回用中水超声及其协同紫外消毒效能与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水资源稀缺,开发中水、利用中水迫在眉睫。城市中水由于其污染程度轻,水量稳定,故回用作生活杂用水最具发展前途。
     功率超声通过其机械作用、空化作用、热作用改变物质的物理、化学或生物特性。功率超声应用于回用中水消毒时,能够改变水中颗粒污染物的粒径组成、对细胞膜造成物理破坏、其空化现象产生的羟基自由基能够破坏微生物的细胞结构,但存在难以找到合适的超声源、单独作用时消毒不彻底、消毒物品的量不能太大等问题。紫外线消毒具有广谱杀菌、无二次污染等特点,但也存在着如微生物由于对紫外线的抗性而要求较高的辐照剂量、消毒效果依赖于进水水质、灭菌后存在光复活现象等缺点。功率超声与紫外协同作用对回用中水进行消毒,能够降低紫外辐射剂量,提高紫外消毒效果,有效抑制微生物的光复活现象。
     本研究以大肠杆菌、枯草芽孢杆菌、中水中大肠杆菌、中水中细菌总数为研究对象,考察超声、紫外、超声协同紫外的灭菌消毒效能;研究复合纳米光催化剂CoPcS/TiO_2对鲁米诺声致发光的增敏作用,并对声致空化的灭菌机制进行研究;通过生物学手段,对各种处理方式的灭菌机制进行研究。研究内容主要包括:
     (1)回用中水超声灭菌效能及机制研究
     实时荧光定量PCR技术与PMA结合,PMA可以通过破损的细胞膜进入死菌内部,与DNA交联,并发出红色荧光;通过平板计数法测定的细菌存活量与通过实时荧光定量PCR结合PMA测定的存活量之间具有良好的线性相关性,荧光定量PCR结合PMA技术可以替代平板计数法对超声的灭菌效果进行客观准确的评价。
     固定低频超声灭菌时,超声的功率密度越大,灭活速率越大,相同的作用时间内,超声的功率密度越大,灭活率越大;各目标处理物的最大相对功效值对应的工况的功率密度均为7.18W.cm~(-2)。变频超声灭菌时,超声的频率越大,灭活速率越小;大肠杆菌和枯草芽孢杆菌达到最大相对功效都是在20kHz超声作用6min,中水中大肠杆菌和细菌总数达到最大功效是在20kHz超声作用7min。
     高功率密度的超声处理对于大肠杆菌的细胞结构破坏比低功率密度的超声严重,低频率的超声处理对于枯草芽孢杆菌的细胞结构破坏比高频率的超声严重;在各种功率及各种频率的超声作用下,大肠杆菌的DNA都不能被破坏;固定频率(变频)超声作用时,超声的功率密度(频率)越大(小),反映大肠杆菌TFC脱氢酶活性的吸光度的减小速率越大。
     纳米CoPcS/TiO_2对鲁米诺声致发光具有增敏作用;在相同的作用时间内,超声作用的功率越大,超声空化场的蓝光范围越大、亮度越大;在相同的功率密度下,高频超声的发光强度大于低频超声,比低频超声作用产生更多的自由基,超声作用时产生的物理作用,即对细菌细胞膜、细胞壁的剪切作用,强于由于自由基氧化产生的灭活作用。
     (2)回用中水紫外消毒效能及生物学机制研究
     中水中的大肠杆菌对于UV的抗性大于大肠杆菌菌液,其灭活速率K值分别为0.0726min~(-1)、0.1min~(-1)。UV辐照枯草芽孢杆菌的IT_(lag)、一级反应K值、IT_(tail)分别为24mJ·cm~(-2)、0.03min~(-1)、>84mJ·cm~(-2);中水中细菌总数的IT_(tail)、一级反应K值、IT_(tail)分别为12mJ·cm~(-2)、0.05min~(-1)、>96mJ·cm~(-2),枯草芽孢杆菌对于紫外的较强的抗性是自身结构导致的。Chick一级反应动力学模型能够体现出大肠杆菌的灭活特性,Collins-Selleck和Hom模型能够体现出枯草芽孢杆菌和中水中细菌总数的灭活特征。
     各紫外辐照剂量下的大肠杆菌均发生了光复活现象,在相同的紫外辐照剂量下,中水中的大肠杆菌的光复活率小于菌液中大肠杆菌的光复活率;枯草芽孢杆菌光复活现象不明显;中水中的细菌总数的光复活率低于中水中的大肠杆菌的光复活率。
     一定时间内的紫外线辐照不能改变细菌的细胞形态结构;各紫外辐照剂量及不同的光复活时间下,T_4核酸内切酶V酶切后产生的ESS的含量能够反映出大肠杆菌灭活率,二聚体的形成是紫外线对DNA分子的主要损伤方式:反映大肠杆菌ITC脱氢酶的吸光度值随着紫外辐照剂量的增加而减小,在紫外的作用下,体系的TTC脱氢酶的活性被减弱。
     (3)回用中水超声协同紫外消毒效能及生物学机制研究
     超声协同处理后,紫外灭菌的反应速率增大,枯草芽孢杆菌和中水中细菌总数的IT_(lag)减小、一级反应K值增大、IT_(tail)值增大,使灭活反应更早脱离停滞区,反应速率增大,更晚到达拖尾区。欲达到相同的处理目标,超声协同作用时所需紫外剂量的减小幅度在18%-76%之间,在相同的紫外剂量下,超声与紫外协同作用强化百分比为18%-97%之间;对于四种目标处理物,超声与紫外协同作用的灭活速率及强化百分比大小顺序均为US/UV>US-UV>UV-US,枯草芽孢杆菌在各个协同方式下的强化百分比最大。
     超声与紫外协同处理后,大肠杆菌依然发生了光复活现象;超声与紫外协同作用比单独紫外作用的光复活率低,且US/UV的光复活速率最低。超声与紫外同时作用的协同方式对细胞形态结构的破坏最严重、产生的二聚体最多、反映大肠杆菌TTC脱氢酶的吸光度值的减小速率最大。从生物学角度说明超声的协同作用大大强化了紫外消毒效果。
Water resource in our country is scarce, and the reuse of urban wastewater is necessary. It is urgent to develop and utilize recycled water. As slightly pollution and stable water quantity, it is attractive for urban greywater to reuse as domestic miscellaneous water.
