BVAN08诱发肝癌细胞有丝分裂灾变死亡及放射增敏作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞死亡是多细胞生物生命过程中重要的生理或病理现象,也是恶性肿瘤治疗的细胞学响应基础,可分为凋亡(Apoptosis)、坏死(Necrosis)、自吞噬(Autophagy)和有丝分裂灾变死亡(Mitotic catastrophe),其中有丝分裂灾变死亡是发生在细胞有丝分裂期由于异常的细胞分裂而导致的死亡,它常常伴随着细胞周期检测点的异常或纺锤体结构的损伤而发生。有丝分裂灾变死亡的揭示为恶性肿瘤治疗、特别是对传统化疗药物有耐药性的肿瘤的治疗开辟了新的途径,因而也成为开发新的抗癌药物的分子靶向目标。
     DNA-PKcs是DNA依赖蛋白激酶的催化亚单位(DNA Dependent Protein Kinase Catalytic Subunit),与Ku70和Ku80共同构成DNA-PK复合物。主要功能是参与DNA双链断裂的非同源末端连接(NHEJ)和V(D)J重组,维持染色体端粒末端结构稳定性。DNA-PKcs具有丝氨酸-苏氨酸蛋白激酶活性,可磷酸化多种癌基因产物和转录因子(如c-fos、c-myc、oct-1、c-jun)、DNA损伤修复反应蛋白(如H2AX、p53、Chk2、Artemis、XRCC4),表明DNA-PKcs是一种具有多种功能的蛋白。近年来有研究表明,DNA-PKcs在人类多种肿瘤组织中异常高表达,并且与癌组织恶性度、耐辐射、预后差有密切关系。通过免疫组化分析显示90 %的肝癌患者的肿瘤组织中的DNA-PKcs蛋白水平呈强阳性,而正常肝组织中DNA-PKcs蛋白表达水平呈弱阳性,因此DNA-PKcs是一个很有价值的抗癌分子靶标。我们实验室前期从香兰素衍生物中发现DNA-PKcs的有效抑制剂BVAN08,并发现该化合物对多种组织来源的癌细胞都有杀伤效应,表明BVAN08是一种很有开发前景的抗肿瘤药物。本论文在前期研究结果的启示下,对BVAN08作为分子靶向抗肿瘤药物进行更深入研究,取得了如下主要进展:
     1)采用MTT法、台盼蓝染色法、Annexin V/PI染色法以及荧光染色法检测BVAN08对细胞增殖活性以及细胞凋亡的影响,发现BVAN08对HepG2细胞的生长有明显的抑制作用,并诱发细胞凋亡;通过单细胞电泳、脉冲电泳检测BVAN08对DNA损伤的影响,发现BVAN08可诱发HepG2细胞DNA双链断裂,且损伤程度与BVAN08作用时间呈正相关;通过流式细胞术检测BVAN08对细胞有丝分裂进程的影响以及激光共聚焦显微镜检测细胞纺锤体结构的变化,发现BVAN08诱发长时间的细胞有丝分裂中期阻滞,并且出现巨大细胞以及有丝分裂异常细胞,证实BVAN08诱发HepG2细胞有丝分裂灾变死亡;Western blot方法检测DNA损伤检测点相关蛋白的表达变化,发现BVAN08抑制DNA损伤修复蛋白DNA-PKcs以及G2/M期转换调控因子FoxM1蛋白的表达,激活检测点激酶Chk2蛋白。
     2)为了进一步研究BVAN08是通过何种信号调节通路导致细胞发生有丝分裂灾变死亡,以及是否与凋亡存在联系等,通过基因芯片技术以及蛋白质组学技术来研究有丝分裂灾变死亡的发生机制。鉴定出BVAN08作用后诱导表达上调的基因有CDKN1A,CCNE1,CDKN1C,CDKN2D,表达下调的基因有CDC2。蛋白质组学研究结果筛选到93个差异蛋白点(匹配137个肽段),其中表达上调的蛋白点有45个(匹配76个肽段),表达下调的蛋白点有48个(匹配61个肽段)。BVAN08作用后显著相关差异蛋白主要集中在14-3-3调节信号通路、PI3K/AKT信号通路、细胞骨架信号通路等,暗示这些通路参与细胞有丝分裂灾变死亡。
     3)为了研究DNA-PKcs与细胞有丝分裂灾变死亡的关系,采用RNA干扰手段构建DNA-PKcs的siRNA载体,筛选出DNA-PKcs蛋白表达抑制的肝癌细胞模型,并且比较三种化疗药物(DRB、DDP、VP16)对DNA-PKcs表达抑制的HepG2-H1细胞的影响。发现三种药物均能抑制HepG2-H1细胞生长,导致细胞周期紊乱,其中DRB是诱发G2-M期细胞阻滞,VP-16诱发S期阻滞。DNA-PKcs缺陷显著改变了HepG2细胞对上述药物的细胞周期变化反应性,其中显著加强了DDP诱发HepG2细胞的S阻滞,推动了VP-16诱发S期阻滞细胞进入G2-M。三种药物处理后HepG2-H1细胞都出现异常有丝分裂现象,多核细胞数目也明显增多,表现出有丝分裂灾变死亡的特征,表明DNA-PKcs在调控细胞有丝分裂过程中也发挥功能,BVAN08诱发的有丝分裂灾变死亡与抑制细胞中DNA-PKcs蛋白表达有关。
     4)通过建立表达绿色荧光蛋白的HepG2细胞系,并利用活体成像系统检测荷瘤鼠体内肿瘤的生长情况,研究发现BVAN08可抑制荷瘤鼠体内肿瘤生长,对荷瘤鼠体重以及外周血白细胞无明显的毒性作用。免疫组化实验显示BVAN08治疗组肿瘤组织中DNA-PKcs表达水平低于对照组,表明BVAN08具有荷瘤鼠体内的抗肿瘤活性,抑制肿瘤生长作用与降低组织中DNA-PKcs表达有关,与离体细胞学结果一致。
     5)研究BVAN08的辐射增敏效应以及对肿瘤的放疗效果,发现BVAN08与射线联合作用更加显著的抑制细胞存活,提高肿瘤细胞对射线的敏感性,BVAN08与射线联合作用显著抑制荷瘤鼠肿瘤的生长,表明BVAN08提高荷瘤鼠体内肿瘤的辐射增敏效应,并且对荷瘤鼠心、肝、肾无明显的毒性作用。
     6)研究BVAN08对细胞DNA损伤修复的影响,以及Western blot检测细胞DNA损伤修复蛋白DNA-PKcs、ATM、检测点激酶Chk2、G2期检测点的关键蛋白Plk1。结果发现BAN08抑制照射诱发的DNA双链断裂损伤的修复,抑制损伤修复蛋白DNA-PKcs的表达,揭示BVAN08通过激活ATM、Chk2通号通路提高细胞辐射敏感性。
     本课题提供了多方面证据表明BVAN08可以诱发细胞有丝分裂灾变死亡,可以抑制荷瘤鼠体内肿瘤生长,并且对正常组织毒性作用弱,本研究还揭示了DNA-PKcs在有丝分裂灾变死亡过程中以及提高荷瘤鼠辐射敏感性中的作用,也为DNA-PKcs作为抗肿瘤药物研发的一个有效分子靶标提供了有力的实验数据。综合结果表明,BVAN08具有开发成为一种有效的辐射增敏抗癌药物的价值。
Cell death is an important physiological and pathological phenomenon, which is also the fundamental basis of cellular response to cancer therapy. Cell death can be mechanistically and morphologically categorized into apoptosis, necrosis, autophagy and mitotic catastrophe. Mitotic catastrophe occurs in mitotic cells as the consequence of abnormal cell division, it is often accompanied by abnormal cell cycle checkpoint or the destroyed spindle structure. Mitotic catastrophe has been taken as a new strategy for the development of new anticancer drugs, especially against the cancers with the resistant to traditional chemotherapy treatment.
