聚电解质(DNA)表面吸附和相互作用及Toehold协助下的DNA链替换反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双链DNA分子是电负性很强的生物大分子,同时也是刚性很强的聚电解质。它能够与多价阳离子和带正电荷的聚电解质如聚乙烯亚胺(PEI)作用并形成带电量不一样的复合物。在本论文中,我们采用双偏振干涉测量技术研究了聚乙烯亚胺与双链DNA在表面的相互作用过程同时研究了不同带电量的DNA/阳离子复合物在硅羟基和氨基表面的吸附行为。研究发现,当高浓度PEI流经PEI-DNA复合层表面时,PEI能够与DNA发生相互作用并使复合层发生溶胀进而使得DNA分子以DNA/PEI复合物的形式从芯片表面剥离下来。同时,我们发现,增加体系盐浓度可以使得这种剥离现象消失。
     通过对DNA/阳离子复合物在两种芯片表面的吸附行为研究,我们发现,相同复合物在氨基表面比在硅羟基表面吸附得更加紧密。当复合物间存在有强电荷排斥时,后续吸附的复合物能够使先前吸附的复合物发生构象调整同时由于复合物间的排斥作用使得后续吸附的复合物只能以部分接触的方式吸附到表面。当复合物间电荷排斥很弱时,并不能引起构象的调整,但是由于芯片表面很拥挤,后续吸附的复合物同样只能以部分接触的方式堆积到表面。
     通过碱基间严格可预测的互补配对并在toehold协助下,DNA链间能发生链替换反应,从而实现了DNA链引发的杂交链增长反应并作为一种新型的信号放大技术被广泛运用于目标小分子,DNA及其它特定物质的检测。本论文第五章中,我们通过将引发链DNA固定到芯片表面,利用双偏振干涉测量技术研究了芯片表面DNA杂交链增长反应的详细过程并计算得到了芯片表面不同盐浓度下和不同固定方式下杂交链增长反应效率。研究发现随着杂交链增长反应的进行,形成的长的双链DNA倾向于倒向芯片表面而非伸向溶液里面使得释放出来的单链DNA引发后续杂交链替换反应的效率降低从而使得整个芯片表面杂交链增长反应的效率比溶液中低。
     最后一章中,我们提出了一种基于2-硝基苄基紫外光切断的新型光控toehold的可控形成方法。利用该方法通过控制光照强度(光照时间)可以控制toehold的形成量并生成纯的1:1比例的具有活性toehold的双链DNA结构。该结构可用于引发DNA分支迁移反应从而实现了光控的DNA分支迁移反应。与先前报道的活性toehold体系不同的是,我们利用光将隐藏在发卡DNA环部的toehold释放出来,该过程不用加化学试剂同时不会产生DNA副产物。此外,通过调节光照强度,可以简单方便地控制toehold的产生量进而调节toehold协助下的DNA分支迁移反应的速率。该方法具有构建光响应的DNA纳米结构以及DNA循环系统的潜质。
Double-stranded DNA (dsDNA) is a kind of highly negatively charged biopolymer. It is also a kind of stiff polyelectrolyte. dsDNA can interact with multivalent cations and other polyelectrolyte with positive charges such as polyethyleneimine (PEI), forming complexes with different charge conditions. In the present work, the interaction between PEI and DNA on silica surface and the adsorption behaviors of DNA/cation complexes with different charge conditions on silica and amino chip surfaces were studied using dual polarization interferometry (DPI). We determined that when PEI is injected over the PEI-DNA complex bilayer, DNA is stripped off under high PEI concentrations. Our results prove that stripping results from the formation of overcharged DNA/PEI complexes and from the strong electrostatic repulsion between the first PEI layer and the overcharged DNA/PEI complex. Therefore, stripping can be avoided under specific salt conditions because of the charge shielding effect.
     The adsorption of DNA/Ca2+, DNA/Cu2+, and DNA/Co(NH3)63+complexes on amino and silica chip surface were investigated using dual polarization interferometry. A more compact DNA/cation complex layer formed on the amino chip surface compared with the silica chip surface at the same cation condition. The real-time mass, thickness, and density changes were monitored during the adsorption process. The overall results show that the approaching complexes can cause the conformation rearrangement of pre-adsorbed complexes and the adsorbed complexes affect the deposition pattern of the approaching complexes during the adsorption of DNA/Ca2+and DNA/Cu2+complexes on both chip surfaces. The relatively strong electrostatic repulsion between the approaching and adsorbed complexes results in multiple mass loading rate changes and loose attachment of the following complexes. The weak repulsion between the DNA/Co(NH3)63+complexes cannot induce this kind of rearrangement. Thus, no multiple mass loading rate changes were observed. Meanwhile, the adsorbed DNA/Co(NH3)63+can also affect the deposition pattern of the following complexes because of the geometric resistance.
     The specificity and predictability of Watson-Crick base pairing make DNA a powerful and versatile material for engineering at the nanoscale. A kind of DNA hybridization chain reaction (HCR) has recently been designed based on toehold-mediated DNA strand-displacement reactions, which has been used as a new signal amplification technique for DNA and other molecules detection. In the fifth chapter, DNA HCR on a solid-liquid interface was investigated using DPI. The effects of salt concentration and different immobilization positions on HCR efficiency and DNA conformation were also investigated using DPI. With the HCR going on, the formed long dsDNA structure lay on the chip surface, which suppressed the activity of the released single-strand part on DNA hairpin.
     In the last chapter, we present for the first time a new photocontrolled toehold formation method to generate1:1ratio DNA duplexes for toehold-mediated branch migration reactions. This method is based on the photocleavage of2-nitrobenzyl linker-embedded DNA hairpin precursor structures. Different from previously reported overhanging-toehold systems, light is employed to activate the hidden toehold without addition of any chemicals or formation of waste DNA molecules. More importantly, the amount of released toehold can be easily controlled by fine-tuning the irradiation dose, allowing the rate of the toehold-mediated branch migration reaction to be regulated by changing the initial UV irradiation time. Our system shows potential for the construction of light-responsive dynamic DNA nanostructures and DNA circuits.
引文
[1]Avery, O.T., MacLeod, C.M., and McCarty, M., Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type Ⅰⅱ. J Exp Med,1944.79(2):137-158.
    [2]Watson, J.D. and Crick, F.H.C., Molecular Structure of Nucleic Acids- a Structure for Deoxyribose Nucleic Acid. Nature,1953.171(4356):737-738.
    [3]Wilkins, M.H.F., Stokes, A.R., and Wilson, H.R., Molecular Structure of Deoxypentose Nucleic Acids. Nature,1953.171(4356):738-740.