     Power ultrasonic can alter the physical, chemical and biological feature of matters by mechenical, cavitation and themal effect. Power ultrasonic can change the grain size distribution of partical pollution, destroy bacterial membrane and structure by hydroxyl radical. UV dose can be reduced, disinfection result can be improved and photoreactivation can be controlled by UV disinfection with ultrasonic pre-treatment. UV disinfection is a kind of physical disinfection technology, which can disinfect extensively and without secondary pollution. UV disinfection still has some disadvantage, such as needing high UV dose because of the resistance of bacteria to UV, result of disinfection depending on influent quality and photoreactivation occouring after disinfection.
     Propidium monoazide (PMA) was combined with real time fluorescence quantity PCR to realize accurate and rapid detection to the disinfection effect by ultrasonic. E.Coli, B. subtilis, E.Coli in reclaimed water and total bacteria in reclaimed water were taken as research object, and effect of disinfection and photoreactivation controlling under UV, US and US combined with UV were studied, and the optimal operating condition were determined. The mechnisim of photoreactivation of E.Coli controlled by US effectively was investigated by microbiological method. Sensitizing effect of composite nano-CoPcS/TiO_2 to luminol sonoluminescene was researched. Inactivation mechanism of cavitation induced by sound was investigated by the phenomenon of luminol sonoluminescene. By means of molecular biology, the mechanism of UV disinfection and enhanced by US, photoreactivation were studied. The main conclusions included the following items:
     (1) Research on efficiency and mechanism of reclaimed water disinfection under US
     Propidium monoazide (PMA) was combined with real time fluorescence quantity PCR to detecte the inactivation rate of E.Coli and B. subtilis by ultrasonic. Through microscopic examination, which could be observed that PMA combined with DNA through forewom membrane, and red fluorescene sent out under UV. There was liner relationship between survival amounts detected by PCR combined with PMA and plate counting method, and the correlation coefficient were 0.8918 and 0.8899, which could confirm that it was objective and exact to detect inactivation effect under US by PCR combined with PMA.
     The power intensity was important to inactivation result under US with fixed low frequency, and the optimal operating condition all were: volume 50mL, power intensity 21.3Wcm~(-2), action time 60S. Under variable frequency, influence order all were frequency>action time>powerintensity, and these three factors all had not statistical significance. The bigger the power intensity was, the bigger the inactivation speed was. Under the same action time, the bigger the power intensity was, the bigger the inactivation rate was. The bigger the frequency was, the less the inactivation speed was.
     The power intensity corresponding to the biggest relative efficiency value under low frequency US was 7.18W·cm~(-2). Under variable frequency, the biggest relative efficiency value of E.Coli and B. subtilis occurred under US of 20kHz 6min, and that of E.Coli in reclaimed water and total bacteria occurred under US of 20kHz 7min.
     US of higher power intensity could damage bacterial structure of E.Coli more seriousely than that of lower intensity. US of lower frequency could damage bacterial structure of B. subtilis more seriousely than that of higher frequency; DNA of E.Coli could not be damaged under every power and frequency. Bigger was the power intensity (frequency), bigger was the reducing rate of absorbance which reflected the activity of TTC-dehydrogenase.
     Nano-CoPcS/TiO_2 had obvious sensitizing effect to luminol sonoluminescene. During the same action time, bigger the power intensity was, the blue light of cavitation was more extensive and brighter. Under the same power intensity, luminescence intensity of high frequency US was bigger than that of low frequency, namely that the radicals produced by high frequency US was much than that of low frequency. The strengthening effect of US on UV disinfection mainly resulted from shearing destructive effect.
