增强UV-B辐射和CO_2倍增的复合作用对蚕豆、小麦生长和生理生态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧层减薄引起的太阳紫外线-B(UV-B,280-320nm)辐射增强和环境破坏导致的大气CO_2浓度升高对生物圈的影响已越来越引起人们的关注。增强的UV-B辐射和CO_2浓度升高都会直接或间接影响植物的生理、形态结构和生长发育过程。以往的研究大多只重视其中的单一因子效应,而对二者的复合效应的研究十分有限。本文在室外控制条件下运用植物生理学和生态学方法研究了增强的UV-B辐射和CO_2倍增的复合作用对蚕豆、小麦生长发育和生理生态的影响。结果表明:
     (1)CO_2倍增降低了蚕豆和小麦对增强UV-B辐射的敏感性。在CO_2倍增条件下,小麦对增强UV-B辐射的抗性大于蚕豆。
     (2)在增强UV-B辐射和CO_2倍增复合处理下,蚕豆和小麦生长节律正常。而在增强UV-B辐射下,蚕豆和小麦生长和发育滞后,生育期延长,物候推迟;在CO_2倍增下,蚕豆和小麦的生长和发育加速,生育期缩短,物候提前。
     (3)当增强UV-B辐射和CO_2倍增复合处理时,蚕豆和小麦的株高与对照基本一致。而增强UV-B辐射使蚕豆和小麦株高降低,降幅随发育进程增大;CO_2倍增使蚕豆和小麦的株高增加,增幅随发育进程增大。相比之下,增强UV-B辐射对小麦株高影响较大,CO_2倍增对蚕豆株高影响较大。
     (4)增强UV-B辐射和CO_2倍增复合处理基本不改变蚕豆和小麦的生物量。而增强UV-B辐射使蚕豆和小麦生物量下降,降幅随发育期有所不同;CO_2倍增使蚕豆和小麦生物量均有明显增加,增幅在地上和地下部略有差异。
     (5)增强UV-B辐射和CO_2倍增复合处理下,两种作物产量增减不明显。蚕豆和小麦的产量在增强UV-B辐射下均减少,在CO_2倍增处理下均增加。且UV-B辐射和CO_2对蚕豆产量的影响均大于小麦。
     (6)增强UV-B辐射和CO_2倍增复合处理时,蚕豆和小麦产量构成基本不
    
    变。而增强的UV一B辐射使蚕豆单株的结荚数、粒数及粒重均显著降低,CO:倍
    增处理则相反;增强UV一B辐射使小麦的总穗数、总粒数及千粒重显著降低,
    COZ倍增则相反。
     (7)在增强UV一B辐射和COZ倍增复合处理下,蚕豆和小麦的叶绿素和类
    胡萝卜素含量变化不显著。而增强的UV一B辐射使蚕豆和小麦的叶绿素和类胡萝
     卜素含量均下降,CO:倍增使蚕豆和小麦的叶绿素、类胡萝卜素含量均有不同程
    度提高,且对蚕豆的提高幅度均大于小麦。
     (8)增强UV一B辐射和CO:倍增复合处理基本不改变蚕豆和小麦的光合速
    率。而蚕豆和小麦在增强Uv一B辐射下光合速率降低,在cq倍增下光合速率增
    高,且随着发育进程,变幅下降。
     (9)蚕豆和小麦无论在增强Uv一B辐射、COZ倍增的复合还是单独处理下,
    其气孔导度均下降,且下降幅度最大的是复合处理,依次是UV一B辐射处理和
    Cq处理。
     (10)在增强UV一B辐射和COZ倍增复合处理下蚕豆和小麦的WUE最大。
    而UV一辐射使蚕豆和小麦的WUE下降,COZ提高了蚕豆和小麦的WUE。
     (11)CO:首先是通过提高紫外吸收物、类胡萝卜素和可溶性蛋白质的含量
    来增强植物对增强UV一B辐射的防御能力。在UV一B和C02复合处理下,植物的
    紫外吸收物、类胡萝卜素和可溶性蛋白质含量同样得到提高,因而生长发育正常。
     (12)C02其次是通过提高抗氧化酶SOD、POD、CAT的活性和抗氧化物
    质AsA、GSH的含量来加强植物清除活性氧的能力,防止膜脂质过氧化,从而
    增强对UV一B辐射的防护作用。因此在UV一B和CO:复合处理下植物具有较高的
    抗氧化能力,能够进行正常的生理生化代谢。
     本研究旨在推动我国对植物响应全球变化中复合效应方面的基础和应用研
    究,为填补我国UV一B辐射和COZ复合作用对植物影响的研究空白开创道路,为
    预测植物响应我国未来复杂多变的综合气候条件提供参考。同时亦可为制定在未
    来气候条件下我国发展农业生产的策略提供科学依据。
The effects of enhancement of solar ultraviolet-B(UV-B,280~320 nm) radiation caused by ozone depletion and increasing atmospheric CO2 concentration resulting from environment damage on biosphere have already got comprehensive notes among the government and scientists. Plants growing in enhanced UV-B radiation or elevated CO2 concentration may change with their physiological, morphological structure and the process of growth and development directly or indirectly. Although extensive studies were done about biological and ecological effects of single factor of them, little was known about the combined effect of enhanced UV-B and high CO2. In this paper, influences of enhanced UV-B and doubled CO2 on the growth and development and physioecology of broad bean and wheat were investigated with the method of plant physiology and ecology by using OTC outdoor. The result shows:
    (1) Doubled CO2 decreased the sensitivity of broad bean and wheat to enhanced UV-B radiation. The resistance of wheat to enhanced UV-B is bigger than that of broad bean, exposed to doubled CO2.
