2可刺激机体组织产生炎症反应,降低细胞活性,促进细胞凋亡,以及导致DNA损伤等。nano-TiO2具有纳米尺度效应、表面效应、量子尺寸效应、宏观量子隧道效应、光催化效应。相对于大颗粒,nano-TiO2生物学效应的性质和强度也发生了质的变化。据目前研究发现,nano-TiO2对诱导损伤的发生机制主要跟炎症反应和氧化应激有关。
     铅是一种被普遍应用于电池、颜料、汽油、油漆、仪器中的有毒重金属。在环境中广泛存在,能够在生物体内蓄积。铅污染是当前国际社会特别突出的环境问题。铅污染导致DNA损伤和基因毒性,损伤人体神经、造血、生殖等系统。近来研究表明铅对诱导损伤的发生机制主要跟氧化应激有关。
     随着nano-TiO2的广泛使用,导致大量进入环境,特殊的表面效应使其极易与环境中的多种污染物结合。由于nano-TiO2的特殊理化性质,对环境中的金属离子或有机物具有很强的吸附能力。从而可能产生与其本身所致生物学效应的性质和强度不同的效应。pb2+广泛存在于环境当中,可吸附到nano-TiO2的表面,产生相互作用并共同作用于机体或环境。二者联合作用于机体可能导致的各种健康效应有何变化,至今尚无研究。
     环境中的nano-TiO2和其他污染物含量很低,一般都是痕量存在。在本研究中以低浓度nano-TiO2与环境常见污染物PbAc在无紫外条件下联合作用于体外培养的人类胚胎肝细胞(L02细胞)24hr,探究nano-TiO2与PbAc联合作用对细胞活性、ROS生成、还原性物质、DNA损伤、DNA修复酶表达、细胞凋亡等情况的影响,系统了解nano-TiO2与PbAc联合作用所致氧化应激和凋亡效应。本文在当前单独PbAc与nano-TiO2的毒理学作用机理研究基础上,探讨了二者之间的相互作用及可能的联合毒作用机制,为完善nano-TiO2的毒理学评价和了解环境中nano-TiO2与PbAc之间的健康效应提供理论基础和实验依据。本研究分为四个部分:
     第一部分nano-TiO2的团聚效应及其对PbAc的吸附作用研究
     目的:研究纳米二氧化钛(nano-TiO2)在溶液中的团聚作用及TiO2对醋酸铅(PbAc)的吸附作用。方法:采用纳米粒度仪检测0.001、0.01、0.1、1、10μg/mL的nano-TiO2在水溶液中团聚后粒度大小;石墨炉原子吸收(Graphite furnace atomic absorption spectrometry, GFAAS)检测0.001、0.01、0.1、1、10μg/mL的nano-TiO2对1μg/mL的PbAc吸附量的大小。结果:各浓度纳米二氧化钛团聚后粒度平均大小为298.8 nm,之间并无显著性差异(P>0.05);相比较于单一的纳米二氧化钛红外图谱,混合物显示有醋酸基团被吸附于纳米二氧化钛;原子吸收结果显示0.001、0.01μg/mL TiO2吸附的PbAc量显著低于0.1、1、10μg/mL的TiO2 (P< 0.05);并且吸附量随TiO2浓度呈剂量依赖关系。结论:单一nano-TiO2在没有分散剂的作用下,短时间内在水溶液中有团聚;对PbAc有明显吸附作用,并且随nano-TiO2浓度的升高,吸附量增大。
     第二部分nano-TiO2与PbAc联合诱导人胚肝细胞氧化应激作用
     目的:观察nano-TiO2与PbAc单独及联合作用对人胚肝细胞(L02)活性、活性氧(reactive oxygen species, ROS)含量及氧化应激的影响。方法:0.001、0.01、0.1、1、10μg/mL的nano-TiO2和1μg/mL的PbAc,以及0.001、0.01、0.1、1、10μg/mLnano-TiO2和1μg/mLPbAc的混合物(为了方便,在下面的描述中将TiO2和1μg/mL PbAc的混合物简写为10,1,0.1,0.01,0.001μg/mL混合物)联合作用于生长良好的L02细胞,二甲基亚砜(Dimethyl sulfoxide, DMSO,1μL/mL)为阴性对照,将L02细胞染毒24hr后,以MTT法检测nano-TiO2与PbAc单独及联合作用对L02细胞活性的影响;运用DCFH-DA (2',7'-dichlorofluorescin-diacetate)作为荧光探针,采用流式细胞检测技术检测nano-TiO2与PbAc联合作用下L02细胞内ROS含量,同时检测L02细胞内抗氧化酶超氧化物歧化酶(Superoxide dismutase, SOD)、谷胱甘肽(Glutathione, GSH)的含量。结果:相比阴性对照、PbAc和其他单一TiO2剂量组,10μg/mL TiO2单独作用L02细胞24hr可显著降低细胞活性(P<0.05);1μg/mL TiO2相比阴性对照,导致显著性的细胞活性降低。与阴性对照相比,0.1、1、10μg/mL的混合物联合作用L02细胞24hr可引起细胞活性显著性降低(P<0.05);与1μg/mL的PbAc单独作用相比,1、10μg/mL的混合物联合作用L02细胞24hr可引起细胞活性显著性降低(P<0.05);所有浓度的nano-TiO2和1μg/mL的PbAc单独作用不能引起ROS、SOD、GSH水平的改变(P>0.05); 0.001、0.01、0.1、1、10μg/mL的混合物联合作用L02细胞24hr可引起ROS显著性增加(P<0.05);单一TiO2和混合物所诱导的细胞毒性、ROS生成显示出剂量依赖关系。0.01、0.1、1μg/mL的混合物联合作用使细胞内GSH水平较阴性对照组有显著升高(P<0.05),并且1μg/mL的混合物联合作用使细胞内GSH水平较1μg/mL的PbAc单独作用有显著升高(P<0.05);与阴性对照相比,0.01、0.1、μg/mL的混合物联合作用使细胞中抗氧化酶SOD活力显著性升高(P<0.05);单一TiO2所诱导的GSH和SOD水平显示出剂量依赖关系。析因分析结果显示两种受试物混和染毒对细胞内细胞活性、ROS、GSH、SOD水平不存在交互协同作用(P>0.05)。结论:证明在低浓度无紫外的条件下,nano-TiO2和PbAc联合作用可增强细胞毒性、促进活性氧的产生和抗氧化物质应激性升高;nano-TiO2和PbAc联合作用可诱导细胞氧化应激,低浓度混合物作用时,上升的氧化应激触发了细胞保护防御的正调节作用,使细胞还拥有一定的抗氧化能力从而阻碍进一步的氧化损伤;而高浓度时,则触发了负调节作用,从而导致抗氧化能力下降。
     第三部分nano-TiO2与PbAc联合诱导人胚肝细胞DNA损伤及其对修复蛋白的影响研究
     目的:研究nano-TiO2与PbAc单独及联合作用对L02细胞活性、DNA损伤以及对OGGl (8-oxoguanine DNA glycosylase homolog 1)修复蛋白表达的影响。方法:0.001、0.01、0.1、1、10μg/mL的nano-TiO2和1μg/mL的PbAc,以及0.001、0.01、0.1、1、10μg/mL的混合物联合作用于生长良好的L02细胞,DMSO (1mL/L)为阴性对照,L02细胞处理时间为24 hr;运用碱性彗星试验和DNA氧化损伤标志物8-OHdG (8-Hydroxydeoxyguanosine)的含量检测各组DNA断裂损伤程度;运用western blot检测单独及联合作用对细胞DNA修复蛋白OGG1的影响。结果:相比阴性对照1μg/mL PbAc,10μg/mL混合物作用L02细胞24 hr可导致显著性升高的Olive尾距(Olive tail moment, OTM) (P< 0.05);相比阴性对照,1μg/mL混合物作用导致显著性升高的OTM(P<0.05)。所有浓度的nano-TiO2和1μg/mL的PbAc单独作用不能引起8-OHdG的含量和细胞DNA修复蛋白OGG1表达相对于阴性对照的显著性改变(P>0.05);1、10μg/mL的混合物联合作用L02细胞导致8-OHdG的含量显著高于阴性对照组(P<0.05); 10μg/mL混合物联合作用导致8-OHdG的含量显著高于PbAc单独作用(P<0.05)。0.001、0.01、0.1、1μg/mL的混合物联合作用使细胞内DNA修复蛋白OGG1表达水平较阴性对照组和PbAc单独作用有显著升高(P<0.05)。单一TiO2和混合物所导致的OTM、8-OHdG生成显示出剂量依赖关系。但只有单一TiO2导致的OGG1表达显示出剂量依赖关系。析因分析结果显示两种受试物混和染毒对DNA损伤修复蛋白OGG1的表达存在交互协同作用(P<0.05)。结论:nano-TiO2和PbAc联合作用可增强L02细胞DNA损伤,同时协同增强调节DNA修复蛋白OGG1修复损伤的DNA,细胞还拥有一定的修复损伤DNA的能力。
     第四部分nano-TiO2与PbAc联合诱导人胚肝细胞凋亡效应研究