     (2) Research on efficiency and biological mechanism of reclaimed water disinfection under UV
     E.Coli in reclaimed water had stronger resistance to UV than E.Coli, and the inactivation rate were 0.0726 and 0.1 separately. IT_(lag), first order reaction rate constant, IT_(tail) of B. subtilis were 24mJ·cm~(-2), 0.03 and >84 mJ·cm~(-2), of which for total bacteria in reclaimed water were 12mJ·cm~(-2), 0.05 and >96mJ·cm~(-2). The higher resistance of B. subtilis resulted from the bacterial structure. The first order reaction dynamic model of Chick Model could embody the inactivation feature of E.Coli, and the Collins-Selleck model and Horn model could embody the inactivation feature of B. subtilis and total bacteria in reclaimed water.
     Photoreactivation of E.Coli occurred under different UV dose. The photoreactivation rate of E.Coli in reclaimed water was less than that of E.Coli. The photoreactivation of B. subtilis was not obvious. The photoreactivation rate of total bacteria in reclaimed water was less than that of E.Coli in reclaimed water. UV radiation coule not change the bacterial structure. The content of ESS produced by T_4-EndoV digestion could embody inactivation rate of E.Coli under every operating condition, which demonstrated that it was reasonable to investigate the mechanism of UV disinfection by means of specific recognition of T_4-EndoV to CPDs. Bigger was the US dose, bigger was the reducing rate of absorbance which reflected the activity of TTC-dehydrogenase.
     (3) Research on efficiency and biological mechanism of of reclaimed water disinfection by US combined with US
     The inactivation rates sequences under US combined with UV were all US/UV>US-UV>UV-US>UV. UV dose combined with US decreased 18%~76%. Under the same UV dose, the enhancement percentages were 18%~97%, that of B. subtilis was biggest. The synergistic effect of US and UV decreased the resistance of bacteria to UV.
     Photoreactivation of E.Coli still occurred after US combined with UV, and the photoreactivation rate decreased. The enzyme dimmers of photoreactivation after US combined with UV were more than UV, which demonstrated that US combined with UV controlled photolysis of enzyme dimmers. Under US/UV, the reducing rate of absorbance which reflected the activity of TTC-dehydrogenase was biggest.
引文
[1] Eriksson E, Auffarth K, Henze M, et al. Characteristics of grey wastewater[J]. Urban Water,2002,4(1), 85-104.
    [2] M Halalsheh, S Dalahmeh, M Sayed, et al. Reclaimed water characteristics and treatment options for rural areas in Jordan[J]. Bioresource Technology, 2008,99(14):6635-6641.
    [3] Jefferson B, Palmer A, Jeffrey P, et al. Reclaimed water characterisation and its impact on the selection and operation of technologies for urban reuse[J]. Water Sci. Technol., 2004,50(2),157-164.
    [4] Friedler E. Quality of individual domestic greywater streams and its implication for on-site treatment and reuse possibilities[J]. Environ. Technol., 2004,25(9):997-1008.
    [5] Helena P, Jorgen H. Hazardous substances in separately collected grey- and blackwater from ordinary Swedish households[J]. Science of the total Environment, 2005,348(1-3):151-163.
    [6] Gideon P W, Lisa M A, Ronnie F W. A study of the microbial quality of reclaimed water and an evaluation of treatment technologies for reuse[J]. Ecological engineering, 2008,32(2):187-197.
    [7] March J G, Gual M., Orozco F. Experiences on greywater re-use for toilet flushing in a hotel (Mallorca Island, Spain) [J]. Desalination, 2004,164(3):241-247.
    [8] Ramon G, Green M., Semiat R, et al. Low strength graywater characterization and treatment by direct mem-brane filtration [J].Desalination, 2004,170(3):241-250.
    [9] Dallas S, Ho G. Subsurface flow reedbeds using alternative media for the treatment of domestic greywater in Monteverde, Costa Rica, Central America[J]. Water Sci. Technol.,2005,51(10):119-128.
    [10] Nolde E. Greywater reuse systems for toilet flushing in multi-storey buildings-over ten years experience in Berlin[J]. Urban Water, 1999,1(4):275-284.
    [11] Jefferson B, Laine A L, Judd S. et al. Membrane bioreactors and their role in wastewater reuse[J]. Water Sci.Technol., 2000,41(1):197-204.
    [12] Otterpohl R, Braun U, Oldenburg M. Innovative technologies for decentralised water, wastewater and biowaste management in urban and peri-urban areas[J]. Water Sci.Technol., 2003,48(11/12):23-32.
    [13] Pidou M, Memon F A, Stephenson T. et al. Greywater recycling: treatment options and applications[J]. J. ICE. Eng Sustain., 2007,160 (3):119-131.
    [14] Casanova L M, Little V, Frye R J. A survey of the microbial quality of recycled household graywater[J]. Water Resour Assoc., 2001a,37 (5):1313-1319.
    [15] Ottoson J, Stenstr T A. Faecal contamination of reclaimed water and associatedmicrobial risks[J]. Water Res., 2003a,37(3):645-655.
    [16] Friedler E. Quality of individual domestic reclaimed water streams and its implication for on-site treatment and reuse possibilities[J]. Environ. Technol., 2004,25(9): 997-1008.
    [17] Casanova L M, Gerba C P, Karpiscak M. Chemical and microbial characterization of household graywater[J]. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng.,2001,36(4):395-401.
    [18] Birks R, Colbourne J, Hills S, et al. Microbiological water quality in a large in-building, water recycling facility[J]. Water Sci. Technol., 2004,50(2):165-172.