    [4]Lillis, B., Manning, M., Berney, H., Hurley, E., Mathewson, A., and Sheehan, M.M., Dual polarisation interferometry characterisation of DNA immobilisation and hybridisation detection on a silanised support. Biosens. Bioelectron.,2006.21(8):1459-1467.
    [5]Tinland, B., Pluen, A., Sturm, J., and Weill, G., Persistence length of single-stranded DNA. Macromolecules,1997.30(19):5763-5765.
    [6]Neidle, S. and Ed., Nucleic Acid Structure. Oxford University Press Inc.:New York, 1999.
    [7]Anderson, C.F., Record, M.T., and Hart, P.A., Na-23 Nmr-Studies of Cation DNA Interactions. Biophys Chem,1978.7(4):301-316.
    [8]Bleam, M.L., Anderson, C.F.L., and Record, M.T., Na-23 Studies of Cation Interactions with Native DNA. Fed Proc,1980.39(6):1608-1608.
    [9]Williamson, J.R., Raghuraman, M.K., and Cech, T.R., Mono-Valent Cation Induced Structure of Telomeric DNA-the G-Quartet Model. Cell,1989.59(5):871-880.
    [10]Raghuraman, M.K. and Cech, T.R., Effect of Monovalent Cation-Induced Telomeric DNA-Structure on the Binding of Oxytricha Telomeric Protein. Nucleic Acids Res, 1990.18(15):4543-4551.
    [11]Braunlin, W.H., Nordenskiold, L., and Drakenberg, T., A Reexamination of Mg-25(2+) Nmr in DNA Solution-Site Heterogeneity and Cation Competition Effects. Biopolymers,1991.31(11):1343-1346.
    [12]Hardin, C.C., Henderson, E., Watson, T., and Prosser, J.K., Monovalent Cation Induced Structural Transitions in Telomeric Dnas-G-DNA Folding Intermediates. Biochemistry-Us,1991.30(18):4460-4472.
    [13]Kankia, B.I. and Marky, L.A., Folding of the thrombin aptamer into a G-quadruplex with Sr2+:Stability, heat, and hydration. J Am Chem Soc,2001.123(44):10799-10804.
    [14]Wong, A. and Wu, G., Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5'-monophosphate:A solid-state NMR study. J Am Chem Soc,2003.125(45):13895-13905.
    [15]Preisler, R.S., The B-DNA to Z-DNA Transition in Alkali and Tetraalkylammonium Salts Correlated with Cation Effects on Solvent Structure. Biochem Bioph Res Co,1987. 148(2):609-616.
    [16]Wilson, R.W. and Bloomfield, V.A., Cation-Induced Collapse of DNA. Biophys J,1979. 25(2):A3-A3.
    [17]Widom, J. and Baldwin, R.L., Cation-Induced Toroidal Condensation of DNA Studies with Co(NH3)63+. J Mol Biol,1980.144(4):431-453.
    [18]Raspaud, E., Chaperon, I., Leforestier, A., and Livolant, F., Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys J,1999.77(3):1547-1555.
    [19]Todd, B.A. and Rau, D.C., Interplay of ion binding and attraction in DNA condensed by multivalent cations. Nucleic Acids Res.,2008.36(2):501-510.
    [20]Deng, H, Bloomfield, V.A., Benevides, J.M., and Thomas, G.J., Structural basis of polyamine-DNA recognition:spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res,2000. 28(17):3379-3385.
    [21]Carnerup, A.M., Ainalem, M.L., Alfredsson, V., and Nylander, T., Condensation of DNA using poly(amido amine) dendrimers:effect of salt concentration on aggregate morphology. Soft Matter,2011.7(2):760-768.
    [22]Jorge, A.F., Dias, R.S., Pereira, J.C., and Pais, A.A.C.C., DNA Condensation by pH-Responsive Polycations. Biomacromolecules,2010.11(9):2399-2406.
    [23]Utsuno, K. and Uludag, H., Thermodynamics of Polyethylenimine-DNA Binding and DNA Condensation. Biophys J,2010.99(1):201-207.
    [24]Bloomfield, V.A., Crothers, D.M., and Tinoco, I., Nucleic Acids:Structures, Properties, and Functions. University Science Books,2000.
    [25]SantaLucia, J. and Hicks, D., The thermodynamics of DNA structural motifs. Annual Review of Biophysics and Biomolecular Structure,2004.33:415-440.
    [26]Carlson, R., The changing economics of DNA synthesis. Nat Biotechnol,2009.27(12): 1091-1094.
    [27]Seeman, N.C., Nucleic-Acid Junctions and Lattices. J Theor Biol,1982.99(2):237-247.
    [28]Chen, J.H. and Seeman, N.C., Synthesis from DNA of a Molecule with the Connectivity of a Cube. Nature,1991.350(6319):631-633.
    [29]Adleman, L.M., Molecular Computation of Solutions to Combinatorial Problems. Science,1994.266(5187):1021-1024.
    [30]Seeman, N.C., Nanomaterials Based on DNA. Annu Rev Biochem,2010.79:65-87.
    [31]Aldaye, F.A., Palmer, A.L., and Sleiman, H.F., Assembling materials with DNA as the guide. Science,2008.321(5897):1795-1799.
    [32]Shih, W.M. and Lin, C.X., Knitting complex weaves with DNA origami. Curr Opin Struc Biol,2010.20(3):276-282.
    [33]Wei, B., Dai, M., and Yin, P., Complex shapes self-assembled from single-stranded DNA tiles. Nature,2012.485(7400):623-626.
    [34]Seelig, G., Soloveichik, D., Zhang, D.Y., and Winfree, E., Enzyme-free nucleic acid logic circuits. Science,2006.314(5805):1585-1588.
    [35]Zhang, D.Y., Turberfield, A.J., Yurke, B., and Winfree, E., Engineering entropy-driven reactions and networks catalyzed by DNA. Science,2007.318(5853):1121-1125.
    [36]Omabegho, T., Sha, R., and Seeman, N.C., A Bipedal DNA Brownian Motor with Coordinated Legs. Science,2009.324(5923):67-71.
    [37]Yan, H., Zhang, X.P., Shen, Z.Y., and Seeman, N.C., A robust DNA mechanical device controlled by hybridization topology. Nature,2002.415(6867):62-65.
    [38]Lee, C.S., Davis, R. W. and Davidson, N., A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15. J. Mol. Biol.,1970.48:1-22.
    [39]Green, C. and Tibbetts, C., Reassociation Rate Limited Displacement of DNA-Strands by Branch Migration. Nucleic Acids Res,1981.9(8):1905-1918.
    [40]Zhang, D.Y. and Winfree, E., Control of DNA Strand Displacement Kinetics Using Toehold Exchange. J Am Chem Soc,2009.131(47):17303-17314.