     目的:研究nano-TiO2与PbAc单独及联合作用对L02凋亡效应及对凋亡关键蛋白Caspase 3 (Cysteine-asparate protease 3)表达的影响。方法:0.001、0.01、0.1、1、10μg/mL的nano-TiO2和1μg/mL的PbAc,以及0.001、0.01、0.1、1、10μg/mL的混合物联合作用于生长良好的L02细胞,DMSO (1 mL/L)为阴性对照,L02细胞处理时间为24 hr;运用流式细胞仪检测nano-TiO2与PbAc单独及联合作用对L02早期和晚期凋亡的效应的影响;运用western blot检测单独及联合作用对细胞凋亡调控蛋白Caspase 3的影响。结果:单一1μg/mL的PbAc单独作用不能引起细胞早期凋亡水平相对于阴性对照的显著性改变(P>0.05); 1、10μg/mL的nano-TiO2导致细胞早期凋亡水平显著高于DMSO、PbAc以及0.001、0.01和0.1μg/mL nano-TiO2单独作用(P<0.05); 0.1μg/mL的nano-TiO2导致细胞早期凋亡水平显著高于DMSO、PbAc、0.001、0.01μg/mL nano-TiO2单独作用(P<0.05);而所有的混合物均导致细胞早期凋亡水平显著高于DMSO阴性对照和PbAc单独作用(P<0.05)。所有浓度的nano-TiO2和1μg/mL的PbAc单独作用不能引起细胞晚期凋亡水平相对于阴性对照的显著性改变(P>0.05)。但是,10μg/mL的混合物联合作用使细胞晚期凋亡水平较DMSO阴性对照、PbAc单独作用和其他混合物作用有显著升高(P<0.05)。所有浓度的nano-TiO2和1μg/mL的PbAc单独作用不能引起细胞凋亡关键蛋白Caspase 3表达相对于阴性对照的显著性改变(P>0.05)。除了0.001μg/mL,所有混合物作用均导致细胞Caspase 3表达水平较DMSO阴性对照显著升高(P<0.05); 10μg/mL的混合物联合作用使细胞Caspase 3表达水平较DMSO阴性对照、PbAc单独作用和其他混合物作用有显著升高(P<0.05)。单一nano-TiO2和混合物所导致的细胞早晚期凋亡显示出剂量依赖关系。析因分析结果显示两种受试物混和染毒对晚期凋亡水平存在交互协同作用(P<0.05)。结论:nano-TiO2和PbAc联合作用可增强诱导L02增加细胞的凋亡,并协同增强细胞的晚期凋亡水平,而Caspase 3在细胞凋亡作用中起着关键作用。
Titanium dioxide (TiO2) in nano-size is a new technology product which was widely used in cosmetics, paints and in decontamination water. Numerous studies demonstrated that nano-TiO2 in nano-size induced damage to human health and environment. Nano-TiO2 could stimulate inflammatory reaction of the organism, reduce the cell viability, and induce the apoptosis and DNA damage. Nano-TiO2 has some special properties, such as nano-scale effect, surface effect, quantum size effect, macroscopic quantum tunneling effect, photocatalytic effect. Compared with the large particles, nano-TiO2 on the nature and intensity of the biological effects of a qualitative change also occurred. According to the present study, mechanisms of damage induced by nano-TiO2 are mainly related to inflammation and oxidative stress.
     Lead is widely applied heavy metal in batteries, paint, gasoline, paint, instruments. Lead exists in the environment widespread and accumulates in organism. Lead pollution is a particularly prominent environmental problem in the current situation. Lead pollution causes DNA damage and genetic toxicity, damages the nervous, hematopoietic, reproductive and other systems. Recent studies show that mechanisms of damage induced by lead major related to oxidative stress.
     A large number of nano-Ti02 has been released into the environment with the widespread use. Nano-TiO2 could absorb a variety of pollutants in the environment because of the special surface effect. Nano-TiO2 has a strong adsorption capacity to metal ions or organic produce in the environment as the special physical and chemical properties. This may generate different effects compared with their own biological effects. Pb2+ exists in the environment can be adsorbed onto the surface of nano-TiO2, and interact with each other, and interact with the body or the environment. So far, the combined effects of Pb2+ and nano-TiO2 on the body were unknown.
     The content of nano-TiO2 and other pollutants in the environment is very low, and exists in trace. In this study, to understand the combined effect of oxidative stress and apoptosis induced by nano-TiO2 mixed with PbAc, we assessed the cell activity, DNA damage, ROS generation, reduction enzyme changes, apoptosis, etc induced by TiO2 in trace mixed with on human embryo hepatocytes (L02) for a 24 hr treatment without photoactivation. Based on the researches on toxicity of nano-TiO2 and PbAc treated alone, the interaction of the mixtures was studied and potential toxicological mechanisms were also evaluated in this study, further consummated the toxicology evaluation and provided the theory basis of nano-TiO2, in addition to understand the healths effects and provide experimental evidence induced by nano-TiO2 and PbAc in trace.
     The study is composed of the following four parts:
     PartⅠ
     The aggregation effect of nano-TiO2 and the adsorptive capacity of PbAc onto nano-Ti02
     Objective:To observe the aggregation of nano-TiO2 and adsorption of nano-TiO2 on PbAc in the solution.
     Methods:The aggregation size of 0.001,0.01,0.1,1,10μg/mL nano-TiO2 in aqueous solution was detected by a Nano-Particle Analyzer. The adsorption of Pb2+ onto nano-TiO2 in solution was detected by infrared scanning. The adsorptive capacity of 1μg/mL Pb2+ onto 0.001,0.01,0.1,1,10μg/mL nano-TiO2 were detected by graphite furnace atomic absorption spectrometry.