     DNA-PKcs is the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) complex, inincluding another two regulatory components, i.e, Ku70 and Ku80. DNA-PKcs was firstly identified in the pathways of the nonhomolgous end joining (NHEJ) of DNA double-strand breaks and V(D)J recombination. In addition, DNA-PKcs is important for maintaining telomere length and stability, and it can phosphorylate a lot of essential proteins in vitro and in vivo, such as oncogenes products and signal pathway factors (e.g.c-fos, c-myc, oct-1, c-jun), DNA damage response proteins (e.g. H2AX、p53、Chk2、Artemis、XRCC4) and so on.
     Lately, overexpression of DNA-PKcs has been reported in a extensive variety of human tumour. The immunohistochemistry of liver tumour indicated that the DNA-PKcs level was higher than normal cells. Our laboratory work has found an effective inhibitor of DNA-PKcs by the vanillin derivative—BVAN08, which shows a killing effect on various cancer cells, and has the potential of development for a new anticancer drug. In order to confirm the anticancer target potential of DNA-PKcs and develop BVAN08 as a new anticancer drugs, we have made the following major experimental research achievements:
     (1) MTT assay, Typan blue staining, Annexin V/PI staining and fluorescent staining were used to analyze the effect of BVAN08 on cell proliferation and apoptosis of HepG2 cells, single cell gel electrophoresis and pulsed-field gel electrophoresis were used to analyze DNA damage and repair. The results indicated that BVAN08 exhibited an effective antiproliferation against HepG2 cells, induced apoptosis and DNA double strand break. On the base of observation of G2/M arrest induced by BVAN08, and the mitotic arrest, spindle structure destruction (aberrant multi-polar spindles) and multinucleated cells were further demonstrated by laser confocal microscopic observation of BVAN08-treated cells after immunostained with the anti-γ-tubulin antibody and anti-?-tubulin antibody. Western blot analysis indicated that cell cycle control associated transcription regulation factor FoxM1 and DNA-PKcs were down-regulated, while the checkpoint kinase Chk2 was activated by BVAN08. Our results indicated that BVAN08 induced mitotic catasphophe of HepG2 cells. Inactivation of FoxM1and DNA-PKcs proteins could involve in the mechanistic pathway of mitotic catastrophe induced by BVAN08.
     (2) In order to further reveal the signal pathway which is responsible for the induction of mitotic catastrophe by BVAN08, and to study the relationship between mitotic catastrophe and apoptosis, we employed the gene chip technology and proteomics technologies to investigate the mechanism of mitotic catastrophe. The results showed that CDKN1A, CCNE1, CDKN1C, CDKN2D were upregulated and CDC2 was decreased in HepG2 cells treated with BVAN08. The proteomic analyses have identified 93 differentially expressed protein spots which matched 137 peptides, including these 45 increased protein spot(matching 76 peptides), and 48 protein decreased spots(matching 61 peptides). These results suggested that a number of cell cycle-related genes participate in mitotic catastrophe, 14-3-3 signal pathway, and PI3K/AKT signal pathway involve in mitotic catastrophe.