    [41]Li, Q.Q., Luan, G.Y., Guo, Q.P., and Liang, J.X., A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res,2002. 30(2).
    [42]Meselson, M.S. and Radding, C.M., A general model for genetic recombination. Proc Natl Acad Sci U S A,1975.72(1):358-361.
    [43]Radding, C.M., Beattie, K.L., Holloman, W.K., and Wiegand, R.C., Uptake of homologous single-stranded fragments by superhelical DNA. IV. Branch migration. J Mol Biol,1977.116(4):825-839.
    [44]Panyutin, I.G. and Hsieh, P., The kinetics of spontaneous DNA branch migration. Proc Natl Acad Sci U S A,1994.91(6):2021-2025.
    [45]Green, C. and Tibbetts, C., Reassociation rate limited displacement of DNA strands by branch migration. Nucleic Acids Res,1981.9(8):1905-1918.
    [46]Weinstock, P.H. and Wetmur, J.G., Branch capture reactions:effect of recipient structure. Nucleic Acids Res,1990.18(14):4207-4213.
    [47]Reynaldo, L.P., Vologodskii, A.V., Neri, B.P., and Lyamichev, V.I., The kinetics of oligonucleotide replacements. J Mol Biol,2000.297(2):511-520.
    [48]Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., and Neumann, J.L., A DNA-fuelled molecular machine made of DNA. Nature,2000.406(6796):605-608.
    [49]Sherman, W.B. and Seeman, N.C., A precisely controlled DNA biped walking device. Nano Lett,2004.4(7):1203-1207.
    [50]Shin, J.S. and Pierce, N.A., A synthetic DNA walker for molecular transport. J Am Chem Soc,2004.126(35):10834-10835.
    [51]Gu, H.Z., Chao, J., Xiao, S.J., and Seeman, N.C., A proximity-based programmable DNA nanoscale assembly line. Nature,2010.465(7295):202-U286.
    [52]Picuri, J.M., Frezza, B.M., and Ghadiri, M.R., Universal Translators for Nucleic Acid Diagnosis. J Am Chem Soc,2009.131(26):9368-9377.
    [53]Dirks, R.M. and Pierce, N.A., Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences of the United States of America, 2004.101(43):15275-15278.
    [54]Zhang, D.Y. and Seelig, G., Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem,2011.3(2):103-113.
    [55]Yin, P., Choi, H.M.T., Calvert, C.R., and Pierce, N.A., Programming biomolecular self-assembly pathways. Nature,2008.451(7176):318-U314.
    [56]Dong, J., Cui, X., Deng, Y., and Tang, Z., Amplified detection of nucleic acid by G-quadruplex based hybridization chain reaction. Biosens Bioelectron,2012.38(1):258-263.
    [57]Chen, X., Hong, C.Y., Lin, Y.H., Chen, J.H., Chen, G.N., and Yang, H.H., Enzyme-Free and Label-Free Ultrasensitive Electrochemical Detection of Human Immunodeficiency Virus DNA in Biological Samples Based on Long-Range Self-Assembled DNA Nanostructures. Analytical Chemistry,2012.84(19):8277-8283.
    [58]Li, B., Jiang, Y., Chen, X., and Ellington, A.D., Probing Spatial Organization of DNA Strands Using Enzyme-Free Hairpin Assembly Circuits. Journal of the American Chemical Society,2012.134(34):13918-13921.
    [59]Choi, H.M.T., Chang, J.Y., Trinh, L.A., Padilla, J.E., Fraser, S.E., and Pierce, N.A., Programmable in situ amplification for multiplexed imaging of mRNA expression. Nature Biotechnology,2010.28(11):1208-U1103.
    [60]Venkataraman, S., Dirks, R.M., Ueda, C.T., and Pierce, N.A., Selective cell death mediated by small conditional RNAs. Proceedings of the National Academy of Sciences of the United States of America,2010.107(39):16777-16782.
    [61]Swann, M., Freeman, N., Carrington, S., Ronan, G., and Barrett, P., Quantifying structural changes and stoichiometry of protein interactions using size and density profiling. Lett Pept Sci,2003.10(5-6):487-494.
    [62]Homola, J., Yee, S.S., and Gauglitz, G., Surface plasmon resonance sensors:review. Sens. Actuator B-Chem.,1999.54(1-2):3-15.
    [63]Marx, K.A., Quartz crystal microbalance:A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules,2003.4(5):1099-1120.
    [64]Penfold, J., Richardson, R.M., Zarbakhsh, A., Webster, J.R.P., Bucknall, D.G., Rennie, A.R., Jones, R.A.L., Cosgrove, T., Thomas, R.K., Higgins, J.S., Fletcher, P.D.I., Dickinson, E., Roser, S.J., McLure, I.A., Hillman, A.R., Richards, R.W., Staples, E.J., Burgess, A.N., Simister, E.A., and White, J.W., Recent advances in the study of chemical surfaces and interfaces by specular neutron reflection. J Chem Soc Faraday T, 1997.93(22):3899-3917.
    [65]Mcmarr, P.J., Vedam, K., and Narayan, J., Spectroscopic Ellipsometry-a New Tool for Nondestructive Depth Profiling and Characterization of Interfaces. J Appl Phys,1986. 59(3):694-701.
    [66]Yates, E.A., Terry, C.J., Rees, C., Rudd, T.R., Duchesne, L., Skidmore, M.A., Levy, R., Thanh, N.T.K., Nichols, R.J., Clarke, D.T., and Fernig, D.G., Protein-GAG interactions: new surface-based techniques, spectroscopies and nanotechnology probes. Biochem Soc T,2006.34:427-430.
    [67]Freeman, N.J., Peel, L.L., Swann, M.J., Cross, G.H., Reeves, A., Brand, S., and Lu, J.R., Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry. J Phys-Condens Mat,2004.16(26): S2493-S2496.
    [68]Halthur, T.J., Claesson, P.M., and Elofsson, U.M., Immobilization of enamel matrix derivate protein onto polypeptide multilayers. Comparative in situ measurements using ellipsometry, quartz crystal microbalance with dissipation, and dual-polarization interferometry. Langmuir,2006.22(26):11065-11071.
    [69]Karim, K., Taylor, J.D., Cullen, D.C., Swann, M.J., and Freeman, N.J., Measurement of conformational changes in the structure of transglutaminase on binding calcium ions using optical evanescent dual polarisation interferometry. Anal. Chem.,2007.79(8): 3023-3031.
    [70]Biehle, S.J., Carrozzella, J., Shukla, R., Popplewell, J., Swam, M., Freeman, N., and Clark, J.F., Apolipoprotein E isoprotein-specific interactions with tissue plasminogen activator. Biochimica Et Biophysica Acta-Molecular Basis of Disease,2004.1689(3): 244-251.