     Results:The average size of aggregation is 298.8 nm and there is no significantly change in the given concentrations (P> 0.05). The absorptive capacity of PbAc by nano-TiO2 analyzed by GFAAS is showed that the mixture containing 0.001 and 0.01μg/mL nano-TiO2 absorbed significantly less PbAc than those of 0.1,1,10μg/mL nano-TiO2 (P< 0.05), and there was a dose-dependent absorption by nano-TiO2. Conclusion:nano-TiO2 treated alone in the absence of surfactants aggregated in the short time in water. In the mixtures, there was a significant adsorption on PbAc by nano-TiO2, and adsorption capacity increases with the concentration of nano-TiO2.
     PartⅡ
     Oxidative stress induced by a joint effect of titanium dioxide and lead acetate in human hepatocytes
     Objective:To observe the cell viability, ROS generation and Oxidative stress induced by a joint effect of nano-TiO2 and PbAc in human hepatocytes.
     Methods:L02 were exposed to nano-TiO2 in 10,1,0.1,0.01,0.001μg/mL and 1μg/mL PbAc treated alone and mixture for a period 24 hr (The mixtures of nano-TiO2 with 1μg/mL PbAc in the following descriptions were abbreviated as 10,1,0.1,0.01,0.001μg/mL mixture for convenience). In each experiment a negative control (1‰DMSO) was included. The cytotoxicity induced by nano-TiO2,1μg/mL PbAc and the mixtures were determined using MTT assay. The production of ROS induced by nano-TiO2,1μg/mL PbAc and the mixtures were assessed by flow cytometry using DCFH-DA as fluorescent probe. The activities of GSH and SOD were determined meanwhile.
     Results:Compared with the negative control, PbAc and the other nano-TiO2 treatments, cell viability decreased notably when treated with 10μg/mL nano-TiO2 (P< 0.05).1μg/mL nano-TiO2 induced significantly viability decreased compared with the negative control (P< 0.05). The mixtures from 0.1,1,10μg/mL induced significantly higher cytotoxicity than the negative control (P< 0.05). Mixtures of 1 and 10μg/mL induced significantly higher cytotoxicity than 1μg/mL PbAc treatment (P< 0.05). There were no significant increases in ROS, GSH, SOD levels caused by nano-TiO2 and PbAc-alone treatment (P> 0.05). In comparison with the negative control and 1μg/mL PbAc, the ROS generation significant increases in L02 cells after all mixtures treatment for 24 hr, respectively (P< 0.05). The 0.01,0.1 and 1μg/mL mixtures induced significant increases in GSH level, compared with the negative control (P< 0.05). The 1μg/mL mixture induced significant increases in GSH level compared with the 1μg/mL PbAc treated alone (P< 0.05). Furthermore, there were significant increases in SOD level induced by the 0.1 and 0.01μg/mL mixtures compared with the negative control (P< 0.05). There were dose-dependence patterns of cell viability and ROS generation induced by nano-TiO2 alone and the mixtures. However, there were only dose-dependence patterns of GSH and SOD levels induced by nano-TiO2 treated alone. There were no synergistic effect in cell viability, ROS, GSH and SOD levels caused by nano-TiO2 and PbAc (P> 0.05).
     Conclusion:The joint effect of low (≤10μg/mL) concentrations of nano-TiO2 and PbAc enhances oxidative stress and cytotoxicity in the absence of UV in L02 over a 24 hr treatment period. The results suggest that the increased oxidative stress triggered the up regulation of defenses to protect cells at low concentrations but triggered the down regulation at higher concentrations of the mixtures.
     PartⅢ
     DNA damage and Repair protein expression induced by a joint effect of titanium dioxide and lead acetate in human hepatocytes
     Objective:To observe the DNA damage, DNA adducts generation and Repair protein expression induced by a joint effect of nano-TiO2 and PbAc in human hepatocytes.
     Methods:L02 was exposed to nano-TiO2 in 10,1,0.1,0.01,0.001μg/mL and 1μg/mL PbAc treated alone and mixture for a period 24 hr. In each experiment a negative control (1‰DMSO) was included. The DNA damage induced by nano-TiO2,1μg/mL PbAc and the mixtures were determined using comet assay. The generation of DNA adducts induced by nano-TiO2,1μg/mL PbAc and the mixtures were assessed by HPLC. The expression of OGG1 induced by nano-TiO2,1μg/mL PbAc and the mixtures were determined using western blotting assay.
     Results:Compared with the negative control and 1μg/mL PbAc, OTM increased notably when treated with 10μg/mL mixture (P< 0.05).1μg/mL nano-TiO2 mixed with 1μg/mL PbAc induced significantly OTM increased compared with the negative control (P< 0.05). There were no significant increases in 8-OHdG formation and OGG1 expression caused by nano-TiO2 and PbAc-alone treatment (P> 0.05). The production of 8-OHdG induced by the 10 and 1μg/mL mixtures was significantly higher than the negative control (P< 0.05). In addition,10μg/mL mixtures caused higher 8-OHdG levels than 1μg/mL PbAc (P< 0.05). All mixtures exposures resulted in the increased OGG1 levels, except for the 10μg/mL mixtures treatment compared with the negative control and 1μg/mL PbAc, respectively (P< 0.05). Nano-TiO2 and the mixtures induced dose-dependence patterns of OTM,8-OHdG formation and OGG1 expression. Addition of nano-TiO2 with PbAC synergistically enhanced OGG1 expression in this study (P< 0.05).
     Conclusion:The joint effect of low (≤10μg/mL) concentrations of nano-TiO2 and PbAc enhances oxidative stress and cytotoxicity in the absence of UV in L02 over a 24 hr treatment period. The results suggest that the increased oxidative stress triggered the up regulation of defenses to protect cells at low concentrations but triggered the down regulation at higher concentrations of the mixtures.
     Part IV
     Apoptosis induced by a joint effect of titanium dioxide and lead acetate in human hepatocytes
     Objective:To observe the apoptosis effects induced by a joint effect of nano-TiO2 and PbAc in human hepatocytes.
     Methods:L02 was exposed to nano-TiO2 in 10,1,0.1,0.01,0.001μg/mL and 1μg/mL PbAc treated alone and mixture for a period 24 hr. In each experiment a negative control (1‰DMSO) was included. The early and late apoptosis induced by nano-TiO2,1μg/mL PbAc and the mixtures were determined by flow cytometry using FITC and PI as fluorescent probe. The expression of Caspase 3 induced by nano-TiO2, 1μg/mL PbAc and the mixtures were determined using western blotting assay.
     Results:Compared with the negative control,1μg/mL PbAc induced no significantly early apoptosis increased (P> 0.05). There were significant increases in early apoptosis caused by 1 and 10μg/mL TiO2 compared with the negative control,1μg/mL PbAc and other concentrations TiO2 treated alone (P< 0.05). The 0.1μg/mL TiO2 induced notably early apoptosis increase compared with the negative control,1μg/mL PbAc,0.001,0.01μg/mL TiO2 treated alone (P< 0.05). All mixtures exposures resulted in the increased early apoptosis levels compared with the negative control and 1μg/mL PbAc, respectively (P< 0.05). All exposures of nano-TiO2 and 1μg/mL PbAc treated alone resulted in no notably late apoptosis increase compared with the negative control (P> 0.05). But late apoptosis increased notably caused by 10μg/mL mixtures treated alone compared with the negative control, PbAc and other mixtures treatments (P< 0.05). All exposures of nano-TiO2 and 1μg/mL PbAc treated alone resulted in no notably Caspase 3 expression increase compared with the negative control (P> 0.05). Compared with the negative control, the expression of Caspase 3 increased significantly when treated with all mixtures except 0.001μg/mL (P< 0.05). Caspase 3 expression increased significantly caused by 10μg/mL mixtures treated alone compared with the negative control, PbAc and other mixtures treatments (P< 0.05). Nano-TiO2 and the mixtures induced dose-dependence patterns of apoptosis. There was synergistic effect in late apoptosis caused by nano-TiO2 and PbAc (P< 0.05).