    [19] Casanova L M, Gerba C P, Karpiscak M. Chemical and microbial characterization of household graywater[J]. J. Environ. Sci. Health A, 2001b,36(4):395-401.
    [20] Gideon P, Winward, Lisa M Avery, et al. Chlorine disinfection of reclaimed water for reuse: Effect of organics and particles[J]. Water Research, 2008,42(l-2):483-491.
    [21] Tarek A, Elmitwalli, Ralf Otterpohl. Anaerobic biodegradability and treatment of reclaimed water in upflow anaerobic sludge blanket (UASB) reactor[J].Water Research,2007,41(6):1379-1387.
    [22] Elmitwalli T A., Soellner J, Keizer A, et al. Biodegradability and change of physical characteristics of particles during anaerobic digestion of domestic sewage[J]. Water Res.,2001,35(5):1311-1317.
    [23] Elmitwalli T A, Mahmoud N, Soons J. Characteristics of reclaimed water: Polderdrift, The Netherlands.In: Proceeding of Second International Symposium on Ecological Sanitation.Ecosan-Closing the Loop, Lubeck, Germany, 2004.
    [24] Elmitwalli T A, Sklyar V, Zeeman G, et al. Low temperature pretreatment of domestic sewage in anaerobic hybrid and anaerobic filter reactor[J]. Biores.Technol., 2002a,82(3):233-239.
    [25] M Lamine, L Bousselmi, A Ghrabi. Biological treatment of reclaimed water using sequencing batch reactor[J]. Desalination, 2007,215(1-3):127-132.
    [26] Xingdong Zhu, Mark A Nanny, Elizabeth C Butler. Photocatalytic oxidation of aqueous ammonia in model gray waters[J]. Water Research, 2008,42(10-11):2736-2744.
    [27] Ottoson J, Stenstrom T A. Faecal contamination of grey-water and associated microbial risks[J]. Water Res., 2003,37(3):645-655.
    [28] Birks R, Colbourne J, Hills S, et al. Microbiological water quality in a large in-building, water recycling facility[J]. Water Sci. Technol., 2004,50(2):165-172.
    [29] Virto R, Manas P, Alvarez I, et al. Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate[J]. Appl. Environ. Microbiol., 2005,71(9):5022-5028.
    [30] Shankararaman Chellam, Ramesh R Sharma, Grishma R. Shetty, et al. Nanofiltration of pretreated Lake Houston water: Disinfection by-product speciation, relationships, and control [J]. Separation and Purification Technology, 2008,64(2,17): 160-169.
    [31] Narkis N, Armon R, Offer R, et al. Effect of suspended solids on wastewater disinfection efficacy by chlorine dioxide[J]. Water Res., 1995,29(1):227-236.
    [32] Dietrich J P, Basagaoglu H, Loge F J, et al. Preliminary assessment of transport processes influencing the penetration of chlorine into wastewater particles and the subsequent inactivation of particle-associated organisms[J]. Water Research, 2003,37(1): 139-149.
    [33] Winward G P, Avery L M, Stephenson T, et al. Chlorine disinfection of reclaimed water for reuse: effect of organics and particles[J]. Water Research, 2007,41(2):387-396.
    [34] Gideon P Winward, Lisa M Avery, Tom Stephensona. Chlorine disinfection of reclaimed water for reuse: Effect of organics and particles[J].Water Res., 2008,42:483-491.
    [35] Khamtorn Pudtikajorn. Ⅱ-Shik Shin, Woo-Sik Jeong, et al. Kinetic modeling of active chlorine generation by low-amperage pulsating direct current in a circulating brine solution [J]. Journal of Food Engineering, 2009,92(4):461-466.
    [36] Bohrerova Z. Linden K G.Ultraviolet and chlorine disinfection of Mycobacterium in wastewater: effect of aggregation[J]. Water Environ. Res., 2006,78(6):565-571.
    [37] Dietrich J P, Basagaoglu H, Loge F J, et al. Preliminary assessment of transport processes influencing the penetration of chlorine into wastewater particles and the subsequent inactivation of particle-associated organisms[J]. Water Research, 2003,37(1):139-149.
    [38] J G March, M Gual, J Ramonell. A kinetic model for chlorine consumption in reclaimed water[J]. Desalination, 2005,181(1-3):267-273.
    [39] Nieuwenhuijsen M J, Toledano M B, Eaton N E, et al. Chlorination disinfection byproducts in water and their association with adverse reproductive outcomes: a review[J]. Occup. Environ. Med., 2000,57(2):73-85.
    [40] B W Tleimat, M C Tleimat. Water recovery from and volume reduction of reclaimed water using an energy efficient evaporator[J]. Desalination, 1996,107(2):111-119.
    [41] 闫恰新,刘红.低强度超卢波强化污水生物处理技术[J].中国给水排水,2004,20(8):31-33.
    [42] M S Limaye, W T Coakley. Clarification of small volume microbial suspensions in an ultrsaonic standing wave[J]. Journal of Applied Miciobiology, 1998, 84:1035-1043.