    (2) Broad bean and wheat exposed to both of enhanced UV-B and doubled CO2 grew normally. Enhanced UV-B could lengthen growing and development period, and phonology is delayed. But doubled CO2, which speeded up the growing and development, made development period shorten, and speeded the phonology.
    (3) The plant heights of broad bean and wheat under treatment of both enhanced UV-B and doubled CO2 were close to that of control. Enhanced UV-B made the
    
    
    
    heights lowered, and the lowered extent increased with development process. Doubled CO2 made the heights increased, and the increased extent enhanced with development process. Compared with each other, enhanced UV-B affected plant height of wheat more than that of broad bean, and doubled CO2 affected plant height of broad bean more than that of wheat.
    (4) The combined effects of enhanced UV-B and doubled CO2 didn't change fundamentally the biomass of broad bean and wheat. Their biomass declined under enhanced UV-B, the declined extent varied in different development stages. The biomass under doubled CO2 could increase, the increased extent of aboveground biomass was different from that of underground biomass.
    (5) The combined effects of enhanced UV-B and doubled CO2 didn't change the yield of broad bean and wheat on the whole. Their yield could also be reduced under enhanced UV-B, and increased under doubled CO2.
    (6) The yield formation in broad bean and wheat didn't change basically under treatment of both enhanced UV-B and doubled CO2. Filled grain number per plant, grain number and grain weight of broad bean were decreased by enhanced UV-B, but increased by doubled CO2. Total panicle number, total grain number and 1000-grain weight of wheat were decreased by enhanced UV-B, but increased by doubled CO2.
    (7) The contents of chlorophyll and carotenoid of broad bean and wheat didn't change basically under the combined effects of enhanced UV-B and doubled CO2. They were decreased by enhanced UV-B, but increased by doubled CO2. The increased extent in broad bean was bigger than that in wheat.
    (8) The combined effect of enhanced UV-B and double CO2 didn't change the photosynthetic rate (Pn) of broad bean and wheat on the whole. Enhanced UV-B decreased Pn, and doubled CO2 enhanced Pn. The change extent declined with developmental process.
    (9) The stomatal conductance (Gs) of broad bean and wheat could be reduced in any case of each or combined treatment of enhanced UV-B and doubled CO2. The reduced extent of combined stress was the biggest, the effect of CO2 on Gs was less than that of UV-B.
    
    
    (10) The combined effects of enhanced UV-B and doubled CO2 increased WUE greatest. The enhanced UV-B decreased WUE, but doubled CO2 made WUE higher.