     Conclusion:The joint effect of low (≤10μg/mL) concentrations of nano-TiO2 and PbAc enhances apoptosis and relate key protein expression in L02. The results suggest that the Caspase 3 play a very important role in the apoptosis of the cell.
引文
1. Singh, N., Manshian, B., Jenkins, G.J., Griffiths, S.M., Williams, P.M., Maffeis, T.G., Wright, C.J. and Doak, S.H. (2009) NanoGenotoxicology:the DNA damaging potential of engineered nanomaterials. Biomaterials 30,3891-3914.
    2. Hirakawa, K., Mori, M., Yoshida, M., Oikawa, S. and Kawanishi, S. (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radic Res 38,439-447.
    3. Lam, C.W., James, J.T., McCluskey, R. and Hunter, R.L. (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77,126-134.
    4. L'Azou, B., Jorly, J., On, D., Sellier, E., Moisan, F., Fleury-Feith, J., Cambar, J., Brochard, P. and Ohayon-Courtes, C. (2008) In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol 5,22.
    5. Gurr, J.R., Wang, A.S., Chen, C.H. and Jan, K.Y. (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213,66-73.
    6. Long, T.C., Tajuba, J., Sama, P., Saleh, N., Swartz, C., Parker, J., Hester, S., Lowry, G.V. and Veronesi, B. (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental health perspectives 115,1631-1637.
    7. Peters, K., Unger, R.E., Kirkpatrick, C.J., Gatti, A.M. and Monari, E. (2004) Effects of nano-scaled particles on endothelial cell function in vitro:studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15,321-325.
    8. Fenoglio, I., Greco, G., Livraghi, S. and Fubini, B. (2009) Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chemistry 15,4614-4621.
    9. Stone, V., Johnston, H. and Clift, M.J. (2007) Air pollution, ultrafine and nanoparticle toxicology:cellular and molecular interactions. IEEE Trans Nanobioscience 6, 331-340.
    10. Soto, K., Garza, K.M. and Murr, L.E. (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3,351-358.
    11. Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, M.R. and Nel, A.E. (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6,1794-1807.
    12. Zhang, A.P. and Sun, Y.P. (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10,3191-3193.
    13. Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V. and Veronesi, B. (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2):implications for nanoparticle neurotoxicity. Environ Sci Technol 40, 4346-4352.
    14. Shotyk, W. and Le Roux, G. (2005) Biogeochemistry and cycling of lead. Met Ions Biol Syst 43,239-275.
    15. Poma, A., Pittaluga, E. and Tucci, A. (2003) Lead acetate genotoxicity on human melanoma cells in vitro. Melanoma Res 13,563-566.
    16. Patrick, L. (2006) Lead toxicity part Ⅱ:the role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Altern Med Rev 11, 114-127.
    17. Pulido, M.D. and Parrish, A.R. (2003) Metal-induced apoptosis:mechanisms. Mutat Res 533,227-241.
    18. Bolin, C.M., Basha, R., Cox, D., Zawia, N.H., Maloney, B., Lahiri, D.K. and Cardozo-Pelaez, F. (2006) Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. Faseb J 20,788-790.
    19. Ercal, N., Gurer-Orhan, H. and Aykin-Burns, N. (2001) Toxic metals and oxidative stress part Ⅰ:mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1,529-539.
    20. Silbergeld, E.K., Waalkes, M. and Rice, J.M. (2000) Lead as a carcinogen: experimental evidence and mechanisms of action. American journal of industrial medicine 38,316-323.
    21. Xu, J., Ji, L.D. and Xu, L.H. (2006) Lead-induced apoptosis in PC 12 cells: involvement of p53, Bcl-2 family and caspase-3. Toxicol Lett 166,160-167.
    22. Chen, Z., Lou, J., Chen, S., Zheng, W., Wu, W., Jin, L., Deng, H. and He, J. (2006) Evaluating the genotoxic effects of workers exposed to lead using micronucleus assay, comet assay and TCR gene mutation test. Toxicology 223,219-226.
    23. Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic potential of materials at the nanolevel. Science (New York, N.Y 311,622-627.
    24. Pena, M.E., Korfiatis, G.P., Patel, M., Lippincott, L. and Meng, X. (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39,2327-2337.
    25. Xu, T., Kamat, P.V. and O'Shea, K.E. (2005) Mechanistic evaluation of arsenite oxidation in TiO2 assisted photocatalysis. The journal of physical chemistry 109, 9070-9075.
    26. Liu, R. and Liang, P. (2008) Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel. J Hazard Mater 152,166-171.
    27. Wilson, M.R., Foucaud, L., Barlow, P.G., Hutchison, G.R., Sales, J., Simpson, R.J. and Stone, V. (2007) Nanoparticle interactions with zinc and iron:implications for toxicology and inflammation. Toxicol Appl Pharmacol 225,80-89.
    28. Warner, W.G., Yin, J.J. and Wei, R.R. (1997) Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free radical biology & medicine 23,851-858.
    29. Reeves, J.F., Davies, S.J., Dodd, N.J. and Jha, A.N. (2008) Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res 640,113-122.
    30. Uchino, T., Tokunaga, H., Ando, M. and Utsumi, H. (2002) Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment. Toxicol In Vitro 16,629-635.
    31. Liang, P., Ding, Q. and Liu, Y. (2006) Speciation of chromium by selective separation and preconcentration of Cr(III) on an immobilized nanometer titanium dioxide microcolumn. J Sep Sci 29,242-247.
    32. Liang, P., Qin, Y, Hu, B., Li, C., Peng, T. and Jiang, Z. (2000) Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES. Fresenius J Anal Chem 368,638-640.
    33. Liu, R. and Liang, P. (2007) Determination of gold by nanometer titanium dioxide immobilized on silica gel packed microcolumn and flame atomic absorption spectrometry in geological and water samples. Anal Chim Acta 604,114-118.
    34. Churg, A., Stevens, B. and Wright, J.L. (1998) Comparison of the uptake of fine and ultrafine TiO2 in a tracheal explant system. Am J Physiol 274, L81-86.
    35. Jin, C.Y, Zhu, B.S., Wang, X.F. and Lu, Q.H. (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chemical research in toxicology 21, 1871-1877.
    36. Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D. and Biswas, P. (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40, 4336-4345.
    37. Sabokbar, A., Pandey, R. and Athanasou, N.A. (2003) The effect of particle size and electrical charge on macrophage-osteoclast differentiation and bone resorption. J Mater Sci Mater Med 14,731-738.
    38. Yu, J.C., Yu, J.G., Ho, W.K., Jiang, Z.T. and Zhang, L.Z. (2002) Effects of F-Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem Mater 14,3808-3816.
    39. Zhang, Q., Gao, L. and Guo, J. (2000) Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B 26, 207-215.
    40. Johnston, D.E., Islam, M.F., Yodh, A.G. and Johnson, A.T. (2005) Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide. Nat Mater 4,589-592.
    41. Sayes, C.M., Liang, F., Hudson, J.L., Mendez, J., Guo, W., Beach, J.M., Moore, V.C., Doyle, C.D., West, J.L., Billups, W.E., Ausman, K.D. and Colvin, V.L. (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161,135-142.