     (3) In order to further investigate the function of DNA-PKcs in mitotic catastrophe, RNA interference technique was used to decrease the protein level of DNA-PKcs. Stable HepG2 cells line which transfected with DNA-PKcs siRNA vector were selected. In order to compare effect of three anticancer drugs (DRB, DDP, VP-16) on the growth inhibition of DNA-PKcs-depleted HepG2-H1 cells. The results showed that these anticancer drugs inhibited the growth of HepG2-H1 cells and significantly disturbed the cell cycle progression. For example, DRB induces G2-M arrest, while VP-16 induces S phase arrest. However, DNA-PKcs depletion augments the induction of S phase arrest by DDP, and could promote the entrance of the VP-16-arrested S phase cells into G2 phase. The three drugs induced abnormal mitosis phenomenon in BVAN08 treated HepG2-H1 cells, indicated the function of DNA-PKcs in regulating the process of cell mitosis, mitotic catastrophe induced by BVAN08 was related to inactivation of DNA-PKcs protein.
     (4) In order to investigate the anticancer activity in vivo, HepG2 cell line expressing green fluorescent protein were established for the in vivo tumor growth monitoring of molecular image system. The results demonstrated that BVAN08 has antitumor activity on tumor-bearing mice, and no obvious side effect to body weight and peripheral white blood. Immunohistochemistry demonstrated that the expression of DNA-PKcs protein was decreased in BVAN08 treated group. These results indicated that DNA-PKcs may play a role in inhibiting tumor growth.
     (5) The sensitization of BVAN08 on radiotherapy of tumors has been further investigated. The results showed that combined treatment BVAN08 andγ-rays significantly decreased the cancer cells survival, increased radiosensitivity of cancer cells. Combined treatment of BVAN08 and andγ-rays remarkably inhibited the growth of tumor in vivo. The results indicated that BVAN08 has radiosensitization effect both in vivo and in vitro. Moreover, BVAN08 has less toxic to the normal tissues.
     (6) To study the mechanism of BVAN08 on radiosensitization and the expression of a number of critical DNA damage repair proteins, including DNA-PKcs, ATM, checkpoint kinase2 (Chk2) and Plk1 proteins. The results showed that BAN08 inhibited DNA double-strand break repair after irradiation, decreased expression of DNA-PKcs protein, while activated ATM, Chk2 sigaling pathway to increase cell radiosensitivity.
     This research provided the broad evidence showed that BVAN08 can induce cancer cell death in term of mitotic catastrophe. BVAN08 inhibited tumor growth in vivo, enhance the sensitivity of tumors to radiotherapy but less toxicity to normal tissues. DNA-PKcs can be used as an effective molecular target for cancer therapy and BVAN08 has the value for cancer developing as an effective anticancer drug.
引文
[1] Lu H, Schwarz K, Lieber MR. Extent to which hairpin opening by the Artemis:DNA-PKcs complex can contribute to junctional diversity in V(D)J recombination. Nucleic Acids Res[J]. 2007; 35 (20) : 6917 - 23
    [2] Ruis BL, Fattah KR, Hendrickson EA. The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells[J]. Mol Cell Biol. 2008; 28 (20) : 6182 - 95
    [3] Brandi L. and Susan P. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining[J]. Biochem. J. 2009; 417: 639– 650
    [4]余子建,周丽君等.肝癌组织中DNA-PKcs的过量表达及其靶向siRNA分子的抗增殖作用[J].世界华人消化杂志, 2007; 15 (36) : 3815-3821.
    [5]余子建,孙敬芬,隋建丽等. DNA-PKcs反义核酸增强HeLa细胞对辐射及化疗药物顺铂的敏感性[J].中国现代医学杂志, 2005; 15 (8) : 1148-1151
    [6]安静,隋建丽,徐勤枝等. SiRNA抑制DNA-PKcs表达及对HeLa细胞增殖的影响[J].癌变·突变·畸变, 2005; 17 (6) : 27-331
    [7]隋建丽,孙敬芬,曹珍山等。DNA依赖蛋白激酶在人支气管上皮细胞癌变株和肺癌组织中的异常表达[J].国体视学与图像分析, 2003; 8 (3) : 141-145
    [8] An J, Yang D Y, Zhou P K, et al. DNA-dependent protein kinase catalytic subunit modulates the stability c-Myc oncoprotein [J]. Mol Cancer, 2008; 7 (32) : 1-12
    [9] Shang ZF, Huang B, Xu QZ. Inactivation of DNA-dependent protein kinase leads to spindle disruption and mitotic catastrophe with attenuated checkpoint protein 2 Phosphorylation in response to DNA damage[J]. Cancer Res, 2010; 70(9) : 3657-66.
    [10] Weaver B A, Cleveland D W. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death. Cancer Cell, 2005; 8 (1) : 7–12
    [11] Huang X, Tran T, Zhang L et al. DNA damage-induced mitotic catastrophe is mediated by the Chk1-dependent mitotic exit DNA damage checkpoint [J]. PNAS, 2005; 102 (4) : 1065–1070
    [12] Chan G, Yen TJ. The mitotic checkpoint: a signaling pathway that allows a single unattached kinetochore to inhibit mitotic exit [J]. Prog Cell Cycle Res, 2003; 5: 431-439
    [13] Helen Dodson, Emer Bourke, Liam J Jeffers et al, Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM [J]. The EMBO Journal, 2004 ; 23, 3864–3873
    [14] Mikhailov A, Cole RW, Rieder CL. DNA damage during mitosis in human cells delays the metaphase/anaphase transition via the spindle-assembly checkpoint [J]. Curr Biol, 2002; 12 (21) : 1797 - 1806
    [15] Gaul L,M andl-Weber S, Schmidmaier R, et al. Bendamustine induces G2 cell cycle arrest and apoptosis in myeloma cells: the roal of ATM-Chk2-Cdc25A and ATM-p53-p21-pathway [J]. Cancer Res Clin Oncol, 2008; 134(2) : 245-53
    [16] Yongjun Tan, Pradip Raychaudhuri, and Robert H. Costa. Chk2 Mediates Stabilization of the FoxM1 Transcription Factor ToStimulate Expression of DNA Repair Genes[J]. Molecular And Ccllular Biology, 2007; 27(3): 1007–1016
    [17] Ianzini F, Bertoldo A, Kosmacek EA et al. Lack of p53 function promotes radiation-induced mitotic catastrophe in mouse embryonic fibroblast cells [J]. Cancer Cell International, 2006; 26 : 6-11
    [18] Maria Castedo Perfettini JL, Roumier T, et al . The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe Oncogene, 2004; 23 : 4353-4361
    [19] Taylor BF, McNeely SC, Miller HL et al. p53 suppression of Arsenite-induced mitotic catastrophe is mediated by p21CIP1/WAF1 [J]. Pharmacol Expe Ther,2006; 318 : 142-151
    [20] Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells [J]. Drug Resist Updat, 2001; 4:303-13
    [21] Ho K, Yazan LS, Ismail N, Ismail M. Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol [J]. 2009; 33 (2) : 155-160.