    [71]Armstrong, J., Salacinski, H.J., Mu, Q.S., Seifalian, A.M., Peel, L., Freeman, N., Holt, C.M., and Lu, J.R., Interfacial adsorption of fibrinogen and its inhibition by RGD peptide:a combined physical study. Journal of Physics-Condensed Matter,2004.16(26): S2483-S2491.
    [72]De Feijter, J.A., Benjamins, J., Veer, F. A., Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air-water interface. Biopolymers,1978.17:1759-1772.
    [73]Cross, G.H., Reeves, A.A., Brand, S., Popplewell, J.F., Peel, L.L., Swann, M.J., and Freeman, N.J., A new quantitative optical biosensor for protein characterisation. Biosens Bioelectron,2003.19(4):383-390.
    [74]Wang, J. and Yang, X.R., Application of Dual-polarization Interferometry in Bioanalysis. Chinese J Anal Chem,2008.36(9):1293-1299.
    [75]Xu, K.R., Ouberai, M.M., and Welland, M.E., A comprehensive study of lysozyme adsorption using dual polarization interferometry and quartz crystal microbalance with dissipation. Biomaterials,2013.34(5):1461-1470.
    [76]Vogler, E.A., Protein adsorption in three dimensions. Biomaterials,2012.33(5):1201-1237.
    [77]Cowsill, B.J., Coffey, P.D., Yaseen, M., Waigh, T.A., Freeman, N.J., and Lu, J.R., Measurement of the thickness of ultra-thin adsorbed globular protein layers with dual-polarisation interferometry:a comparison with neutron reflectivity. Soft Matter,2011. 7(16):7223-7230.
    [78]Sonesson, A.W., Callisen, T.H., Brismar, H., and Elofsson, U.M., Adsorption and activity of Thermomyces lanuginosus lipase on hydrophobic and hydrophilic surfaces measured with dual polarization interferometry (DPI) and confocal microscopy. Colloids and Surfaces B-Biointerfaces,2008.61(2):208-215.
    [79]Gengler, S., Gault, V.A., Harriott, P., and Holscher, C., Impairments of hippocampal synaptic plasticity induced by aggregated beta-amyloid (25-35) are dependent on stimulation-protocol and genetic background. Exp Brain Res,2007.179(4):621-630.
    [80]Lin, S.M., Lee, C.K., Wang, Y.M., Huang, L.S., Lin, Y.H., Lee, S.Y., Sheu, B.C., and Hsu, S.M., Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor. Biosensors & Bioelectronics,2006.22(2):323-327.
    [81]Lu, J.R., Swann, M.J., Peel, L.L., and Freeman, N.J., Lysozyme adsorption studies at the silica/water interface using dual polarization interferometry. Langmuir,2004.20(5): 1827-1832.
    [82]Shovsky, A., Knohl, S., Dedinaite, A., Zhu, K.Z., Kjoniksen, A.L., Nystrom, B., Linse, P., and Claesson, P.M., Cationic Poly(N-isopropylacrylamide) Block Copolymer Adsorption Investigated by Dual Polarization Interferometry and Lattice Mean-Field Theory. Langmuir,2012.28(39):14028-14038.
    [83]Lundin, M., Solaqa, F., Thormann, E., Macakova, L., and Blomberg, E., Layer-by-Layer Assemblies of Chitosan and Heparin:Effect of Solution Ionic Strength and pH. Langmuir,2011.27(12):7537-7548.
    [84]Lane, T.J., Fletcher, W.R., Gormally, M.V., and Johal, M.S., Dual-beam polarization interferometry resolves mechanistic aspects of polyelectrolyte adsorption. Langmuir, 2008.24(19):10633-10636.
    [85]Wang, J., Xu, X.W., Zhang, Z.X., Yang, F., and Yang, X.R., Real-Time Study of Genomic DNA Structural Changes upon Interaction with Small Molecules Using Dual-Polarization Interferometry. Anal. Chem.,2009.81(12):4914-4921.
    [86]Wang, Y., Zheng, Y., Yang, F., and Yang, X.R., Dual polarisation interferometry for real-time, label-free detection of interaction of mercury(II) with mercury-specific oligonucleotides. Chem Commun,2012.48(23):2873-2875.
    [87]Kato, N., Lee, L., Chandrawati, R., Johnston, A.P.R., and Caruso, F., Optically Characterized DNA Multilayered Assemblies and Phenomenological Modeling of Layer-by-Layer Hybridization. J Phys Chem C,2009.113(50):21185-21195.
    [88]Berney, H.B. and Oliver, K., Dual polarization interferometry size and density characterisation of DNA immobilisation and hybridisation. Biosensors & Bioelectronics, 2005.21(4):618-626.
    [89]Xu, P.P., Huang, F. J., and Liang, H.J., Real-time study of a DNA strand displacement reaction using dual polarization interferometry. Biosens Bioelectron,2013.41:505-510.
    [90]Lindquist, G.M. and Stratton, R.A., The role of polyelectrolyte charge density and molecular weight on the adsorption and flocculation of colloidal silica with polyethylenimine. J Colloid Interf Sci,1976.55(1):45-59.
    [91]Alince, B., Vanerek, A., and vandeVen, T.G.M., Effects of surface topography, pH and salt on the adsorption of polydisperse polyethylenimine onto pulp fibers. Ber Bunsen Phys Chem,1996.100(6):954-962.
    [92]Bouyer, F., Robben, A., Yu, W.L., and Borkovec, M., Aggregation of colloidal particles in the presence of oppositely charged poly electrolytes:Effect of surface charge heterogeneities. Langmuir,2001.17(17):5225-5231.
    [93]Poptoshev, E. and Claesson, P.M., Forces between glass surfaces in aqueous polyethylenimine solutions. Langmuir,2002.18(7):2590-2594.
    [94]Schurer, J.W., Kalicharan, D., Hoedemaeker, P.J., and Molenaar, I., The use of polyethyleneimine for demonstration of anionic sites in basement membranes and collagen fibrils. J Histochem Cytochem,1978.26(8):688-689.
    [95]Boudou, T., Crouzier, T., Ren, K.F., Blin, G., and Picart, C., Multiple Functionalities of Polyelectrolyte Multilayer Films:New Biomedical Applications. Adv Mater,2010. 22(4):441-467.
    [96]Claesson, P.M., Paulson, O.E.H., Blomberg, E., and Burns, N.L., Surface properties of poly(ethylene imine)-coated mica surfaces-Salt and pH effects. Colloid Surface A, 1997.123:341-353.
    [97]Meszaros, R., Thompson, L., Bos, M., and de Groot, P., Adsorption and electrokinetic properties of polyethylenimine on silica surfaces. Langmuir,2002.18(16):6164-6169.