    [43] N Hince, R Belen. Apueous phase disinfection with powerful trasound:process kinetics and effect of solid catalysts[J]. Environmental Science and Technology, 2001,35(9):1885-1888.
    [44] S Guerrero, A Lopez, S M Alzamora. Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, PH and amplitude[J]. Innovative Food Science and Emerging Technologies, 2001,2(1):31-39.
    [45] E Joyce, S S Phull, J P Lorimer, et al. The development and evaluation of ultrasound for the treatment of bacteria suspensions a study of frequency power and sonicatin time on cultured bacillus species[J]. Ultrasonics Sonochemistry, 2003,10(6):315-318.
    [46] M Villamiel, P de Jong. Inactivation of Pseudomonas fluorescensand Streptococcus thermophilus in trypticase soy broth and total bacteria in milk[J]. Food Engineering, 2000,45:171-179.
    [47] U Hulsen. Alternative heat treatment processes[J]. European Dairy Magazine, 1999, 3:20-24.
    [48] GScherba R, M Weigd, W D O'Brien, et al. Quantitaive assessment of the germicidal efficacy of ultrasonic energy[J]. Applied and Environmental Microbiology, 1999,57(7):2079-2084.
    [49] P Manas, R Pagan, J Raso, et al. Inactivation of Salmonella Typhimurium, and Salmonella Senftenberg by ultrasonic waves under pressure[J]. Journal of Food Protection,2000a,63(4):451-456.
    [50] M L Garcia, J Burgos, B Sanz, et al. Effect ofheat and ultraso nic waves on the survial of two strains of Bacillus subtilis[J]. Journal of Applied Bacteriology, 1989,67:619-628.
    [51] J Raso, A Palo, R Pagan, et al. In activation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment[J]. Journal of Applied Microbiology,1998a,85:849-854.
    [52] L L Johnson, R V Peterson, W G Pitt. Treatment of bacterialbiofilms on polymeric biomaterials using antibiotics and ultrasound[J]. Journal of Biomaterials Science. Polymer Ed., 1998,9(11):1177-1185.
    [53] A M Rediske, N Rapoport, W GPitt. Reducing bacteral resistance to antibiotics with ultrasound[J]. Utters in Applied Microbiology, 1999,28(1):81-84.
    [54] E Joyce,T J Mason, S S Phull, et al. The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions[J].Ultrasonics Sonochemistry, 2003,10:231-234.
    [55] H Duckhouse, T J Mason, S S Phull, et al. The effect of sonication on microbial disinfection using hypochlorite[J]. Ultrasonics Sonochemistry, 2004,11(3-4):173-176.
    [56] Torben Blume, Uwe Neis. Improved wastewater disinfection by ultrasonic pre-treatment[J]. Ultrasonic sonochemistry, 2004,11(5):333-336.
    [57] Environmental Protection Agency, EPA/832/R-92/004, USEPA, Washington D.C.,1992.
    [58] Medema G J, Schets F M, Teunis P F M, et al. Sedimentation of free and attached Cryptosporidium oocysts and Giardia cysts in water[J]. Appl. Environ. Microbiol.,1998,64(11):4460-4466.
    [59] Borst M, Selvakuma A. Particle-associated microorganisms in stormwater run off[J]. Water Res., 2003,37(1):215-223.
    [60] USEPA, 2006. Long Term Enhanced Surface Water Treatment Rule; Final Rule. Federal Register, 2006,40 CFR Parts 9:141-142.
    [61] Health Canada, 2003. Guidelines for Canadian Drinking Water Quality: Supporting Documentation-Turbidity. Health Canada. Ottawa. Ontario.
    [62] Bridgeman J, Simms J S, Parsons S A. Practical and theoretical analysis of relationships between particle count data and turbidity[J]. J. Water Supply Res., 2002,51(5):263-271.
    [63] O'Melia C R, Shin J Y. Removal of particles using dual media filtration: modeling and experimental studies[J]. J. Am. Water Sci. Technol., 2000,92(4):73-79.
    [64] Huck P M, Coffey B M, Emelko M B, et al. Effects of filter operation on Cryptosporidium removal[J]. J. Am. Water Works Assoc., 2002,94(6):97-111.
    [65] Batch L, Schnlz C R, Linden K G. Evaluating water quality effects on UV disinfection of MS2 coliphage[J]. J. Am. Water Works Assoc., 2004,96(7):75-87.
    [66] Amoah K, Craik S, Smith D W, et al. Inactivation of Cryptosporidium oocycts and Giardia cysts by ultraviolet light in the presence of natural particulate matter[J]. J. Water Supply Res. Technol. Aqua., 2005,54(3):165-178.
    [67] Passantino L, Malley J, Knudeon M, et al. Effect of low turbidity and algae on UV disinfection performance[J]. J. Am. Water Works Assoc., 2004,96(6):128-137.
    [68] Marcus ClauB, Norbert Grotjohann. Comparative mutagenesis of Escherichia coli strains with different repair deficiencies irradiated with 222-nm and 254-nm ultraviolet light. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2009,673(2,27):83-86.
    [69] Emerick R W, Loge F J, Ginn T, et al. Modeling the inactivation of particle-associated coliform bacteria[J]. Water Environ. Res., 2000,7(4):432-438.