    [22] Liang JA, Wu SL, Lo HY, et al. Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-kappaB signaling pathway in human hepatocellular carcinoma cells. Mol Pharmacol [J]. 2009; 75 (1) : 151-157
    [23] Yan Y Q, Xu Q Z, Wang L, et al. Vanillin derivative 6-bromine-5-hydroxy-4- methoxybenzaldehyde-elicited apoptosis and G2/M arrest of Jurkat cells proceeds concurrently with DNA-PKcs cleavage and Akt inactivation [J]. Int J Oncology, 2006; 29 (5) : 1167-1172
    [24] Yan Y Q, Zhang B, Wang L, et al. Induction of apoptosis and autophagic cell death by the vanillin derivative 6-bromine-5-hydroxy-4-methoxybenzaldehyde is accompanied by the cleavage of DNA-PKcs and rapid destruction of c-Myc oncoprotein in HepG2 cells [J]. Cancer Letters, 2007; 252 (2) : 280-289
    [1] Goldwasser F, Shimizu T, Jackman J, et al. Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon carcinoma cells[J]. Cancer Res, 1996, 56(19): 4430-4437.
    [2] Molz L, Booher R, Young P and Beach D. cdc2 and the regulation of mitosis: six interacting mcs genes[J]. Genetics, 1989, 122(4):773-82
    [3] Eom Y.W, Kim M.A., Park S.S, et al. Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype[J]. Oncogene, 2005, 24(30): 4765-4777
    [4] Yan YQ, Xu QZ, Wang L, et al. Vanillin derivative 6-bromine-5-hydroxy-4- methoxybenzaldehyde-elicited apoptosis and G2/M arrest of Jurkat cells proceeds concurrently with DNA-PKcs cleavage and Akt inactivation[J]. Int J Oncology, 2006, 29(5): 1167-1172.
    [5] Yan YQ, Zhang B, Wang L, et al. Induction of apoptosis and autophagic cell death by the vanillin derivative 6-bromine-5-hydroxy-4- methoxybenzaldehyde is accompanied by the cleavage of DNA-PKcs and rapid destruction of c-Myconcoprotein in HepG2 cells[J]. Cancer Letters, 2007, 252(2): 280-289.
    [6] Hyzy M, Bozko P, Konopa J, et al. Antitumour imidazoacridone C-1311 induces cell death by mitotic catastrophe in human colon carcinoma cells[J]. Biochemical Pharmacology, 2005, 69(5): 801-809
    [7] Jacobberger, JW. Frisa PS, Sramkoski M, et al. A new biomarker for mitotic cells[J]. Cytometry, 2008, 73(1): 5-15
    [8] Kazuo Ozawa. Reduction of phosphorylated histone H3 serine 10 and serine 28 cell cycle marker intensities after DNA damage[J]. Cytometry, 2008, 73(6): 517-527
    [9] Huang X, Tran T, Zhang L, et al. DNA damage-induced mitotic catastrophe is mediated by the Chk1-dependent mitotic exit DNA damage checkpoint[J]. PNAS, 2005, 102 (4) : 1065–1070
    [10] Weaver BA, Cleveland, Don W. Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death[J]. Cancer Cell, 2005, 8(1):7–12.
    [11] Stracker TH, Williams BR, Deriano L, et al. Artemis and nonhomologous end joining-independent influence of DNA-dependent protein kinase catalytic subunit on chromosome stability. Mol Cell Biol, 2009 , 29(2):503-14
    [12] Burma S, Chen DJ. Role of DNA-PK in the cellular response to DNA double- strand breaks[J]. DNA repair, 2004, 3(8-9): 909-918
    [13] Campos-Nebel M, Larripa I, González-Cid M. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells. Mutat Res, 2008, 646(1-2):8-16.
    [14] Um JH, Kang CD, Wang BM., et al. Invovlement of DNA-PK in regulation the mitochondiral heat shock proteins[J]. Leukemia Reasearch, 2003, 27(6): 509-516
    [15] Ricci MS, Zong WX. Chemotherapeutic approaches for targeting cell death pathways[J]. The Oncologist, 2006, 11(4):342–357
    [16] Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage[J]. Science, 2002, 297(5581):547-551
    [17] Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. A Cell Death Differ, 2008, 15(7):1153-62.