    (11) It was primary response that CO2 was found to be capable to protect plants from UV-B-induced damage by increasing the UV absorbing compounds, carotenoid and soluble protein contents. These were the same under combined treatment, thus plants g
引文
[1] National Aeronautics and Space Administration, Executive Summary of the Ozon Trends Panel, NASA, Washington DC, 1988.
    [2] Caldwell MM, Flint SD. Implications of increased solar UV-B for terrestrial vegetation In: Chanin ML ed. The Role of the Stratosphere in Global Change Heidelberg: Spring-Verlag, 1993,495-516.
    [3] Watson RT. Present state of knowledge of the uppor atmosphere. In :An assessment report, NASA keference Pwblication 1208, Washington DC, NASA Office of Space Science and Application, 1988:200.
    [4] 祭美菊,冯虎元,安黎哲,王勋陵.增强的UV-B辐射对植物影响的研究.应用生态学报,2002,13(3):359-364.
    [5] Waton RT, Rodhe H, Oescheger H, et al. Greehouse gases and aerosols. In: Houghton JT, Jenkins GJ, Ephranums JJ eds. Climate: The IPCC Scientific Assessment. Cambridge University Press. 1990:1-40.
    [6] Bowes G. Facing the inevitable: plants and increasing atmospheric CO_2. Ann. Rev. Plant physiol. Plant Mol. Biol., 1993, 44:309-332.
    [7] Drake BJ. Gonzalez-Meler MA and Long SP. More efficient plants: a consequence of rising atmospheric CO_2? Ann. Rev. Plant Physiol. Plant Mol. Biol., 1997,48:609-639.
    [8] Makino A and Mae T. Photosynthesis and plant growth at elevated levels of CO_2. Plant Cell Physiol., 1999, 40(10):999-1006.
    [9] 蒋高明,韩兴国.大气CO_2浓度升高对植物的直接影响.植物生态学报,1997,21(6):489-502.
    [10] Moore BD, Cheng SH, Sims D, et al. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO_2. Plant Cell Environ., 1999,22:567-582.
    [11] Stitt M and Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell
    
    Environ.,1999,22:583-621.
    [12] Kimball BA,朱建国,程磊,等.开放系统中农作物对空气CO2浓度增加 的响应.应用生态学报,2002,13(10) :1323-1338.
    [13] Van de Leun JC, Tang XY, Tevini M (eds). Environmental effects of ozone depletion: 1994 assessment. (NUEP 1994) . Ambio., 1995,24:102-224.
    [14] Caldwell MM, Bjorn LO, Bornman JF, et al. Effects of increased solar ultraviolet radiation on terresstrial ecosystems. J Photochem. Photobiol. B: Biol., 1998,46:40-52.
    [15] Teramura AH, Sullivan JH and Ziska LH. Interection of elevated ultraviolet-B radiation and CO2 on productivity and photosynthetic characteristics in wheat, rice and soybean. Plant Physiol., 1990,94:470-475.
    [16] Bjorn LO, Callaghan TV, Johnsen I, et al. The effects of UV-B radiation on European heathland species. Plant Ecology, 1997, 128:252-264.
    [17] Ziska LH, Teramura AH and Sullivan JH. Physiolgical senstivity of plants along an elevational gradient to UV-B radiation. Am. J. Bot, 1992, 79:863-871.
    [18] Dai QJ, Peng Shaobing and coronel VP. Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation. Environ. Exp. Bot., 1994,34:433-442.
    [19] Mark U, Saile-Mark M and Tevini M. Effects of solar UV-B radiation on growth, flowering and yield of central and soulthern European maize cultivars (Zea mays L). Photochem. Photobiol, 1996,64(3) :457-463.
    [20] Van TK, Garrard LA, West SH. Effects of UV-B radiation on net photosynthesis of some crop plants. Crop Science, 1976,16:715-721.
    [21] Basiouny FM, Van TK and Biggs RH. Some morphological and biochemical characteristics of C3 and C4 plants irradiated with UV-B. Physiol. Plant, 1978,42:29-32.