    [98]Meszaros, R., Thompson, L., Varga, I., and Gilanyi, T., Adsorption properties of polyethyleneimine on silica surfaces in the presence of sodium dodecyl sulfate. Langmuir,2003.19(23):9977-9980.
    [99]Meszaros, R., Varga, I., and Gilanyi, T., Adsorption of poly(ethyleneimine) on silica surfaces:Effect of pH on the reversibility of adsorption. Langmuir,2004.20(12):5026-5029.
    [100]Koh, C.G., Kang, X.H., Xie, Y.B., Fei, Z.Z., Guan, J.J., Yu, B., Zhang, X.L., and Lee, L.J., Delivery of Polyethylenimine/DNA Complexes Assembled in a Microfluidics Device. Mol Pharmaceut,2009.6(5):1333-1342.
    [101]Qi, A.S., Chan, P., Ho, J., Rajapaksa, A., Friend, J., and Yeo, L.L., Template-free Synthesis and Encapsulation Technique for Layer-by-Layer Polymer Nanocarrier Fabrication. Acs Nano,2011.5(12):9583-9591.
    [102]Ke, J.H. and Young, T.H., Multilayered polyplexes with the endosomal buffering polycation in the core and the cell uptake-favorable polycation in the outer layer for enhanced gene delivery. Biomaterials,2010.31(35):9366-9372.
    [103]Wohl, B.M. and Engbersen, J.F.J., Responsive layer-by-layer materials for drug delivery. J Control Release,2012.158(1):2-14.
    [104]De Koker, S., Hoogenboom, R., and De Geest, B.G., Polymeric multilayer capsules for drug delivery. Chem. Soc. Rev.,2012.41(7):2867-2884.
    [105]Besteman, K., Van Eijk, K., and Lemay, S.G., Charge inversion accompanies DNA condensation by multivalent ions. Nat. Phys.,2007.3(9):641-644.
    [106]He, Y.Y., Cheng, G., Xie, L., Nie, Y., He, B., and Gu, Z.W., Polyethyleneimine/DNA polyplexes with reduction-sensitive hyaluronic acid derivatives shielding for targeted gene delivery. Biomaterials,2013.34(4):1235-1245.
    [107]Ahn, H.H., Lee, J.H., Kim, K.S., Lee, J.Y., Kim, M.S., Khang, G., Lee, I.W., and Lee, H.B., Polyethyleneimine-mediated gene delivery into human adipose derived stem cells. Biomaterials,2008.29(15):2415-2422.
    [108]Park, K., PEI-DNA complexes with higher transfection efficiency and lower cytotoxicity. J Control Release,2009.140(1):1-1.
    [109]Ainalem, M.L. and Nylander, T., DNA condensation using cationic dendrimers-morphology and supramolecular structure of formed aggregates. Soft Matter,2011. 7(10):4577-4594.
    [110]Carnerup, A.M., Ainalem, M.L., Alfredsson, V., and Nylander, T., Watching DNA Condensation Induced by Poly(amido amine) Dendrimers with Time-Resolved Cryo-TEM. Langmuir,2009.25(21):12466-12470.
    [111]Picart, C., Lavalle, P., Hubert, P., Cuisinier, F.J.G., Decher, G., Schaaf, P., and Voegel, i.C., Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface. Langmuir,2001.17(23):7414-7424.
    [112]Zhou, X.C., Huang, L.Q., and Li, S.F.Y., Microgravimetric DNA sensor based on quartz crystal microbalance:comparison of oligonucleotide immobilization methods and the application in genetic diagnosis. Biosens. Bioelectron.,2001.16(1-2):85-95.
    [113]Liss, M., Petersen, B., Wolf, H., and Prohaska, E., An aptamer-based quartz crystal protein biosensor. Anal. Chem.,2002.74(17):4488-4495.
    [114]Pedano, M.L. and Rivas, G.A., Immobilization of DNA on glassy carbon electrodes for the development of affinity biosensors. Biosens. Bioelectron.,2003.18(2-3):269-277.
    [115]Xiao, Y., Lubin, A.A., Heeger, A.J., and Plaxco, K.W., Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed., 2005.44(34):5456-5459.
    [116]Schena, M., Shalon, D., Davis, R.W., and Brown, P.O., Quantitative Monitoring of Gene-Expression Patterns with a Complementary-DNA Microarray. Science,1995. 270(5235):467-470.
    [117]Schena, M., Shalon, D., Heller, R., Chai, A., Brown, P.O., and Davis, R.W., Parallel human genome analysis:Microarray-based expression monitoring of 1000 genes. Proc. Natl. Acad. Sci. USA,1996.93(20):10614-10619.
    [118]Nelson, B.P., Grimsrud, T.E., Liles, M.R., Goodman, R.M., and Corn, R.M., Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal. Chem.,2001.73(1):1-7.
    [119]Kerman, K., Ozkan, D., Kara, P., Meric, B., Gooding, J.J., and Ozsoz, M., Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Anal. Chim. Acta,2002.462(1): 39-47.
    [120]Yang, A.Y., Rawle, R.J., Selassie, C.R.D., and Johal, M.S., A Quartz Crystal Microbalance Study of Polycation-Supported Single and Double Stranded DNA Surfaces. Biomacromolecules,2008.9(12):3416-3421.
    [121]Radu, D.R., Lai, C.Y., Jeftinija, K., Rowe, E.W., Jeftinija, S., and Lin, V.S.Y., A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc.,2004.126(41):13216-13217.
    [122]Torney, F., Trewyn, B.G., Lin, V.S.Y., and Wang, K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol.,2007.2(5):295-300.
    [123]Xia, T.A., Kovochich, M., Liong, M., Meng, H., Kabehie, S., George, S., Zink, J.I., and Nel, A.E., Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. Acs Nano,2009.3(10):3273-3286.
    [124]Qin, F., Zhou, Y.C., Shi, J.L., and Zhang, Y.L., A DNA transporter based on mesoporous silica nanospheres mediated with polycation poly(allylamine hydrochloride) coating on mesopore surface. J. Biomed. Mater. Res. A,2009.90A(2):333-338.
    [125]Boom, R., Sol, C.J.A., Salimans, M.M.M., Jansen, C.L., Wertheimvandillen, P.M.E., and Vandernoordaa, J., Rapid and Simple Method for Purification of Nucleic-Acids. J. Clin. Microbiol.,1990.28(3):495-503.
    [126]Berensmeier, S., Magnetic particles for the separation and purification of nucleic acids. Appl. Microbiol. Biotechnol.,2006.73(3):495-504.