    42. Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A. and Kostarelos, K. (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 103,3357-3362.
    43. Maynard, A.D., Baron, P.A., Foley, M., Shvedova, A.A., Kisin, E.R. and Castranova, V. (2004) Exposure to carbon nanotube material:aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67, 87-107.
    44. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E. and Smalley, R.E. (1996) Crystalline Ropes of Metallic Carbon Nanotubes. Science (New York, N.Y 273,483-487.
    45. Tsuji, J.S., Maynard, A.D., Howard, P.C., James, J.T., Lam, C.W., Warheit, D.B. and Santamaria, A.B. (2006) Research strategies for safety evaluation of nanomaterials, part Ⅳ:risk assessment of nanoparticles. Toxicol Sci 89,42-50.
    46. Limbach, L.K., Li, Y., Grass, R.N., Brunner, T.J., Hintermann, M.A., Muller, M., Gunther, D. and Stark, W.J. (2005) Oxide nanoparticle uptake in human lung fibroblasts:effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 39,9370-9376.
    47. Park, E.J., Yi, J., Chung, K.H., Ryu, D.Y., Choi, J. and Park, K. (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180,222-229.
    48. Donaldson, K., Beswick, P.H. and Gilmour, P.S. (1996) Free radical activity associated with the surface of particles:a unifying factor in determining biological activity? Toxicol Lett 88,293-298.
    49. Ghio, A.J., Stonehuerner, J., Dailey, L.A. and Carter, J.D. (1999) Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhalation toxicology 11,37-49.
    50. Maples, K.R. and Johnson, N.F. (1992) Fiber-induced hydroxyl radical formation: correlation with mesothelioma induction in rats and humans. Carcinogenesis 13, 2035-2039.
    51. Pacurari, M., Yin, X.J., Zhao, J., Ding, M., Leonard, S.S., Schwegler-Berry, D., Ducatman, B.S., Sbarra, D., Hoover, M.D., Castranova, V. and Vallyathan, V. (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environmental health perspectives 116,1211-1217.
    52. Kagan, V.E., Tyurina, Y.Y., Tyurin, V.A., Konduru, N.V., Potapovich, A.I., Osipov, A.N., Kisin, E.R., Schwegler-Berry, D., Mercer, R., Castranova, V. and Shvedova, A.A. (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages:role of iron. Toxicol Lett 165,88-100.
    53. Sies, H. (1999) Glutathione and its role in cellular functions. Free radical biology & medicine 27,916-921.
    54. de Zwart, L.L., Meerman, J.H., Commandeur, J.N. and Vermeulen, N.P. (1999)
    Biomarkers of free radical damage applications in experimental animals and in humans. Free radical biology & medicine 26,202-226.
    55. Kohen, R. and Nyska, A. (2002) Oxidation of biological systems:oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30,620-650.
    56. Durocher, D. and Jackson, S.P. (2001) DNA-PK, ATM and ATR as sensors of DNA damage:variations on a theme? Curr Opin Cell Biol 13,225-231.
    57. Karlsson, H.L., Cronholm, P., Gustafsson, J. and Moller, L. (2008) Copper oxide nanoparticles are highly toxic:a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical research in toxicology 21,1726-1732.
    58. Papageorgiou, I., Brown, C.,Schins, R., Singh, S., Newson, R., Davis, S., Fisher, J., Ingham, E. and Case, C.P. (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28,2946-2958.
    59. Beck-Speier, I., Dayal, N., Karg, E., Maier, K.L., Roth, C., Ziesenis, A. and Heyder, J. (2001) Agglomerates of ultrafine particles of elemental carbon and TiO2 induce generation of lipid mediators in alveolar macrophages. Environmental health perspectives 109 Suppl 4,613-618.
    60. Kim, S.Y., Nishioka, M. and Taya, M. (2004) Promoted proliferation of an SOD-deficient mutant of Escherichia coli under oxidative stress induced by photoexcited TiO2. FEMS Microbiol Lett 236,109-114.
    61. Yeber, M.C., Rodriguez, J., Freer, J., Duran, N. and Mansilla, H.D. (2000) Photocatalytic degradation of cellulose bleaching effluent by supported TiO2 and ZnO. Chemosphere 41,1193-1197.
    62. Yamamoto, A., Honma, R., Sumita, M. and Hanawa, T. (2004) Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res A 68,244-256.
    63. K.F. Soto, A.C., T.G. Powell, L.E. Murr, K.M. Garza. (2006) Biological effects of nanoparticulate materials. Materials Science and Engineering C 26,1421-1427.
    64. Donaldson, K., Stone, V., Clouter, A., Renwick, L. and MacNee, W. (2001) Ultrafine particles. Occup Environ Med 58,211-216,199.
    65. Oberdorster, G. (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74,1-8.
    66. Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D.G. and Schiffmann, D. (2002) Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environmental health perspectives 110, 797-800.
    67. Wang, J.J., Sanderson, B.J. and Wang, H. (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628,99-106.
    68. Yang, J.L., Wang, L.C., Chang, C.Y. and Liu, T.Y. (1999) Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ Mol Mutagen 33,194-201.
    69. Xu, J., Lian, L.J., Wu, C., Wang, X.F., Fu, W.Y. and Xu, L.H. (2008) Lead induces oxidative stress, DNA damage and alteration of p53, Bax and Bcl-2 expressions in mice. Food Chem Toxicol 46,1488-1494.
    70. Regoli, F., Nigro, M., Benedetti, M., Gorbi, S., Pretti, C., Gervasi, P.G. and Fattorini, D. (2005) Interactions between metabolism of trace metals and xenobiotic agonists of the aryl hydrocarbon receptor in the antarctic fish Trematomus bernacchii:environmental perspectives. Environ Toxicol Chem 24,1475-1482.
    71. Elbekai, R.H. and El-Kadi, A.O. (2005) The role of oxidative stress in the modulation of aryl hydrocarbon receptor-regulated genes by As3+, Cd2+, and Cr6+. Free radical biology & medicine 39,1499-1511.
    72. Sorrentino, C., Roy, N.K., Courtenay, S.C. and Wirgin, I. (2005) Co-exposure to metals modulates CYP1A mRNA inducibility in Atlantic tomcod Microgadus tomcod from two populations. Aquat Toxicol 75,238-252.
    73. Christie, N. and Costa, M. (1984) In vitro assessment of the toxicity of metal
    compounds. IV. Disposition of metals in cells:interaction with membranes, glutathione, metallothionein, and DNA. Biol Trace Elem Res 6,139-158.
    74. Ma, L., Ze, Y., Liu, J., Liu, H., Liu, C., Li, Z., Zhao, J., Yan, J., Duan, Y., Xie, Y. and Hong, F. (2009) Direct evidence for interaction between nano-anatase and superoxide dismutase from rat erythrocytes. Spectrochim Acta A Mol Biomol Spectrosc 73, 330-335.
    75. Romanowska, M., Maciag, A., Smith, A.L., Fields, J.R., Fornwald, L.W., Kikawa, K.D., Kasprzak, K.S. and Anderson, L.M. (2007) DNA damage, superoxide, and mutant K-ras in human lung adenocarcinoma cells. Free radical biology & medicine 43,1145-1155.
    76. Hultberg, B., Andersson, A. and Isaksson, A. (2001) Interaction of metals and thiols in cell damage and glutathione distribution:potentiation of mercury toxicity by dithiothreitol. Toxicology 156,93-100.