    [18] Jamila L, Matthijs R. H, Alexandra B, et al. FoxM1 is required for execution of the mitotic programme and chromosome stability[J]. Nature Cell Biology, 2005,7(2): 126-136
    [19] Wang Z W, Banerjee S, Kong D,et al. Down-regulation of Forkhead Box M1 Transcription Factor Leads to the Inhibition of Invasion and Angiogenesis of Pancreatic Cancer Cells[J]. Cancer Res, 2007; 67(17):8293–300
    [20] Tan Y, Raychaudhuri P, Costa RH. FoxM1 Transcription factor to stimulate expression of DNA repair genes[J]. Molecula and Cellular Biology, 2007; 27(3):1007-1016
    [21] Diane R. Wonsey and Mximillian T. Follettie Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe[J]. Cancer Res, 2005; 65(12):5181-9
    [22] Guy R Adami, Honggany Ye. Future role for FoxM1 inhibitors in cancer treatments[J]. Future Oncol.2007; 3(1),1-3
    [23] Takaki T,Trenz K, Petronczki M, et al. Polo-like 1 reaches beyond mitosis-cytokinesis,DNA damage response ,and development[J]. Curr Opin Cell Biol, 2008,20(6): 650-660
    [24] Lowery DM, Ma S, Erikson R, et al. Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase[J]. J Biol Chem, 2002, 177(46) : 44115-44120
    [1] Stacey Ricci M. et al. Chemotherapeutic approaches for targeting cell deathpathways[J]. The Oncologist, 2006, 11(4):342–357
    [2] Kastan,M.B. and Bartek,J. Cell-cycle checkpoints and cancer[J]. Nature, 2004, 432: 316–323.
    [3] Kops,G.J., Weaver,B.A. and Cleveland,D.W. On the road to cancer: aneuploidy and the mitotic checkpoint[J]. Nature Rev. Cancer, 2005,5(10): 773–785.
    [4] Dardalhon D, Angelin AR, Baldacci G, et al. Unconventional effects of UVA radiation on cell cycle progression in S. Pombe[J]. Cell Cycle. 2008;7(5):611-22.
    [5] Bartek J, Lukas C, Lukas J. Checking on DNA damage in S phase[J]. Nat Rev Mol Cell Biol, 2004, 5(10):792–804.
    [6] Arlander SJ, Greene BT, Innes CL, et al. DNA protein kinase-dependent G2 checkpoint revealed following knockdown of ataxia-telangiectasia mutated in human mammary epithelial cells[J]. Cancer Res. 2008,1;68(1):89-97.
    [7] Singh R, George J, Shukla Y. Role of senescence and mitotic catastrophe in cancer therapy[J]. Cell Div. 2010, 21; 4-5
    [8] Castedo M, Vainchenker W and Kroemer G. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy[J]. Oncogene, 2004, 23(25):4362–4370
    [9] Levine B, Yuan JY. Autophagy in cell death: an innocent convict?[J]. The Journal of Clinical Investigation, 2005, 115(10): 2679-2688
    [10] Fulda S, Debatin KM. Sensitization for anticancer drug-induced apoptosis by the chem preventive agent resveratrol[J]. Oncogene, 2004, 23(40): 6702-6711
    [11] Aurello P, Bellagamba R, Rossi Del Monte S,et al. Apoptosis and microvessel density in gastric cancer: correlation with tumor stage and prognosis[J]. Am Surg. 2009 Dec;75(12):1183-8.
    [12] Johnstone RW, Ruefli AA, Lowe SW. Apotosis: A Link between Cancer Genetics and Chemotherapy[J]. Cell, 2002, 108(2): 153-164
    [13] Slupianek A, Hoser G, Majsterek I, et al. Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G2/M phase, and protection from apoptosis[J]. Mol Cell Biol, 2002, 22(12): 4189-4201.
    [14] Vogelstein B, Lane D, Levine AJ. Surfing the p53 network[J]. Nature, 2000, 408(6810): 307–310.
    [15] Laptenko O, Prives C. Transcriptional regulation by p53: one protein, manypossibilities[J]. Cell Death Differ, 2006, 13(6):951–961.
    [16] Frazier T.B, Samuel C.M, Heather L.M, et al. p53 Suppression of Arsenite-Induced Mitotic Catastrophe Is Mediated by p21CIP1/WAF1[J]. Pharmacology and Experimental Therapeutics. 2006, 318(1):142–151.
    [17] Lodygin D, Hermeking H. The role of epigenetic inactivation of 14-3-3σin human cancer[J]. Cell Research, 2005, 15(4):237-246.
    [18] Yu K, Toral-Barza L, Shi C. Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy[J]. Cancer Biol Ther. 2008 ;7(2):319-21.
    [19] Ivins Zito C, Kontaridis MI, Fornaro M. SHP-2 regulates the phosphatidylinositide 3'-kinase/Akt pathway and suppresses caspase 3-mediated apoptosis[J]. J Cell Physiol. 2004;199(2):227-36
    [20] Clark AS, West K, Streicher S, Dennis PA: Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells[J]. Mol Cancer Ther, 2002, 1(9): 707-717
    [21] Chin-Yee Ho, Chi-Hang Wong, and Hoi-Yeung Li. Perturbation of the Chromosomal Binding of RCC1,Mad2 and Survivin Causes Spindle Assembly Defects and Mitotic Catastrophe[J]. Journal of Cellular Biochemistry,2008, 105(3):835–846
    [22] Min Liu, Ritu Aneja, Chunyong Liu et al. Inhibition of the Mitotic Kinesin Eg5 Up-regulates Hsp70 through the Phosphatidylinositol 3-Kinase/Akt Pathway in Multiple Myeloma Cells[J]. Bio Chem, 2006,281(26): 18090–18097.
    [1] Gupta S. Molicular signaling in death receptor and mitochondrial pathways of apoptosis [J]. Int J Oncel, 2003; 22(1):15-20.
    [2] Hefferin M L, Tomkinson A E. Mechanism of DNA double-strand break repair by non-homologous end joining [J]. DNA Repair, 2005; 4 (6): 639-648
    [3] Ting NS, Pohorelic B, Yu Y, et al. The human telomerase RNA component, hTR,activates the DNA-dependent protein kinase to phosphorylate heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res. 2009; 37(18):6105-15.