    [22] Caldwell MM and Flint SD. Stratospheric ozone reduction, solar UV-B radiation and terrestrial ecosystems. Climatic Change, 1994a, 28:375-394.
    [23] Sullivan JH and Teramura AH. Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant Physiol, 1990,92:141-146.
    
    
    [24] Murali NS and Teramura AH. Effects of ultraviolet-B irradiance on soybean. Ⅵ. Influence of phosphorus nutritionon growth and flavonoid content. Physiol. Plant, 1985,63:413-416.
    [25] 朱葆,刘永,罗祖玉.辐射生物学,北京:科学出版社,1987,697-699.
    [26] Biggs RH, Kouthus SV. UV-B Biological and climate Effects Research Final Report U.S. Department of Agriculture. Florida: University of Florida Press. 1978, 77-79.
    [27] Sullivan JH and Teramura AH. Effects of ultraviolet-B irradiation on seeding growth in the pinacease. Am. J. Bot., 1988, 75:225-230.
    [28] Teramura AH. Implications of stratospheric ozone depletion upon plant production. J. Hor., 1990,158: 415-427.
    [29] Barnes PW, Flint SD, Caldwell MM. Morphological responses of crop and weel species of different growth form to UV-B radiation. Am. J. Bot., 1990, 77(10) :1354-1361.
    [30] Beggs CJ, Kronenberg GH. Photocontrol of Flavonoid Biosynthesis. Kendrict RE eds. Photomorphogenesis in Plant. Vol.2. Kluwer Academic Dordredt. 1994, 733-750.
    [31] Klein RM. Plantsand near-ultraviolet radiation. Bot. Rev., 1978,44:1-5.
    [32] Staxen I, Boraman JF. A morphological and cytological study of Petunia hybrida exposed to UV-B radiation. Physiol. Plant, 1994,91:735-740.
    [33] Taylor RM, Tobin AK and Bray CM. The effects of enhanced UV-B irradiation on DNA damage and repair in plant tissue. J. Exp. Bot., 1994,45:55-61.
    [34] Krixek DT, Kramer GF and Mirecki RM. UV-B response of cucumber seedlings grown under metal halde and high pressure sodium/deluxe lamps. Physiol. Plant, 1993,88(2) :350-358.
    [35] Oxada M, Kitajima M, Butler WL. Inhibition of photosystem 1 and photosystem 2 in chloroplasts by UV radiation. Plant Cell Physiol., 1976,17:35-39
    [36] Brandle JR, Campbell WF, Sisson WB, et al. Net photosynthesis, electron transport capacity, and ultrastructure of pisum sativuml exposed to ultraviolet-B radiation. Plant Physiol., 1977,60:165-168
    
    
    [37] Vu CV, Allen LH, Garrard LA. Effects of supplemental UV-B radiation on primary photosynthetic carboxylating engymes and soluble proteins in leaves of C_3 and C_4 crop plants. Physiol. Plant, 1982,55:11-17.
    [38] 杨志敏,颜景义,郑有飞,等.不同条件下UV-B辐射降低小麦叶片叶绿素含量的效应.西北植物学报,1995,15(4):288-293.
    [39] Herick E Effect of ultraviolet light on stomata movement. Biol. Plant, 1964, 6:70-73.
    [40] Wright LA, Murphy TM. Short wave ultraviolet light close leaf stomata. Am. J. Bot., 1982,69:1196-1198.
    [41] Piere M, Baschke K. Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta, 1980,148:174-182.
    [42] 杨景宏,陈拓,王勋陵.增强紫外线-B辐射对小麦叶绿体膜组分和膜流动性的影响.植物生态学报,2000,24(1):102-105.
    [43] Sisson WB, Caldwell MM. Photosynthesis, dark respiration, and growth of Rumex patiential Exposed to ultraviolet irradiane Simulating a reduced atmospheric Ozon column. Plant Physiol., 1976,38:563-568.
    [44] Teramura AH, Biggs RH, Kossuth S. Effects of UV-B radiation on soybean 2. Plant Physiol., 1980,65:483-487.