    [127]Tan, Z.J. and Chen, S.J., Electrostatic correlations and fluctuations for ion binding to a finite length polyelectrolyte. J. Chem. Phys.,2005.122(4).
    [128]Tan, Z.J. and Chen, S.J., Nucleic acid helix stability:Effects of salt concentration, cation valence and size, and chain length. Biophys. J.,2006.90(4):1175-1190.
    [129]Song, Y.H., Li, Z., Liu, Z.G., Wei, G., Wang, L., and Sun, L.L., Immobilization of DNA on 11-mercaptoundecanoic acid-modified gold(111) surface for atomic force microscopy imaging. Microsc. Res. Tech.,2005.68(2):59-64.
    [130]Allahyarov, E., Lowen, H., and Gompper, G., Adsorption of monovalent and multivalent cations and anions on DNA molecules. Phys. Rev. E,2003.68(6).
    [131]Duguid, J., Bloomfield, V.A., Benevides, J., and Thomas, G.J., Raman Spectral Studies of Nucleic-Acids.44. Raman-Spectroscopy of DNA-Metal Complexes.1. Interactions and Conformational Effects of the Divalent-Cations-Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Biophys. J.,1993.65(5):1916-1928.
    [132]Widom, J. and Baldwin, R.L., Monomolecular Condensation of Lambda-DNA Induced by Cobalt Hexammine. Biopolymers,1983.22(6):1595-1620.
    [133]Bloomfield, V.A., DNA condensation by multivalent cations. Biopolymers,1997.44(3): 269-282.
    [134]He, S.Q., Arscott, P.G., and Bloomfield, V.A., Condensation of DNA by multivalent cations:Experiment studies of condensation kinetics. Biopolymers,2000.53(4):329-341.
    [135]Ouameur, A.A. and Tajmir-Riahi, H.A., Structural analysis of DNA interactions with biogenic polyamines and cobalt(III) hexamine studied by Fourier transform infrared and capillary electrophoresis. J. Biol. Chem.,2004.279(40):42041-42054.
    [136]Conwell, C.C. and Hud, N.V., Evidence that both kinetic and thermodynamic factors govern DNA toroid dimensions:Effects of magnesium(II) on DNA condensation by hexammine cobalt(III). Biochemistry,2004.43(18):5380-5387.
    [137]Bezanilla, M., Manne, S., Laney, D.E., Lyubchenko, Y.L., and Hansma, H.G., Adsorption of DNA to Mica, Silylated Mice, and Minerals-Characterization by Atomic-Force Microscopy. Langmuir,1995.11(2):655-659.
    [138]Pastre, D., Pietrement, O., Fusil, P., Landousy, F., Jeusset, J., David, M.O., Hamon, C., Le Cam, E., and Zozime, A., Adsorption of DNA to mica mediated by divalent counterions:A theoretical and experimental study. Biophys. J.,2003.85(4):2507-2518.
    [139]Pastre, D., Hamon, L., Landousy, F., Sorel, I., David, M.O., Zozime, A., Le Cam, E., and Pietrement, O., Anionic polyelectrolyte adsorption on mica mediated by multivalent cations:A solution to DNA imaging by atomic force microscopy under high ionic strengths. Langmuir,2006.22(15):6651-6660.
    [140]Nguyen, T.H. and Elimelech, M., Plasmid DNA adsorption on silica:Kinetics and conformational changes in monovalent and divalent salts. Biomacromolecules,2007. 8(1):24-32.
    [141]Nguyen, T.H., Chen, K.L., and Elimelech, M., Adsorption Kinetics and Reversibility of Linear Plasmid DNA on Silica Surfaces:Influence of Alkaline Earth and Transition Metal Ions. Biomacromolecules,2010.11(5):1225-1230.
    [142]Nguyen, T.H. and Chen, K.L., Role of divalent cations in plasmid DNA adsorption to natural organic matter-coated silica surface. Environ. Sci. Technol.,2007.41(15):5370-5375.
    [143]Nguyen, T.H. and Elimelech, M., Adsorption of plasmid DNA to a natural organic matter-coated silica surface:Kinetics, conformation, and reversibility. Langmuir,2007. 23(6):3273-3279.
    [144]Guzman, E., Ortega, F., Baghdadli, N., Cazeneuve, C., Luengo, G.S., and Rubio, R.G., Adsorption of Conditioning Polymers on Solid Substrates with Different Charge Density. Acs. Appl. Mater. Inter.,2011.3(8):3181-3188.
    [145]Vandeventer, P.E., Lin, J.S., Zwang, T.J., Nadim, A., Johal, M.S., and Niemz, A., Multiphasic DNA Adsorption to Silica Surfaces under Varying Buffer, pH, and Ionic Strength Conditions. J. Phys. Chem. B,2012.116(19):5661-5670.
    [146]Su, X.D., Wu, Y.J., and Knoll, W., Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridation. Biosens. Bioelectron.,2005.21(5):719-726.
    [147]Shumaker-Parry, J.S. and Campbell, C.T., Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy. Anal. Chem.,2004.76(4):907-917.
    [148]Georgiadis, R., Peterlinz, K.P., and Peterson, A.W., Quantitative measurements and modeling of kinetics in nucleic acid monolayer films using SPR spectroscopy. J. Am. Chem. Soc.,2000.122(13):3166-3173.
    [149]Eskilsson, K., Leal, C., Lindman, B., Miguel, M., and Nylander, T., DNA-surfactant complexes at solid surfaces. Langmuir,2001.17(5):1666-1669.
    [150]Cardenas, M., Braem, A., Nylander, T., and Lindman, B., DNA compaction at hydrophobic surfaces induced by a cationic amphiphile. Langmuir,2003.19(19):7712-7718.
    [151]Cardenas, M., Campos-Teran, J., Nylander, T., and Lindman, B., DNA and cationic surfactant complexes at hydrophilic surfaces. An ellipsometry and surface force study. Langmuir,2004.20(20):8597-8603.
    [152]Nabok, A., Tsargorodskaya, A., Davis, F., and Higson, S.P.J., The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosens. Bioelectron.,2007.23(3):377-383.
    [153]Zhao, X.B., Pan, F., Coffey, P., and Lu, J.R., Cationic Copolymer-Mediated DNA Immobilization:Interfacial Structure and Composition As Determined by Ellipsometry, Dual Polarization Interferometry, and Neutron Reflection. Langmuir,2008.24(23): 13556-13564.
    [154]Guzman, E., Ortega, F., Baghdadli, N., Luengo, G.S., and Rubio, R.G., Effect of the molecular structure on the adsorption of conditioning polyelectrolytes on solid substrates. Colloid Surface A,2011.375(1-3):209-218.
    [155]Swann, M.J., Peel, L.L., Carrington, S., and Freeman, N.J., Dual-polarization interferometry:an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal. Biochem.,2004.329(2):190-198.