    [4] LIU Jia hao, TANG Hong li, RUAN Wei-yong. Etoposide induces apoptosisi via mitochondrial signaling pathway with cytochrome c release in Jurkat leukemia cells [J]. Chinese Journal of Pathophysiology. 2007; 23(3):453-459
    [5] Calsou P, Delteil C, Frit P, et al. Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IR recruitment [J]. J Mol Biol, 2003; 326(1):93-103.
    [6] Chan G, Yen TJ. The mitotic checkpoint: a signaling pathway that allows a single unattached kinetochore to inhibit mitotic exit [J]. Prog Cell Cycle Res, 2003; 5: 431-439
    [7] Cleveland DW, Mao Y, Sullivan KF. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling [J]. Cell, 2003; 24(4): 407-421
    [8] Goldwasser F, Shimizu T, Jackman J, et al. Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon carcinoma cells [J]. Cancer Res; 1996; 56(19): 4430-4437
    [9] Lu H, Schwarz K, Lieber MR. Extent to which hairpin opening by the Artemis:DNA-PKcs complex can contribute to junctional diversity in V(D)J recombination[J]. Nucleic Acids Res; 2007; 35(20):6917-23
    [10] Ruis BL, Fattah KR, Hendrickson EA. The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells[J]. Mol Cell Bio; 2008; 28(20):6182-95.
    [11] Kim MJ, Kim HB, Bae JH et al.Sensitization of human K562 leukemic cells to TRAIL-induced apoptosis by inhibiting the DNA-PKcs/Akt-mediated cell survival pathway[J]. Biochem Pharmacol; 2009; 78(6):573-82
    [12] Lee S, Schmitt CA. Chemotheraty response and resistance [J]. Curr Opin Genet Dev; 2003; 13(1):90-96.
    [13] Degterev A, Boyce M, Yuan J. A decade of caspases [J]. Oncogene; 2003; 22(53): 8543-8567.
    [14] Castedo M, Perfettini JL, Thomas Roumier, et al. Cell death by mitotic catastrophe:a molecular definition [J]. Oncogene; 2004; 23(25):2825–2837.
    [15] Xingxu Huang, Thanh Tran, Lingna Zhang, et al. DNA damage-induced mitotic catastrophe is mediated by the Chk1-dependent mitotic exit DNA damage checkpoint [J]. PNAS; 2005;,102(4):1065-1072
    [16] Yoshikawa R, Kusunoki M, Yanagi H, et al. Dual antitumor effects of 5-fluorouracil on the cell cycle in colorectal carcinoma cells: a novel target mechanism concept for pharmacokinetic modulating chemotherapy [J]. Cancer Res; 2001; 61(3):1029-37.
    [17] Seok Soon Park, Young-Woo Eom, Kyeong Sook Choi. Cdc2 and Cdk2 play critical roles in low dose doxorubicin-induced cell death through mitotic catastrophe but not in high dose doxorubicin-induced apoptosis [J]. BBRC; 2004; 334(4):1014-2021
    [18] Hemstrom TH, Sandstrom M, Zhivotovsky B. Inhibitors of the PI3-kinase/Akt pathway induce mitotic catastrophe in non-small cell lung cancer cells [J]. Int J Cancer; 2006; 119(5): 1028-1038.
    [19] Hirose Y, Katayama M, Mirzoeva OK, et al. Akt activation suppresses chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence [J]. Cancer Res; 2005; 65(11): 4861-4869.
    [20]邓旭坤,蔡宝昌,徐珊等.顺铂诱导人胃癌细胞SGC7901和人肝癌细胞HepG2凋亡的细胞形态学变化的比较.解剖学报. 2006.37(5):535-540
    [1] Ruis BL, Fattah KR, Hendrickson EA. The catalytic subunit of DNA-dependent protein kinase regulates proliferation, telomere length, and genomic stability in human somatic cells[J]. Mol Cell Biol. 2008; 28(20): 6182-95.
    [2] Holgersson A, Nilsson A, Lewensohn R, et al. Expression of DNA-PKcs and Ku86, but not Ku70, differs between lymphoid malignancies [J]. Exp Mol Pathol, 2004, 77(1): 1-6.
    [3] Noguchi T, Shibata T, Fumoto S, et al. DNA-PKcs expression in esophageal cancer as a predictor for chemoradiation therapeutic sensitivity [J]. Ann Surg Oncol, 2002, 9(10): 1017-1022.
    [4] Sakata K, Matsumoto Y, Tauchi H, et al. Expression of genes involved in repair of DNA double-strand breaks in normal and tumor tissues [J]. Int J Radiat Oncol Biol Phys, 2001, 49(1): 161-167.
    [5] Jürgen K W, Nicholas V B, Ludger M D, et al. Molecular imaging in drug development [J]. Nature reviews, 2008, 7(6): 591-607
    [6] Xiong Li, Yan-Ping Zhang,Hong-Sup Kim, et al. Gene Therapy for Prostate Cancer by Controlling Adenovirus E1a and E4 Gene Expression with PSES Enhancer [J]. Cancer Res, 2005, 65(5): 1941-1951
    [7] Cameron N J, Perry S M, Sophie R, et al. Parvin-βInhibits Breast Cancer Tumorigenicity and Promotes CDK9-Mediated Peroxisome Proliferator-Activated Receptor Gamma 1 Phosphorylation. Moleculor AND Cellular Biology [J]. Jan, 2008, 28(2): 687–704
    [8] Jeremy B Burton, Mai Johnson, Makoto Sato, et al. Adenovirus-mediated gene expression imaging todirectly detect sentinel lymph node metastasis of prostate cancer [J]. Nature medicine, 2008,7(11):882-888
    [9] Ho K, Yazan LS, Ismail N, Ismail M. Apoptosis and cell cycle arrest of humancolorectal cancer cell line HT-29 induced by vanillin[J]. Cancer Epidemiol, 2009, 33 (2) : 155-160.