    [45] EL-Mansey HI, Salisbury FB. Biochemical response of X-anthium leaves to ultraviolet radiation. Radia. Bot., 1971,11:326-329.
    [46] Mireeki RM, Teramura AH. Effects of ultraviolet-B irradianee on soybean. Plant Physiol., 1984,74:476-477.
    [47] Teramura AH, Tevini M. Effects of ultraviolet-B radiation on plants during mild water stress 2. Effects on diurnal stomatal resistance. Physiol. Plant, 1983,57:175-179.
    [48] Tevini M, Teramura AH. UV-B effects on terrestrial plants. Photochemistry and Photobiology, 1989,50:479-483.
    [49] Negash L, Bjorn LO. Stomata closure by ultraviolet radiation. Physiol. Plant, 1986,66:360-364.
    [50] Murali NS, Teramura AH. Intsraspecifie differences in Cucumis sativu
    
    sensitivity to UV-B radiation. Physiol. Plant, 1986,68:673-677.
    [51] 侯扶江,贲桂英,等.UV-B辐射对大豆和黄瓜幼苗某些生理特性的影响。应用与环境生物学报,1999,5(5):45-50.
    [52] 李元,王勋陵.UV-B辐射增加对麦田生态系统N、P积累和循环的影响。农业.环境保护,2000,19(3):129-132.
    [53] 李元,王勋陵,胡之德.田间增强UV-B辐射对麦田生态系统Fe营养和累积的影响.环境科学,2000,21(2):36-39.
    [54] Murali NS, Teramura AH. Effects of supplemental UV-B radiation on the growth and physiology of field grown soybean. Environ. Exp. Bot. 1986, 26(3):233-237.
    [55] Yue M, Li Y, Wang XL. Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field condition. Environ. Exp. Bot., 1998,40:187-196.
    [56] Murphy TM. Membranes as targets of ultraviolet radiation. Physiol. Plantanma, 1983,58:381-388.
    [57] 晏斌,戴秋杰.紫外线辐射对水稻叶组织中活性氧代谢及膜系统的影响。植物生理学报,1996,22(4):375-378.
    [58] 唐旭东,安黎哲,王勋陵.增强UV-B辐射对蚕豆叶片微粒体膜的一些性质的影响.植物生理学报,1998,24(2):171-176.
    [59] 黄少白,刘晓忠,戴秋杰,等.紫外光B辐射对菠菜叶片脂质过氧化作用的影响.植物学报,1998,40(6):542-547.
    [60] 陈拓,王勋陵.UV-B辐射对小麦叶片H_2O_2代谢的影响.西北植物学报,1999,19(2):284-289.
    [61] 陈拓,任红旭,王勋陵.UV-B辐射对小麦抗氧化系统的影响.环境科学学报,1999,19(4):451-455.
    [62] 杨景宏,陈拓,王勋陵.增强UV-B辐射对小麦叶片内源ABA和游离脯氨酸的影响.生态学报,2000,20(1):39-42.
    [63] 冯虎元,安黎哲,谭玲玲,等.UV-B辐射对植物粉萌发率和花粉管生长的累积效应.应用生态学报,2002,13(7),814-818.
    [64] Mazza CA, Battista D, Zima AM, et al. The effects of solar ultraviolet-B
    
    radiation on the growth and yield of barley are accompained by increased DNA damage and antioxidant responses. Plant Cell Environ. 1999,22:61-70.
    [65] Rupert CS, Tu K. Substrate dependence of the action spectrum for photoenzymatic repair of DNA. J. Photochem. Photobiol. B, 1996,24:229-235.
    [66] Britt AB, Chen J J, Wykoff D. et al. A UV-sensitive mutant of Arabidopsis defective in the repair of pyrimidine-pyrimidinone (6-4) dimers. Science, 1993,261:1571-1574.
    [67] 齐智,岳明,王勋陵,等.激光对蚕豆幼苗紫外线-B辐射损伤的防护作用.中国激光,2002,A29(1):91-94.
    [68] 韩榕,王勋陵,岳明.He-Ne激光对小麦DNA环丁烷嘧啶二聚体切除修复的影响.科学通报,2002,47(6):435-438.