    [70] Jolis D, Lam C, Pitt P. Particle effects on ultraviolet disinfection of coliform bacteria in recycled water[J]. Water Environ. Res., 2001,73(2):233-236.
    [71] Raymond E Cantwell, Ron Hofmann. Inactivation of indigenous coliform bacteria in unfiltered surface water by ultraviolet light[J]. Water Research, Article in press.
    [72] Gerba C P. Applied and theoretical aspects of virus adsorption to surface[J]. Adv. Appl. Microbiol., 1984,30:133-168.
    [73] Mamane-Gravetz H, Linden K G. Relationship between physicochemical properties. aggregation and u.v inactivation of isolated indigenous spores in water[J]. J. Appl Microbiol.,2005,98(2):351-363.
    [74] Hejkal T W, Wellings F M, Larock P A, et al. Survival of poliovirus within organic solids during chlorination[J]. Appl. Environ. Microbiol., 1979,38(1):114-118.
    [75] Ormeci B, Linden K G. Comparison of UV and chlorine inactivation of particle and non-particle associated coliform[J]. Water Sci. Technol.: Water Supp., 2002,2(5-6):403-410.
    [76] Passantino L, Malley J P, Knudson M, et al. Effect of low turbidity and algae on UV disinfection performance[J]. J. Am. Water Works Assoc., 2004,96(6): 128-137.
    [77] Michael R Templeton, Robert C Andrews, Ron Hofmann. Inactivation of particle-associated viral surrogates by ultraviolet light[J]. Water Research, 2005,39(15):3487-3500.
    [78] Bitton G, Henis Y, Lahav N. Effect of several clay minerals and humic acid on the survival of Klebsiella aerogenes exposed to ultraviolet irradiation[J]. Appl. Environ. Microbiol.,1972,23(5):870-874.
    [79] Christensen J, Linden K G How particles affect UV light in the UV disinfection of unfiltered drinking water[J]. J. Am. Water Works Assoc. 2003,95(4):179-189.
    [80] Eva Eriksson, Nina Christensen, Jens Ejbye Schmidt, et al. Potential priority pollutants in sewage sludge[J]. Desalination,2008,226(1-3):371-388.
    [81] R Gehr, H Wright. UV disinfection of wastewater coagulated with ferric chloride:Recalcitrance and fouling problems[J]. Water Science and Technology, 1998,38(3):15-23.
    [82] Lin L S, Johnston C T, Blatchley E R. Inorganic fouling at quartz: water interfaces in ultraviolet photoreactors-Chemical characterization[J]. Water Res., 1999a,33(15):3321-3329.
    [83] Sheriff M, Gehr R. Laboratory investigation of inorganic fouling of low pressure UV disinfection lamps[J]. Water Qual. Res. J. Canada, 2001,36(1):71-92.
    [84] Isaac W Wait, Cliff T Johnston, Ernest R. The influence of oxidation reduction potential and water treatment processes on quartz lamp sleeve fouling in ultraviolet disinfection reactors[J]. Water Research, 2007,41(11):2427-2436.
    [85] EPA, 2006. Ultraviolet Disinfection Guidance Manual for the Final Long Term Enhanced Surface Water Treatment Rule. Office of Water, Washington DC, USA.
    [86] WRI, 2000. Ultraviolet Disinfection: Guidelines for Drinking Water and Water Reuse. Fountain Valley, USA.
    [87] HEELIS P F, KIM S T, OKAMURA K, et al. The photo repair of pyrimidine dimers by DNA photolyase and model systems[J]. J. Photochem Photobiol B: Biol., 1993,17(3):219-228.
    [88] SANCAR A. Structure and function of DNA photolyase[J]. Biochemistry, 1994,33:2-9.
    [89] March J G, Gual M., Orozco F. Experiences on greywater re-use for toilet flushing in a hotel (Mallorca Island, Spain)[J]. Desalination, 2004,164 (3):241-247.
    [90] J L Ravanat, T Douki, J Cadet. Direct and indirect effects of UV radiation on DNA and its component[J]. Photochem. Photobiol., 2001,63: 88-102.
    [91] J H Baxendale, J A Wilson. The photolysis of hydrogen peroxide at high light inten sities[J]. Trans. Faraday Soc., 1957,53:344-356.
    [92] Fang Yuan, Chun Hu, Xuexiang Hu, et al. Degradation of selected pharmaceuticals in aqueous solution with UV and UV/H_2O_2[J]. Water Research, 2009,43 (6):241-247.
    [93] Fahmi N W, Okada M. Improvement of DOC removal by multistage AOP-biological treatment[J]. Chemosphere,2003,50(8):1043-1048.
    [94] Speitel G E, Symons J M, Mialaret J M, et al. AOP/biofilm processes for DOX precursors[J]. J. Am. Water Works Assoc. 2000,92:59-73.
    [95] Ramn Toor, Madjid Mohseni, UV-H_2O_2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water[J]. Chemosphere, 2007,66(11):2087-2095.
    [96] M A K Jansen, R E van den Noort, M Y A Tan, et al. Phenol-oxidizing[J]. Plant Physiol., 2001,126:1012-1023.