    [156]Mashaghi, A., Swann, M., Popplewell, J., Textor, M., and Reimhult, E., Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal. Chem.,2008. 80(10):3666-3676.
    [157]Tumolo, T., Angnes, L., and Baptista, M.S., Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance. Anal. Biochem.,2004.333(2):273-279.
    [158]Ikegami, A. and Imai, N., Precipitation of Polyelectrolytes by Salts. J. Polym. Sci.,1962. 56(163):133-152.
    [159]Delacruz, M.O., Belloni, L., Delsanti, M., Dalbiez, J.P., Spalla, O., and Drifford, M., Precipitation of Highly-Charged Polyelectrolyte Solutions in the Presence of Multivalent Salts. J. Chem. Phys.,1995.103(13):5781-5791.
    [160]Raspaud, E., de la Cruz, M.O., Sikorav, J.L., and Livolant, F., Precipitation of DNA by polyamines:A polyelectrolyte behavior. Biophys. J.,1998.74(1):381-393.
    [161]Stumm, W., Hohl, H., and Dalang, F., Interaction of Metal-Ions with Hydrous Oxide Surfaces. Croat. Chem. Acta,1976.48(4):491-504.
    [162]Briones, X.G., Encinas, M.V., Petri, D.F.S., Pavez, J.E., Tapia, R.A., Yazdani-Pedram, M., and Urzua, M.D., Adsorption Behavior of Hydrophobically Modified Polyelectrolytes onto Amino-or Methyl-Terminated Surfaces. Langmuir,2011.27(22): 13524-13532.
    [163]Evanko, D., Hybridization chain reaction. Nature Methods,2004.1(3):186-187.
    [164]Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Erlich, H.A., Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA-Polymerase. Science,1988.239(4839):487-491.
    [165]Niu, S.Y., Jiang, Y., and Zhang, S.S., Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Chemical Communications, 2010.46(18):3089-3091.
    [166]Huang, J., Wu, Y., Chen, Y., Zhu, Z., Yang, X., Yang, C.J., Wang, K., and Tan, W., Pyrene-Excimer Probes Based on the Hybridization Chain Reaction for the Detection of Nucleic Acids in Complex Biological Fluids. Angewandte Chemie-International Edition, 2011.50(2):401-404.
    [167]Juan, D., Xin, C., Yun, D., and Zhuo, T., Amplified detection of nucleic acid by G-quadruplex based hybridization chain reaction. Biosensors & Bioelectronics,2012. 38(1):258-263.
    [168]Li, B.L., Ellington, A.D., and Chen, X., Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Research,2011.39(16): e110.
    [169]Zhao, J., Chen, C., Zhang, L., Jiang, J., and Yu, R., An electrochemical aptasensor based on hybridization chain reaction with enzyme-signal amplification for interferon-gamma detection. Biosensors & Bioelectronies,2012.36(1):129-134.
    [170]Zhang, B., Liu, B.Q., Tang, D.P., Niessner, R., Chen, G.N., and Knopp, D., DNA-Based Hybridization Chain Reaction for Amplified Bioelectronic Signal and Ultrasensitive Detection of Proteins. Analytical Chemistry,2012.84(12):5392-5399.
    [171]Song, W.Q., Zhu, K.L., Cao, Z.J., Lau, C.W., and Lu, J.Z., Hybridization chain reaction-based aptameric system for the highly selective and sensitive detection of protein. Analyst,2012.137(6):1396-1401.
    [172]Tang, W., Wang, D., Xu, Y., Li, N., and Liu, F., A self-assembled DNA nanostructure-amplified quartz crystal microbalance with dissipation biosensing platform for nucleic acids. Chemical Communications,2012.48(53):6678-6680.
    [173]You, M.X., Chen, Y., Zhang, X.B., Liu, H.P., Wang, R.W., Wang, K.L., Williams, K.R., and Tan, W.H., An Autonomous and Controllable Light-Driven DNA Walking Device. Angew Chem Int Edit,2012.51(10):2457-2460.
    [174]Wang, D., Tang, W., Wu, X., Wang, X., Chen, G., Chen, Q., Li, N., and Liu, F., Highly Selective Detection of Single-Nucleotide Polymorphisms Using a Quartz Crystal Microbalance Biosensor Based on the Toehold-Mediated Strand Displacement Reaction. Analytical Chemistry,2012.84(16):7008-7014.
    [175]Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E., and Pierce, N.A., An autonomous polymerization motor powered by DNA hybridization. Nat Nanotechnol, 2007.2(8):490-494.
    [176]Zhang, D.Y., Chen, S.X., and Yin, P., Optimizing the specificity of nucleic acid hybridization. Nature Chemistry,2012.4(3):208-214.
    [177]Lytton-Jean, A.K.R. and Mirkin, C.A., A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. Journal of the American Chemical Society,2005.127(37):12754-12755.
    [178]Xu, J. and Craig, S.L., Thermodynamics of DNA hybridization on gold nanoparticles. Journal of the American Chemical Society,2005.127(38):13227-13231.
    [179]Gray, D.E., CaseGreen, S.C., Fell, T.S., Dobson, P.J., and Southern, E.M., Ellipsometric and interferometric characterization of DNA probes immobilized on a combinatorial array. Langmuir,1997.13(10):2833-2842.
    [180]Elhadj, S., Singh, G., and Saraf, R.F., Optical properties of an immobilized DNA monolayer from 255 to 700 nm. Langmuir,2004.20(13):5539-5543.
    [181]Steichen, M., Brouette, N., Buess-Herman, C., Fragneto, G., and Sferrazza, M., Interfacial Behavior of a Hairpin DNA Probe Immobilized on Gold Surfaces. Langmuir, 2009.25(7):4162-4167.
    [182]Levicky, R., Herne, T.M., Tarlov, M.J., and Satija, S.K., Using self-assembly to control the structure of DNA monolayers on gold:A neutron reflectivity study. Journal of the American Chemical Society,1998.120(38):9787-9792.
    [183]Kjallman, T.H.M., Nelson, A., James, M., Dura, J.A., Travas-Sejdic, J., and McGillivray, D.J., A neutron reflectivity study of the interfacial and thermal behaviour of surface-attached hairpin DNA. Soft Matter,2011.7(10):5020-5029.
    [184]Caruso, F., Rodda, E., Furlong, D.F., Niikura, K., and Okahata, Y., Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Analytical Chemistry,1997.69(11):2043-2049.
    [185]Okahata, Y., Kawase, M., Niikura, K., Ohtake, F., Furusawa, H., and Ebara, Y., Kinetic measurements of DNA hybridisation an an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Analytical Chemistry,1998.70(7):1288-1296.