    77. Quig, D. (1998) Cysteine metabolism and metal toxicity. Altern Med Rev 3,262-270.
    78. Stohs, S.J. and Bagchi, D. (1995) Oxidative mechanisms in the toxicity of metal ions. Free radical biology & medicine 18,321-336.
    79. Wang, L., Wang, H., Hu, M., Cao, J., Chen, D. and Liu, Z. (2009) Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead. Archives of toxicology 83, 417-427.
    80. Bernard, B.K., Osheroff, M.R., Hofmann, A. and Mennear, J.H. (1990) Toxicology and carcinogenesis studies of dietary titanium dioxide-coated mica in male and female Fischer 344 rats. J Toxicol Environ Health 29,417-429.
    81. Hart, G.A. and Hesterberg, T.W. (1998) In vitro toxicity of respirable-size particles of diatomaceous earth and crystalline silica compared with asbestos and titanium dioxide. J Occup Environ Med 40,29-42.
    82. Baggs, R.B., Ferin, J. and Oberdorster, G. (1997) Regression of pulmonary lesions produced by inhaled titanium dioxide in rats. Vet Pathol 34,592-597.
    83. Toyokuni, S. (1998) Oxidative stress and cancer:the role of redox regulation. Biotherapy (Dordrecht, Netherlands) 11,147-154.
    84. Bhattacharya, K., Davoren, M., Boertz, J., Schins, R.P., Hoffmann, E. and Dopp, E. (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6,17.
    85. Tajmir-Riahi, H.A., Naoui, M. and Ahmad, R. (1993) The effects of Cu2+ and Pb2+ on the solution structure of calf thymus DNA:DNA condensation and denaturation studied by Fourier transform ir difference spectroscopy. Biopolymers 33,1819-1827.
    86. Nava-Hernandez, M.P., Hauad-Marroquin, L.A., Bassol-Mayagoitia, S., Garcia-Arenas, G., Mercado-Hernandez, R., Echavarri-Guzman, M.A. and Cerda-Flores, R.M. (2009) Lead-, cadmium-, and arsenic-induced DNA damage in rat germinal cells. DNA and cell biology 28,241-248.
    87. Valverde, M., Fortoul, T.I., Diaz-Barriga, F., Mejia, J. and del Castillo, E.R. (2002) Genotoxicity induced in CD-1 mice by inhaled lead:differential organ response. Mutagenesis 17,55-61.
    88. Jeong, H.G., Youn, C.K., Cho, H.J., Kim, S.H., Kim, M.H., Kim, H.B., Chang, I.Y., Lee, Y.S., Chung, M.H. and You, H.J. (2004) Metallothionein-Ⅲ prevents gamma-ray-induced 8-oxoguanine accumulation in normal and hOGG1-depleted cells. J Biol Chem 279,34138-34149.
    89. Toyokuni, S. and Sagripanti, J.L. (1996) Association between 8-hydroxy-2'-deoxyguanosine formation and DNA strand breaks mediated by copper and iron. Free radical biology & medicine 20,859-864.
    90. Dhenaut, A., Boiteux, S. and Radicella, J.P. (2000) Characterization of the hOGGl promoter and its expression during the cell cycle. Mutat Res 461,109-118.
    91. Fortini, P., Pascucci, B., Parlanti, E., D'Errico, M., Simonelli, V. and Dogliotti, E. (2003) 8-Oxoguanine DNA damage:at the crossroad of alternative repair pathways. Mutat Res 531,127-139.
    92. Altieri, F., Grillo, C., Maceroni, M. and Chichiarelli, S. (2008) DNA damage and repair:from molecular mechanisms to health implications. Antioxid Redox Signal 10, 891-937.
    93. Bruner, S.D., Norman, D.P. and Verdine, G.L. (2000) Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403,859-866.
    94. Osterod, M., Hollenbach, S., Hengstler, J.G., Barnes, D.E., Lindahl, T. and Epe, B. (2001) Age-related and tissue-specific accumulation of oxidative DNA base damage in 7,8-dihydro-8-oxoguanine-DNA glycosylase (Oggl) deficient mice. Carcinogenesis 22, 1459-1463.
    95. Wu, M., Zhang, Z. and Che, W. (2008) Suppression of a DNA base excision repair gene, hOGGl, increases bleomycin sensitivity of human lung cancer cell line. Toxicol Appl Pharmacol 228,395-402.
    96. Arai, T., Kelly, V.P., Komoro, K., Minowa, O., Noda, T. and Nishimura, S. (2003) Cell proliferation in liver of Mmh/Oggl-deficient mice enhances mutation frequency because of the presence of 8-hydroxyguanine in DNA. Cancer Res 63,4287-4292.
    97. Xie, Y, Yang, H., Cunanan, C., Okamoto, K., Shibata, D., Pan, J., Barnes, D.E., Lindahl, T., McIlhatton, M., Fishel, R. and Miller, J.H. (2004) Deficiencies in mouse Myh and Oggl result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res 64,3096-3102.
    98. Lin, L.H., Cao, S., Yu, L., Cui, J., Hamilton, W.J. and Liu, P.K. (2000) Up-regulation of base excision repair activity for 8-hydroxy-2'-deoxyguanosine in the mouse brain after forebrain ischemia-reperfusion. J Neurochem 74,1098-1105.
    99. Tsuruya, K., Furuichi, M., Tominaga, Y., Shinozaki, M., Tokumoto, M., Yoshimitsu, T., Fukuda, K., Kanai, H., Hirakata, H., Iida, M. and Nakabeppu, Y (2003) Accumulation of 8-oxoguanine in the cellular DNA and the alteration of the OGGl expression during ischemia-reperfusion injury in the rat kidney. DNA Repair (Amst) 2,211-229.
    100.Ma, H., Wang, J., Abdel-Rahman, S.Z., Boor, P.J. and Khan, M.F. (2008) Oxidative DNA damage and its repair in rat spleen following subchronic exposure to aniline. Toxicol Appl Pharmacol 233,247-253.
    101.Hazra, T.K., Izumi, T., Maidt, L., Floyd, R.A. and Mitra, S. (1998) The presence of two distinct 8-oxoguanine repair enzymes in human cells:their potential complementary roles in preventing mutation. Nucleic Acids Res 26,5116-5122.
    102.Shinmura, K., Kasai, H., Sasaki, A., Sugimura, H. and Yokota, J. (1997) 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) DNA glycosylase and AP lyase activities of hOGGl protein and their substrate specificity. Mutat Res 385,75-82.
    103.Barnes, D.E. and Lindahl, T. (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annual review of genetics 38,445-476.
    104.Abalea, V., Cillard, J., Dubos, M.P., Anger, J.P., Cillard, P. and Morel, I. (1998) Iron-induced oxidative DNA damage and its repair in primary rat hepatocyte culture. Carcinogenesis 19,1053-1059.
    105.Boatright, K.M., Renatus, M., Scott, F.L., Sperandio, S., Shin, H., Pedersen, I.M., Ricci, J.E., Edris, W.A., Sutherlin, D.P., Green, D.R. and Salvesen, G.S. (2003) A unified model for apical caspase activation. Molecular cell 11,529-541.
    106.He, L., Poblenz, A.T., Medrano, C.J. and Fox, D.A. (2000) Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. The Journal of biological chemistry 275,12175-12184.
    107.Kang, S.J., Kim, B.M., Lee, Y.J., Hong, S.H. and Chung, H.W. (2009) Titanium dioxide nanoparticles induce apoptosis through the JNK/p38-caspase-8-Bid pathway in phytohemagglutinin-stimulated human lymphocytes. Biochemical and biophysical research communications 386,682-687.