    [69] Sancar A. Structure and function ofDNA photolyase. Biochem., 1994,33:2-9.
    [70] Caidwell MM, Teramura AH and Tevini M. Effects of increased solar ultoviolet radiation on terrestrial. Plant Ambio., 1995,24:166-173.
    [71] Li Y, Yue M and Wang XL. Competition and sensitivity of wheat and wild oat exposed to enhanced UV-B radiation at different densities under field condition. Environ. Exp.Bot. 1999,41:47-55.
    [72] Longstreth JD, Gruijl FR AND Kripke ML. Effects of increased solar ultraviolet radiation on human health. Ambio., 1995,24:153-165.
    [73] Olszy KD. UV-B effect on crops: response of the irrigated rice ecosystem. J. Plant physiol., 1996, 148:26-34.
    [74] Poorter H. Interspecific variation in the growth response of plants to an elevated ambient CO_2 concentration. Vegetatio., 1993, 104:77-97.
    [75] 符淙斌,严中伟.全球变化与中国生态环境的未来对策.北京:农业出版社,1996:314.
    [76] Katsu I, Manami OS. Effect of temperature on CO_2 dependence of gas exchange in C3 and C4 crop plants. Jap. J. Crop Sei., 1991,60(1):139-145.
    [77] 王义琴,张慧娟,杨奠定,等.大气CO_2浓度倍增对植物幼苗根系生长影响的分形分析.科学通报,1998,43(16):1736-1738.
    
    
    [78] 尚宗波.全球气候变化对沈阳地区春玉米生长的可能影响.植物学报,2000,42(3):300-305.
    [79] 高雷明,黄银晓,林舜华.CO_2倍增对羊草物候和生长的影响.环境科学,1999,20(5):25-29.
    [80] 王淼,代为民,韩士杰,等.高CO_2浓度对长白山阔叶红松林主要树种的影响.应用生态学报,1999,23(3):220-227.
    [81] Ceulemans R, Mousseau M. Effects of elevated atmospheric CO_2 on woody plants. New Physiologist, 1994,127:425-446.
    [82] Pilchard JN. Issues and perspectives for investigative root to elevated atmospheric carbon dioxide. Plant and Soil, 1994,165:99-120.
    [83] 梁尔源,胡玉喜,林金星.CO_2浓度加倍对辽东栎维管组织结构的影响.植物生态学报,2000,24(4):506-510.
    [84] Cure JD, Acock B. Crop responses to carbon dioxide doubling: A literature survey. Agric. For Mcteorol., 1986,38:127-145.
    [85] Hileman DR, Huluka G, Kenjige PK, et al. Canopy photosynthesis and transpiration of field-grown cotton exposed to free-air CO_2 enrichment and differential irrigation. Agric. For Mctcorol., 1994, 70:18-207.
    [86] 张富仓,康绍忠,马清林.大气CO_2浓度升高对棉花生理特性的影响.应用基础与工程科学学报,1999,7(3):267-273.
    [87]康绍忠,蔡焕杰,刘晓明.大气CO_2浓度升高对春小麦水分利用和运输的影响,西北农业大学学报,1995,23(3):1-5.
    [88] Kimball BA, Lamorte RL, Seay RS, et al. Effects of free-air CO_2 enrichment on energy balance and evapotranspiratio of cotton. Agric. For Meteorol., 1994, 70:259-278.
    [89] 康绍忠,张富仓,梁银丽,等.土壤水分和大气CO_2升高对小麦、玉米和棉花的生长和光合作用、蒸腾作用的影响.作物学报,1999,25(1):55-63.
    [90] Murray DR. Plant response to carbon dioxide. Am. J. Bot., 1995,82:690-697.
    [91] Rogers HH. Responses of selected plant species to elevated carbon dioxide in the field. J. Environ. Qual., 1985, 12:569-574.
    
    
    [92] 张小全,徐德应,赵茂盛,等.豌豆对CO_2加富的效应.生态学报,2000,20(3):390-396.
    [93] 林伟宏.植物光合作用对CO_2升高的反应.生态学报,1998,18(5):529-538.