    [186]Peterson, A.W., Heaton, R.J., and Georgiadis, R.M., The effect of surface probe density on DNA hybridization. Nucleic Acids Research,2001.29(24):5163-5168.
    [187]Wolf, L.K., Gao, Y., and Georgiadis, R.M., Sequence-dependent DNA immobilization: Specific versus nonspecific contributions. Langmuir,2004.20(8):3357-3361.
    [188]Ramsden, J.J. and Dreier, J., Kinetics of the interaction between DNA and the type IC restriction enzyme EcoR124II. Biochemistry-Us,1996.35(12):3746-3753.
    [189]Xu, P., Huang, F., and Liang, H., Real-time study of a DNA strand displacement reaction using dual polarization interferometry. Biosensors & Bioelectronics,2013.41: 505-510.
    [190]Walker, H.W. and Grant, S.B., Coagulation and stabilization of colloidal particles by adsorbed DNA block copolymers:The role of polymer conformation. Langmuir,1996. 12(13):3151-3156.
    [191]Seeman, N.C., Nucleic acid nanostructures and topology. Angew Chem Int Edit,1998. 37(23):3220-3238.
    [192]Seeman, N.C., DNA in a material world. Nature,2003.421 (6921):427-431.
    [193]Bath, J. and Turberfield, A.J., DNA nariomachines. Nat Nanotechnol,2007.2(5):275-284.
    [194]Liu, H. and Liu, D.S., DNA nanomachines and their functional evolution. Chem Commun,2009(19):2625-2636.
    [195]Krishnan, Y. and Simmel, F.C., Nucleic Acid Based Molecular Devices. Angew Chem Int Edit,2011.50(14):3124-3156.
    [196]Tian, Y. and Mao, C.D., Molecular gears:A pair of DNA circles continuously rolls against each other. J Am Chem Soc,2004.126(37):11410-11411.
    [197]Yin, P., Yan, H., Daniell, X.G., Turberfield, A.J., and Reif, J.H., A unidirectional DNA walker that moves autonomously along a track. Angew Chem Int Edit,2004.43(37): 4906-4911.
    [198]Bath, J., Green, S.J., and Turberfield, A.J., A free-running DNA motor powered by a nicking enzyme. Angew Chem Int Edit,2005.44(28):4358-4361.
    [199]Song, T.J. and Liang, H.J., Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fuelled molecular machine Tingjie. J Am Chem Soc,2012.134:10803-10806.
    [200]Seelig, G., Yurke, B., and Winfree, E., Catalyzed relaxation of a metastable DNA fuel. J Am Chem Soc,2006.128(37):12211-12220.
    [201]Zhang, D.Y. and Winfree, E., Dynamic allosteric control of noncovalent DNA catalysis reactions. J Am Chem Soc,2008.130(42):13921-13926.
    [202]Qian, L.L. and Winfree, E., Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades. Science,2011.332(6034):1196-1201.
    [203]Soloveichik, D., Seelig, G., and Winfree, E., DNA as a universal substrate for chemical kinetics. P Natl Acad Sci USA,2010.107(12):5393-5398.
    [204]Qian, L., Winfree, E., and Bruck, J., Neural network computation with DNA strand displacement cascades. Nature,2011.475(7356):368-372.
    [205]Zhang, K.J. and Taylor, J.S., A caged ligatable DNA strand break. J Am Chem Soc, 1999.121(49):11579-11580.
    [206]Xing, Y.Z., Yang, Z.Q., and Liu, D.S., A Responsive Hidden Toehold To Enable Controllable DNA Strand Displacement Reactions. Angew Chem Int Edit,2011.50(50): 11934-11936.
    [207]Prokup, A., Hemphill, J., and Deiters, A., DNA Computation:A Photochemically Controlled AND Gate. J Am Chem Soc,2012.134(8):3810-3815.
    [208]Ordoukhanian, P. and Taylor, J.S., Design and Synthesis of a Versatile Photocleavable DNA Building-Block-Application to Phototriggered Hybridization. J Am Chem Soc, 1995.117(37):9570-9571.
    [209]Bai, X.P., Li, Z.M., Jockusch, S., Turro, N.J., and Ju, J.Y., Photocleavage of a 2-nitrobenzyl linker bridging a fluorophore to the 5'end of DNA. P Natl Acad Sci USA, 2003.100(2):409-413.
    [210]Seo, T.S., Bai, X.P., Ruparel, H., Li, Z.M., Turro, N.J., and Ju, J.Y., Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. P Natl Acad Sci USA,2004.101(15):5488-5493.
    [211]Seo, T.S., Bai, X.P., Kim, D.H., Meng, Q.L., Shi, S.D., Ruparelt, H., Li, Z.M., Turro, N.J., and Ju, J.Y., Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides. P Natl Acad Sci USA,2005.102(17):5926-5931.
    [212]Liu, H.P., Zhu, Z., Kang, H.Z., Wu, Y.R., Sefan, K., and Tan, W.H., DNA-Based Micelles:Synthesis, Micellar Properties and Size-Dependent Cell Permeability. Chem-Eur J,2010.16(12):3791-3797.
    [213]Huang, J., Wu, Y.R., Chen, Y., Zhu, Z., Yang, X.H., Yang, C.J., Wang, K.M., and Tan, W.H., Pyrene-Excimer Probes Based on the Hybridization Chain Reaction for the Detection of Nucleic Acids in Complex Biological Fluids. Angew Chem Int Edit,2011. 50(2):401-404.
    [214]Chen, X., Expanding the Rule Set of DNA Circuitry with Associative Toehold Activation. J Am Chem Soc,2012.134(1):263-271.
    [215]Genot, A.J., Zhang, D.Y., Bath, J., and Turberfield, A.J., Remote Toehold:A Mechanism for Flexible Control of DNA Hybridization Kinetics. J Am Chem Soc,2011. 133(7):2177-2182.
    [216]Zhang, D.Y., Cooperative Hybridization of Oligonucleotides. J Am Chem Soc,2011. 133(4):1077-1086.
    [217]Hughes, T.R., Mao, M., Jones, A.R., Burchard, J., Marton, M.J., Shannon, K.W., Lefkowitz, S.M., Ziman, M., Schelter, J.M., Meyer, M.R., Kobayashi, S., Davis, C., Dai, H.Y., He, Y.D.D., Stephaniants, S.B., Cavet, G., Walker, W.L., West, A., Coffey, E., Shoemaker, D.D., Stoughton, R., Blanchard, A.P., Friend, S.H., and Linsley, P.S., Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol,2001.19(4):342-347.
    [218]Heller, M.J., DNA microarray technology:Devices, systems, and applications. Annu Rev Biomed Eng,2002.4:129-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700