    108.Vamanu, C.I., Cimpan, M.R., Hol, P.J., Sornes, S., Lie, S.A. and Gjerdet, N.R. (2008) Induction of cell death by TiO2 nanoparticles:studies on a human monoblastoid cell line. Toxicol In Vitro 22,1689-1696.
    109.de la Fuente, H., Portales-Perez, D., Baranda, L., Diaz-Barriga, F., Saavedra-Alanis, V., Layseca, E. and Gonzalez-Amaro, R. (2002) Effect of arsenic, cadmium and lead on the induction of apoptosis of normal human mononuclear cells. Clinical and experimental immunology 129,69-11.
    110.Kiss, B., Biro, T., Czifra, G., Toth, B.I., Kertesz, Z., Szikszai, Z., Kiss, A.Z., Juhasz, I., Zouboulis, C.C. and Hunyadi, J. (2008) Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Experimental dermatology 17,659-667.
    111.Kroll, A., Pillukat, M.H., Hahn, D. and Schnekenburger, J. (2009) Current in vitro methods in nanoparticle risk assessment:limitations and challenges. Eur J Pharm Biopharm 72,370-377.
    112.Chen, X., Deng, C., Tang, S. and Zhang, M. (2007) Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells. Biological & pharmaceutical bulletin 30,128-132.
    113.Kiran Kumar, B., Prabhakara Rao, Y., Noble, T., Weddington, K., McDowell, V.P., Rajanna, S. and Bettaiya, R. (2009) Lead-induced alteration of apoptotic proteins in different regions of adult rat brain. Toxicol Lett 184,56-60.
    1. Sahoo, S.K., Parveen, S. and Panda, J.J. (2007) The present and future of nanotechnology in human health care. Nanomedicine 3,20-31.
    2. Patel, L.N., Zaro, J.L. and Shen, W.C. (2007) Cell penetrating peptides:intracellular pathways and pharmaceutical perspectives. Pharmaceutical research 24,1977-1992.
    3. Chithrani, B.D., Ghazani, A.A. and Chan, W.C. (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano letters 6, 662-668.
    4. Rejman, J., Oberle, V., Zuhorn, I.S. and Hoekstra, D. (2004) Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. The Biochemical journal 377,159-169.
    5. Gurr, J.R., Wang, A.S., Chen, C.H. and Jan, K.Y. (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213,66-73.
    6. Rahman, Q., Lohani, M., Dopp, E., Pemsel, H., Jonas, L., Weiss, D.G. and Schiffmann, D. (2002) Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environmental health perspectives 110, 797-800.
    7. Muller, J., Huaux, F., Fonseca, A., Nagy, J.B., Moreau, N., Delos, M., Raymundo-Pinero, E., Beguin, F., Kirsch-Volders, M., Fenoglio, I., Fubini, B. and Lison, D. (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes:toxicological aspects. Chemical research in toxicology 21, 1698-1705.
    8. Chithrani, B.D. and Chan, W.C. (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano letters 7,1542-1550.
    9. Warheit, D.B., Webb, T.R., Reed, K.L., Frerichs, S. and Sayes, C.M. (2007) Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 230,90-104.
    10. Park, E.J., Yi, J., Chung, K.H., Ryu, D.Y., Choi, J. and Park, K. (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180,222-229.
    11. Singh, N., Manshian, B., Jenkins, G.J., Griffiths, S.M., Williams, P.M., Maffeis, T.G., Wright, C.J. and Doak, S.H. (2009) NanoGenotoxicology:the DNA damaging potential of engineered nanomaterials. Biomaterials 30,3891-3914.
    12. Wiesner, M.R., Lowry, G.V., Alvarez, P., Dionysiou, D. and Biswas, P. (2006) Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40, 4336-4345.
    13. Xia, T., Kovochich, M., Brant, J., Hotze, M., Sempf, J., Oberley, T., Sioutas, C., Yeh, J.I., Wiesner, M.R. and Nel, A.E. (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6,1794-1807.
    14. Gratton, S.E., Ropp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E. and DeSimone, J.M. (2008) The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences of the United States of America 105,11613-11618.
    15. Lockman, P.R., Koziara, J.M., Mumper, R.J. and Allen, D.D. (2004) Nanoparticle surface charges alter blood-brain barrier integrity and permeability. Journal of drug targeting 12,635-641.
    16. Nan, A., Bai, X., Son, S.J., Lee, S.B. and Ghandehari, H. (2008) Cellular uptake and cytotoxicity of silica nanotubes. Nano letters 8,2150-2154.
    17. Antunes, E.F., Almeida, E.C., Rosa, C.B., de Medeiros, L.I., Pardini, L.C., Massi, M. and Corat, E.J. Thermal annealing and electrochemical purification of multi-walled carbon nanotubes produced by camphor/ferrocene mixtures. Journal of nanoscience and nanotechnology 10,1296-1303.
    18. Sayes, C.M., Liang, F., Hudson, J.L., Mendez, J., Guo, W., Beach, J.M., Moore, V.C., Doyle, C.D., West, J.L., Billups, W.E., Ausman, K.D. and Colvin, V.L. (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161,135-142.
    19. Ghio, A.J., Stonehuerner, J., Dailey, L.A. and Carter, J.D. (1999) Metals associated with both the water-soluble and insoluble fractions of an ambient air pollution particle catalyze an oxidative stress. Inhalation toxicology 11,37-49.
    20. Pacurari, M., Yin, X.J., Zhao, J., Ding, M., Leonard, S.S., Schwegler-Berry, D., Ducatman, B.S., Sbarra, D., Hoover, M.D., Castranova, V. and Vallyathan, V. (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environmental health perspectives 116,1211-1217.
    21. Kagan, V.E., Tyurina, Y.Y., Tyurin, V.A., Konduru, N.V., Potapovich, A.I., Osipov, A.N., Kisin, E.R., Schwegler-Berry, D., Mercer, R., Castranova, V. and Shvedova, A.A. (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages:role of iron. Toxicol Lett 165,88-100.
    22. Lam, C.W., James, J.T., McCluskey, R. and Hunter, R.L. (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77,126-134.
    23. Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J. and Bruinink, A. (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168,121-131.
    24. Nel, A., Xia, T., Madler, L. and Li, N. (2006) Toxic potential of materials at the nanolevel. Science (New York, N.Y 311,622-627.
    25. Pena, M.E., Korfiatis, G.P., Patel, M., Lippincott, L. and Meng, X. (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 39,2327-2337.
    26. Xu, T., Kamat, P.V. and O'Shea, K.E. (2005) Mechanistic evaluation of arsenite oxidation in TiO2 assisted photocatalysis. The journal of physical chemistry 109, 9070-9075.
    27. Liu, R. and Liang, P. (2008) Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel. J Hazard Mater 152,166-171.
    28. Wilson, M.R., Foucaud, L., Barlow, P.G., Hutchison, G.R., Sales, J., Simpson, R.J. and Stone, V. (2007) Nanoparticle interactions with zinc and iron:implications for toxicology and inflammation. Toxicol Appl Pharmacol 225,80-89.
    29. Jin, C.Y., Zhu, B.S., Wang, X.F. and Lu, Q.H. (2008) Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chemical research in toxicology 21, 1871-1877.
    30. Long, T.C., Tajuba, J., Sama, P., Saleh, N., Swartz, C., Parker, J., Hester, S., Lowry, G.V. and Veronesi, B. (2007) Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental health perspectives 115,1631-1637.