    [97] Y Y He, D P Hader. Reactive oxygen species and UVB:effect on cyanobacteria[J]. Photochem. Photobiol. Sci., 2002,1:729-736.
    [98] V Mayer, R H Reed. Solar disinfection of coliform bacteria in hand-drawn drinking water[J]. Water SA., 2001,27:49-52.
    [99] J R Davies-Colley, A M Donnison, D J Speed. Sunlight wavelengths inactivation faecal indicator microorganisms in waste stabilisation ponds[J]. Water Sci. Tech. Lib. 1997,35(11-12):219-225.
    [100] Josephson, K L Josephson, C P Gerba, et al. Polymerase chain reaction detection of nonviable bacterial pathogens[J]. Appl. Environ. Microbiol., 1993,59: 3513-3515.
    [101] C I Masters, J A Shallcross, B M Mackey. Effect of stress treatments on the detection of Listeria monocytogenes and enterotoxigenic Escherichia coli by the polymerase chain reaction[J]. J. Appl. Bacteriol., 1994,77: 73-79.
    [102] Nocker, A K Camper. Selective removal of DNA from dead cells of mixed bacterial communities . by use of ethidium monoazide[J].Appl. Environ. Microbiol. 2006, 72:1997-2004.
    [103] Nocker A Cheung, C Y Camper, A K. Comparison of propidiummonoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells[J]. J. Microbiol. Methods, 2006,67(2):310-320.
    [104] Andreas Nocker, Katherine E Sossa, Anne K Camper. Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR[J]. Journal of Microbiological methords, 2007,70(2):252-260.
    [105] Jung-Lim Lee, Robert E Levin. A comparative study of the ability of EMA and PMA to distinguish viable from heat killed mixed bacterial flora from fish fillets[J]. Journal of Microbiological methords, 2009,76(1):93-96.
    [106] 马放,任南琪,杨基先.污染控制微生物学实验[M].哈尔滨工业大学出版社,哈尔滨,2002:23-30.
    [107] Edwards U, Rogall T, Blocker H, et al. Isolation and direct comp lete nucleotide determination of entire genes characterization of a gene coding for 16S ribosomal RNA[J]. Nucleic Acid Research., 1989,17 (19):7843-7853.
    [108] Shaunivan L L, Delbaere L T J, Lee J S. Gamma and ultraviolet radiation cause DNA crosslinking in the presence of metal ions at high pH[J]. Photochem. Photobiol., 2001, 73:579-584.
    [109] 时兰春,王伯初,杨艳红.低强度超声波在生物技术中应用的研究进展[J].重庆大学学报,2002,25(10):139-142.
    [110] Gondrexon N, Renaudin V, Petrier C, et al. Degradation or pentachlorophenol aqueous solutions using a continuous flow ultrasonic reactorexperimental performance and modeling[J]. Ultrasonics Sonochemistry, 1999,5(4):125-131.
    [111] 王宏清,钟爱国,李珊.超声波诱导降解甲胺磷的研究[J].环境化学,2000,19(1):84-86.
    [112] 王波,张光明,马伯志,等.微囊藻毒素在超卢场中的降解研究[J].环境科学,2005,26(6):101-104.
    [113] Hua I, Ho(?) chemer R H, Ho mann M R. Sonochemical Degradation of p-nitrophenol in a paral-lel-plate near acoustical processor[J].Environ. Sci. Technol., 1995a,29:2790-2796.
    [114] Paola Foladori, Bruni Laura, Andreottola Gianni, et al. Effects of sonication on bacteria viability in wastewater treatment plants evaluated by flow cytometry-Fecal indicators,wastewater and activated sludge[J], 2007,41(1):235-243.
    [115] 俞毓馨,吴国庆,孟宪庭.环境工程微生物检验手册.北京:中国环境出版社,1990,163-165.
    [116] Scherba G, Weigel R M, O'Brien W D. Quantitative assessment of the germicidal efficacy of ultrasonic energy[J]. Applied and Environmental Microbiology, 1991,57 (7):2079-2084.
    [117] Parag R Gogate. Application of cavitational reactors for water disinfection: Current status and path forward [J]. Journal of Environmental Management, 2007,58(4):801-815.
    [118] Zhou Li-zhen, Li Bing, Li Li, et al. Effects of Ultrasonic Irradiation on Escherichia Coliandstaphylcoccus Aureus[J]. Journal of Shanxi University of Science & Technology,2007,25(1):13-18.
    [119] 冯若,李化茂.声化学及应用[M].合肥:安徽科学技术出版社,1992:100-120.
    [120] 刘锋,周天翔,屠一锋.纳米MnO_2对鲁米诺电化学发光的增敏作用[J].光谱实验室,2007,24(4):519-523.
    [121] T Tuziuti, K Yasui, Y Iida, et al. Effect of particle addition on sonochemical reaction[J]. Ultrasonics, 2004,42(1-9):597-601.
    [122] Shaojun Guo, Dan Wen, haojun Dong, et al. Gold nanowire assembling architecture for H_2O_2 electrochemical sensor[J]. Talanta, 2009,77(4):1510-1517.