    [10] Liang JA, Wu SL, Lo HY, et al. Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-kappaB signaling pathway in human hepatocellular carcinoma cells[J]. Mol Pharmacol, 2009,75 (1) : 151-157
    [11] Chun-Guang W, Jun-Qing Y, Bei-Zhong L et al. Anti-tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and in vivo[J]. Eur J Pharmacol, 2010: 10;627(1-3):33-41
    [12] Chan JYW, Cheung JYN, Luk SCW, et al. Anti-Cancer and Pro-Apoptotic Effects of an Herbal Medicine and Saccharomyces Cerevisiae Product (CKBM) on Human Hepatocellular Carcinoma HepG2 Cells In Vitro and In Vivo [J]. Immunopharmacology and immunotoxicology, 2004, 26(4): 597-609
    [13] Lee TK, Man K, Ho JW, et al. FTY720 induces apoptosis of human hepatoma cell lines through PI3-K-mediated Akt dephosphorylation [J]. Carcinogenesis, 2004, 25 (12): 2397--2405
    [14] Gisela Caceres, Xiao Yun Zhu, Jin-an Jiao, et al. Imaging of luciferase and GFP-transfected human tumours in nude mice [J]. Luminescence, 2003, 18(4): 218–223
    [15] Nico V H, Petra G M, Ivo Q, et al. Advances in optical imaging and novel model systems for cancer metastasis research [J]. Clin Exp Metastasis, 2007, 24(8): 699–705
    [16] Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double-strand break repair pathway choice[J]. Cell Res, 2008; 18(1): 134-47.
    [17] Hosoi Y, Watanabe T, Nakagawa K,et al. Up-regulation of DNA-dependent protein kinase activity and Sp1 in colorectal cancer[J]. Int J Oncol, 2004, 25(2): 461-468.
    [18]余子建,徐勤枝,周丽君等.肝癌组织中DNA-PKcs的过量表达及其靶向siRNA分子的抗增殖作用[J].世界华人消化杂志, 2007, 15(36): 3815-3821.
    [19] Um J H, Kwon J K, Kang C D,et al. Relationship between antiapoptotic molecules and metastatic potency and the involvement of DNA-dependent protein kinase in the chemosensitization of metastatic human cancer cells by epidermal growth factor receptor blockade [J]. J Pharmacol Exp Ther, 2004, 311(3):1062-1070.
    [1] McBride WH, Chiang CS,Olson JL, et al. A sense of danger from radiation [J] . Radiat Res, 2004,162(1): 1-19
    [2] Choi CH, Kim TJ, Lee SJ, et al. Salvage chemotherapy with a combination of paclitaxel, ifosfamide, and cisplatin for the patients with recurrent carcinoma of the uterine cerviex [J]. Int J Gynecol Cancer, 2006, 16(3): 1157-1164
    [3] Jeffery S, William B, Kelli AO, et al. Enhanced cell killing induced by the combination of radiation and the heat shock protein 90 Inhibitor 17-Allylamino-17-Demethoxygeldanamycin: a multitarget approach toradiosensitization[J]. Clinical Cancer Research, 2003, 9(10): 3749-3755
    [4] Choy H, MacRae R. Irinotecan and radiation incombined-modality therapy for solid tumors [J].Oncology, 2001, 15(7): 22-28
    [5] Willmann JK, van Bruggen N, Dinkelborg LM et al. Molecular imaging in drug development[J]. Nature reviews, 2008, 7(7): 591-607
    [6] Kevin Brindle. New approaches for imaging tumour responses to treatment[J]. Nature reviews, 2008, 8(2): 94-107
    [7] Thomas Schluep, Jungyeong Hwang, Jianjun Cheng,et al. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models[J]. Clin Cancer Res, 2006, 12(5): 1606-1614
    [8] Yu Zi-Jian , Xu Qin Zhi, Zhou Ping-Kun, et al. Over expression of DNA-PKcs in hepatocarcinoma tissues and the antiproliferative effect mediated by downregulating its expression with siRNA[J]. World Chin J Difesrol, 2007,15(36): 3815-3821
    [9]余子建,孙敬芬,隋建丽等. DNA-PKcs反义核酸增强HeLa细胞对辐射及化疗药物顺铂的敏感性[J]。中国现代医学杂志, 2005, 15:1148-1151
    [10] An J, Yang D Y, Zhou P K, et al. DNA-dependent protein kinase catalytic subunit modulates the stability c-Myc oncoprotein [J]. Mol Cancer, 2008, 7 (32): 1-12
    [11] Lee TK, Man K, Ho JW, et al. FTY720 induces apoptosis of human hepatoma cell lines through PI3-K-mediated Akt dephosphorylation[J]. Carcinogenesis, 2004, 25 (12): 2397--2405
    [12] Collis SJ, DeWeese TL, Jeggo PA, et al. The life and death of DNA-PK[J]. Oncogene, 2005, 24(6): 949-961
    [13] Tachiiri S, Katagiri T, Tsunoda T et al. Analysis of gene-expression profile after gamma irradiation of normal human fibroblasts[J]. Int J Radiat Oncol Biol Phy, 2006, 64(1): 272-279
    [14] Li M, Fang X, Wei Z, et al. Loss of spindle assembly checkpoint-mediated inhibition of Cdc20 promotes tumorigenesis in mice[J]. J Cell Biol. 2009; 185(6): 983-94.