    31. Soto, K., Garza, K.M. and Murr, L.E. (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3,351-358.
    32. Shvedova, A.A., Kisin, E.R., Mercer, R., Murray, A.R., Johnson, V.J., Potapovich, A.I., Tyurina, Y.Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A.F., Antonini, J., Evans, D.E., Ku, B.K., Ramsey, D., Maynard, A., Kagan, V.E., Castranova, V. and Baron, P. (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. American journal of physiology 289, L698-708.
    33. Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E. and Smalley, R.E. (1996) Crystalline Ropes of Metallic Carbon Nanotubes. Science (New York, N.Y 273,483-487.
    34. Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C.,Prato, M., Bianco, A. and Kostarelos, K. (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proceedings of the National Academy of Sciences of the United States of America 103,3357-3362.
    35. Johnston, D.E., Islam, M.F., Yodh, A.G. and Johnson, A.T. (2005) Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide. Nat Mater 4,589-592.
    36. Warner, W.G., Yin, J.J. and Wei, R.R. (1997) Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free radical biology & medicine 23,851-858.
    37. Duffin, R., Mills, N.L. and Donaldson, K. (2007) Nanoparticles-a thoracic toxicology perspective. Yonsei Med J 48,561-572.
    38. L'Azou, B., Jorly, J., On, D., Sellier, E., Moisan, F., Fleury-Feith, J., Cambar, J., Brochard, P. and Ohayon-Courtes, C. (2008) In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol 5,22.
    39. Oberdorster, G., Ferin, J. and Lehnert, B.E. (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environmental health perspectives 102 Suppl 5,173-179.
    40. Peters, K., Unger, R.E., Kirkpatrick, C.J., Gatti, A.M. and Monari, E. (2004) Effects of nano-scaled particles on endothelial cell function in vitro:studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15,321-325.
    41. Zhang, A.P. and Sun, Y.P. (2004) Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10,3191-3193.
    42. Long, T.C., Saleh, N., Tilton, R.D., Lowry, G.V. and Veronesi, B. (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2):implications for nanoparticle neurotoxicity. Environ Sci Technol 40,
    4346-4352.
    43. Oberdorster, G., Oberdorster, E. and Oberdorster, J. (2005) Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives 113,823-839.
    44. Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G. and Alexander, A. (2006) Carbon nanotubes:a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 92,5-22.
    45. Magrez, A., Kasas, S., Salicio, V., Pasquier, N., Seo, J.W., Celio, M., Catsicas, S., Schwaller, B. and Forro, L. (2006) Cellular toxicity of carbon-based nanomaterials. Nano letters 6,1121-1125.
    46. Tian, F., Cui, D., Schwarz, H., Estrada, G.G. and Kobayashi, H. (2006) Cytotoxicity of single-wall carbon nanotubes on human fibroblasts. Toxicol In Vitro 20,1202-1212.
    47. Davoren, M., Herzog, E., Casey, A., Cottineau, B., Chambers, G., Byrne, H.J. and Lyng, F.M. (2007) In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 21,438-448.
    48. Pulskamp, K., Diabate, S. and Krug, H.F. (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168,58-74.
    49. Porter, A.E., Gass, M., Muller, K.; Skepper, J.N., Midgley, P.A. and Welland, M. (2007) Direct imaging of single-walled carbon nanotubes in cells. Nature nanotechnology 2, 713-717.
    50. Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A., Seaton, A., Stone, V, Brown, S., Macnee, W. and Donaldson, K. (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature nanotechnology 3,423-428.
    51. Sakamoto, Y., Nakae, D., Fukumori, N., Tayama, K., Maekawa, A., Imai, K., Hirose, A., Nishimura, T., Ohashi, N. and Ogata, A. (2009) Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. The Journal of toxicological sciences 34,65-76.
    52. Jacobsen, N.R., Pojana, G., White, P., Moller, P., Cohn, C.A., Korsholm, K.S., Vogel, U., Marcomini, A., Loft, S. and Wallin, H. (2008) Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FEl-Mutatrade markMouse lung epithelial cells. Environmental and molecular mutagenesis 49,476-487.
    53. Kisin, E.R., Murray, A.R., Keane, M.J., Shi, X.C., Schwegler-Berry, D., Gorelik, O., Arepalli, S., Castranova, V., Wallace, W.E., Kagan, V.E. and Shvedova, A.A. (2007) Single-walled carbon nanotubes:geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A 70,2071-2079.
    54. Kaewamatawong, T., Shimada, A., Okajima, M., Inoue, H., Morita, T., Inoue, K. and Takano, H. (2006) Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation. Toxicologic pathology 34,958-965.
    55. Lin, W., Huang, Y.W., Zhou, X.D. and Ma, Y. (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217,252-259.
    56. Chang, J.S., Chang, K.L., Hwang, D.F. and Kong, Z.L. (2007) In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ Sci Technol 41,2064-2068.
    57. Jin, Y., Kannan, S., Wu, M. and Zhao, J.X. (2007) Toxicity of luminescent silica nanoparticles to living cells. Chemical research in toxicology 20,1126-1133.
    58. Chen, M. and von Mikecz, A. (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Experimental cell research 305,51-62.
    59. Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M. (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological
    interactions 160,1-40.
    60. Wang, J.J., Sanderson, B.J. and Wang, H. (2007) Cytotoxicity and genotoxicity of ultrafine crystalline SiO2 particulate in cultured human lymphoblastoid cells. Environmental and molecular mutagenesis 48,151-157.
    61. Berry, C.C., Wells, S., Charles, S., Aitchison, G. and Curtis, A.S. (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25, 5405-5413.
    62. Gupta, A.K. and Gupta, M. (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26,1565-1573.
    63. Berry, C.C., Wells, S., Charles, S. and Curtis, A.S. (2003) Dextran and albumin derivatised iron oxide nanoparticles:influence on fibroblasts in vitro. Biomaterials 24, 4551-4557.
    64. Stroh, A., Zimmer, C., Gutzeit, C., Jakstadt, M., Marschinke, F., Jung, T., Pilgrimm, H. and Grune, T. (2004) Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free radical biology & medicine 36,976-984.
    65. Auffan, M., Decome, L., Rose, J., Orsiere, T., De Meo, M., Briois, V., Chaneac, C., Olivi, L., Berge-Lefranc, J.L., Botta, A., Wiesner, M.R. and Bottero, J.Y. (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts:A physicochemical and cyto-genotoxical study. Environ Sci Technol 40, 4367-4373.
    66. Shukla, R., Bansal, V., Chaudhary, M., Basu, A., Bhonde, R.R. and Sastry, M. (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment:a microscopic overview. Langmuir 21,10644-10654.
    67. Kataoka, K., Handa, H. and Nishizawa, M. (2001) Induction of cellular antioxidative stress genes through heterodimeric transcription factor Nrf2/small Maf by antirheumatic gold(Ⅰ) compounds. The Journal of biological chemistry 276, 34074-34081.
    68. Li, Zou, Hartono, C.-N. Ong, B.-H. Bay and Yung, L.-Y.L. (2007) Gold Nanoparticles Induce Oxidative Damage in Lung Fibroblasts In Vitro Advanced Materials 20,138-142.
    69. Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S.M., Schlager, J.J. and Hong, Y. (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233,404-410.
    70. Hsin, Y.H., Chen, C.F., Huang, S., Shih, T.S., Lai, P.S. and Chueh, P.J. (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179,130-139.
    71. Colognato, R., Bonelli, A., Ponti, J., Farina, M., Bergamaschi, E., Sabbioni, E. and Migliore, L. (2008) Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 23,377-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700