    [123] Hao Chen, Feng Gao, Rong He, et al. Chemiluminescence of luminol catalyzed by silver nanoparticles[J]. Journal of Colloid and Interface Science, 2007,315(1):158-163.
    [124] 李松田.改性纳米二氧化钛的制备、表征及其对染料废水的光催化行为研究.2008:103-105.
    [125] 陈填烽,郑文杰,杨芳,等.Te(@@@)-@@@-RhB水溶液中纳米粒子的形成及其光谱效应[J].感光科学与光化学,2005,23(2):144-150.
    [126] Hao Chen, Feng Gao, Rong, et al. Chemiluminescene of luminol catalyzed by silver nanoparticles[J]. Journal of colloid and interface science, 2007,315(1):158-163.
    [127] Marta Mrowetz, Carlo Pirola, Elena Selli. Degradation of organic water pollutants through sonophotocatalysis in the presence of TiO_2[J]. Ultrasonics Sonochemistry,2003,10(4-5):247-254.
    [128] A. Keck, E. Gilbert, R. Koster. Influence of particles on sonochemical reactions in aqueous solutions[J]. Ultrasonics, 2002,40(1-8):661-665.
    [129] T. Tuziuti, K. Yasui, Y. Iida, et al. Effect of particle addition on sonochemical reaction[J]. Ultrasonics, 2004,42(1-9):597-601.
    [130] T Tuziuti, K Yasui, Y Iida, et al. Effect of particle addition on sonochemical reaction[J]. Ultrasonics, 2004,42(1-9):597-601.
    [131] Dong Chen, Linda K Weavers. Harold W Walker. Ultrasonic control of ceramic membrane fouling by particles:Effect of ultrasonic factors[J] .Ultrasonics sonochemistry, 2006,13(5): 379-387.
    [132] Shinobu Koda, Takahide Kimura, Takashi Kondo. A standard method to calibrate sonochemical efficiency of an individual reaction system[J].Ultrasonics sonochemistry, 2003,10(3):149-156.
    [133] Hua I, Homann M R. Optimization of ultrasonic irradiation as an advanced oxidation technology[J]. Environ. Sci. Technol.,1997,31,2237-2243.
    [134] Horn L W. Kinetics of chlorine disinfection of an ecosystem [J]. Journal of the Sanitary Engineering Division, ASCE, 1972,98(SA1):183-194.
    [135] 杨辉,袁雅姝,刘军.污水UV消毒动力学研究[J].辽宁化工,2005,34(12):528-530.
    [136] Selleck R E, Saunier B M, Collins H F. Kinetics of bacterial deactivation with chlorine[J]. J. Engrg. Div. ASCE, 1978,104:1197-1212.
    [137] Mamane-Gravetz H, Linden K G. Relationship between physiochemical properties, aggregation and UV inactivation of isolated environmental spores in water[J]. J. Appl. Microbiol., 2005,98:351-363
    [138] Gehr R, Wagner M, Veerasubramanian P, et al. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater[J]. Water Res.,2003,37(19):4573-4586.
    [139] Hijnen W A M, van der Veer, A J Beerendonk, et al. Increased resistance of environmental anaerobic spores to inactivation by UV[J]. Water Sci. Technol.: Water Supply, 2004b,4(2):54-61.
    [140] Dong Li, Stephen A Craik, Daniel W Smith[J]. The assessment of particle association and UV disinfection of wastewater using indigenous spore-forming bacteria[J]. Water Research,2009,43(2):481-489.
    [141] Kelger A. Effect of visible light on the recovery of Streptomyces griseus conidia from ultraviolet irradiation injury[J]. Proceedings of the National Academy of Sciences of the United States of America, 1949,35(2):73-79.
    [142] Hassen A, Mahrouk M, Ouzari H, et al. UV disinfection of treated wastewater in a large-scale pilot plant and inactivation of selected bacteria in a laboratory UV device[J]. Bioresour. Technol., 2000,74(2):141-150.
    [143] Blatchley E R, Dumoutier N, Halaby T N, et al. Bacterial responses to ultraviolet irradiation[J]. Water Sci.Technol., 2001,43(10):179-186.
    [144] Mamane-Gravetz H, Linden K G Relationship between physiochemical proterties, aggregation and UV inactivation of isolated indigenous spores in water[J]. J. Appl. Microbiol., 2005,98:351-363.
    [145] 严涛,孙丽亚,魏康.T_4-Endo-V的分离和纯化[J].生物化学杂志,1990,8:382-384.
    [146] Friedberg E C. DNA Repair[A]. In:W H Freeman & Co. New York, 1985:175-184.
    [147] Quaite F E, Sutherland J C, Sutherland B M. Isolation of high-molecular-weight plant DNA for DNA damage quantitation: relative effects of solar 297nm UV-B and 365nm radiation[J].Plant Molecular Biology, 1994,24:475-483.
    [148] 韩榕,王勋陵,岳明.He-Ne激光对小麦DNA环丁烷嘧啶二聚体切除修复的影响[J].科学通报,2002,47(6):435-438.
    [149] Min Cho, Jae-Hong Kim, Jeyong Yoon. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants[J].Water Research,2006,40(15):2911-2920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700