    [15] Hyzy M, Bozko P, Konopa J, et al. Antitumour imidazoacridone C-1311 induces cell death by mitotic catastrophe in human colon carcinoma cells. Biochemical Pharmacology, 2005, 69(5): 801-809
    [16] Nyberg KA, Michelson RJ, Putnam CW, et al. Toward maitaining the genome:DNA damage and replication checkpoints[J]. Annu Rev Genet, 2002, 36: 617-656
    [17] Ralph Weissleder, Mikael J. Pittet. Imaging in the era of molecular oncology[J]. Nature, 2008, 452(3): 58-590
    [18] Derui Li, Liangxi Xie, Yingcheng Lin, et al. Arsenic trioxide enhances radiosensitivity of nasopharyngeal carcinoma in vivo[J]. Chin J Radiol Med Prot, 2005, 25(4): 49-52
    [1] Takahashi A. and Ohnishi, T. Doseγ-H2AX foci formation depend on the presence of DNA double strand breaks[J]. Cancer Lett, 2005, 229(2): 171-179
    [2] Stiff T, O’Driscoll M, Rief N, et al. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation[J]. Cancer Res, 2004, 64(7): 2390-2396.
    [3] Kozlov SV, Graham ME, Peng C, et al. Involvement of Novel Autophosphorylation Sites in ATM Activation[J]. EMBO, 2006, 25(15): 3504-3514
    [4] Mailand N, Falck J, Lukas C, et al. Rapid destruction of human Cdc25A in response to DNA damage[J]. Science, 2000, 288(5470): 1425-1429
    [5] Petronczki M, Lenart P, Peters J M, et al. Polo on the rise-from mitotic entry to cytokinesis with Plk1[J]. Dev Cell, 2008,14(5): 646-659
    [6] Lowery DM, Lim Chem, Yaffe MB. Structure and function of Polo-like kinases[J]. Oncogene, 2005,24(2): 248-259.
    [7] Phillips E R, Mc Kinnon PJ. DNA Double-strand break repair and development[J].Oncogene, 2007, 26: 7799-7812
    [8] Park E J, Chan DW, Park JH, et al. DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner[J]. Nucleic Acids Research, 2003, 31(23): 6819-6827
    [9] Jackson SP. Sensing and repairing DNA double-strand breaks[J]. Carcinogenesis, 2002, 23(5): 687-696.
    [10] Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, et al. Function of DNA- protein kinase catalytic subunit during the early meiotic prophase without Ku70 and Ku86 [J]. Biol Reprod, 2003, 68(3): 717-721.
    [11] An J, Xu QZ, Sui J L, et al. Down-regulation of c-myc protein by siRNA-mediated silencing of DNA-PKcs in HeLa cells[J]. Int J Cancer, 2005,117(4): 531-537
    [12] An J, Yang DY, Xu QZ, et al. DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein. Molecular Cancer, 2008, 7(32): 1-12.
    [13] Gaul L,M andl-Weber S, Schmidmaier R, et al. Bendamustine induces G2 cell cycle arrest and apoptosis in myeloma cells: the roal of ATM-Chk2-Cdc25A and ATM-p53-p21-pathway[ J]. J Cancer Res Clin Oncol, 2008, 134(2): 245-53
    [14] Tian Bao-Lei, Sun Zhi-Xian. Promyelocytic leukemia protein and genomic stability [J]. Chin J Biochem Mol Biol, 2006, 22(5): 349-354
    [15] Bakkenist C.J. and Kastan, M.B. DNA damage activates ATM through intermolecular aurophosphorylation and dimmer dissociation[ J]. Nature, 2003, 421(6922): 499-506
    [16] Block WD, Yu Y, Merkle D, et al. Autophosphorylation-dependent remodeling of the DNA-dependent protein kinase catalytic subunit regulates ligation of DNA ends[ J]. Nucl. Acids Res, 2004, 32(14): 4351-4357
    [17] Uematsu N,Weterings E,Yano K, et al. Autophosphorylation of DNA-PKcs regulates its dynamics at DNAdouble-strand breaks[J]. Cell Biol, 2007, 177(2): 219-229
    [18] Tao Sheng-zhong, Niu Guang-ming, Lei Ting, et al. Relationship between ataxia-telangiectaxia mutated protein expression and radiosensitivity in human gliomas[ J]. Chinese Journal Of Experimental Surgery, 2009, 26(5): 35-39
    [19] Jang YJ, Ma S, Erikson R, et al. Phosphorylation of threonine 210 and the role of serine 137 in the regulation of mammalian polo-like kinase[J]. J Biol Chem, 2002, 277(46): 44115-44120
    [20] Chen YH, Sanchez Y. Chk1 in the DNA damage response conserved roles yeasts to mammals[J]. DNA Repair, 2004, 3(8-9): 1052-1032
    [21] Ahn J, Urist M, Prives C. The Chk2 protein kinase[J]. DNA Repair, 2004, 3(8-9): 1039-47.
    [22] Jia Li and David F. Stern. Regulation of CHK2 by DNA-dependent Protein Kinase[J]. Bio Chem, 2005, 280(12): 12041-12049
    [23] WANG Yu-xiang, ZHU Shu-chai, FENG Wei, et al. Effect on retardation of G2/M phase in esophageal carcinoma cells transfected with Chk1 and Chk2 sh RNA after irradiation[J]. Chin J Oncol, 2006, 28(8): 572-577
    [24] ZHU Shu-Chai, WANG Yu-Xiang , LI Ren, et al. Effects of RNA interferenceon CHK1 and CHK2 Expression and G2 /M Arres t in esophageal carcinoma cell line TE13 after irradiation[J]. Chinese Journal of Cancer, 2007, 26(2): 127- 131
    [25] ZHU Ke-Xiu, LI Bin, WANG Jia, et al. Influence of antisense oligodeoxynu-cleotide targeting chk2 on apoptosis of SKOV23 cells of ovarian cancer in duced by DDP[J]. Fourth Mil Med Univ, 2008, 29 (3): 255-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700