    [94] 张其德,卢从明,冯丽沽,等.CO_2加富对紫花苜蓿光合作用原初光能转换的影响.植物学报,1996,38(1):77-82.
    [95] 彭长连,林植芳,林桂珠.加富Co_2条件下水稻叶片抗氧化能力的变化.作物学报,1999,25(1):39-43.
    [96] 徐仰仓,王静,林久生.不同Co_2浓度下渗透胁迫对小麦膜伤害的影响.应用生态学报,2000,11(6):878-880.
    [97] IPCC. Climate Change 1995: Summary for Policy Makers and Technical Summary of the Working Group I Report. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, and Maskell K, eds. Intergovemmental Panel on Climate Change. Cambridge, UK: Cambridge University Press. 1996.
    [98] Mauney JR, Kimball BA, Pinter JR, et al. Growth and yield of cotton in respense to a free-air carbon dioxide enrichment (FACE) environment. Agric. For Meteorol., 1994,70:49-68.
    [99] Mauney JR, Lewin KF, Hendrey GR, et al. Growth and yield of cotton exposed to free-air CO_2 enrichment (FACE). Crit. Rev. Plant Sci., 1992,11:213-222.
    [100] Owensby CE, et ai. Biomass production and species composition change in a talgrass prairie ecosystem after long-term exposure to elevated atmospheric CO_2. Glob. Chart. Biol., 1999,5:497-506.
    [101] Idso SB. Shrubland expansion in the American Southwest. Clim. Chart., 1992, 22:85-86.
    [102] Polly HW, et al. Carbon dioxide and water fluxes of C_3 and C_4 perennials at subambient CO_2 concentrations. Funct. Ecol., 1992,6:693-703.
    [103] Teramura AH, Ziska LH. CO_2 enhancement of growth and photosynthesis in rice modification by increased ultraviolet-B radiation. Plant Physiol., 1990, 99: 473- 481.
    [104] Sullivan JH. Effects of increasing UV-B radiation and atmospheric CO_2 on photosynthesis and growth: implications for terrestrial ecosystems. Plant Ecol.,
    
    1997, 128:194-206.
    [105] Rozema J, Lenssen GM, Van de staaij WM, et al. Effects of UV-B radiation on terrestrial plants and ecosystems: Interaction vvith CO2 enrichment. Plant Ecol., 1997,128:182-191.
    [106] Lavola A, Julkunen-Tiitto R, DE LA Rosa T, et al. Allocation of carbon to grovvth and secondary metabolites in birch seedling under UV-B radition and CO2 exposure. Plant Physiol., 2000,109:260-267.
    [107] Sullivan JH, Teramura AH. The effects UV-B radiation on loblolly pine.3. Interaction vvith CO2 enhancement. Plant Cell and Environ., 1994,17:311-317.
    [108] Sanesson M, Callaghan TV, Carlsson BA. Effects of enhanced ultraviolet radiation and carbon-dioxide concentration on the mass.Hylocomium splenddens. Glob. Chan. Biol., 1996,2:67-73.
    [109] Rozema J, Tosserams M, Magandans MGM. Impact of enhanced solar UV-B radiation on plants from terrestrial ecosystems. In: Zwerver S, eds. Climate change research evaluation and policy implications. Elsevier, Amsterdam, 1995:997-1004.
    [110] Schlesingev WH. Response of the terrestrial biosphere to global climate change and human perturbation. Vegetatio,1993,104/105:295-306.
    [111] Visser AJ,Tosserams M,Groen MW. The combined effects of CO2 concentration and enhanced UV-B radiation on faba bean.3. Leaf optical properties, pigment, stomatal index and epidermal cell density .Plant Ecol., 1997,128:208-222.
    [112] Mark U, Tevini M. Effects of solar ultraviolet-B radiation, temperature and CO2 on grovvth and physiology of sunflower and maize seedlings. Plant Ecol., 1997,128:224-234.
    [113] Teramura AH, Sullivan JH, Lydon J. Effects of UV-B radiation on soybean yield and seed quality: A six-year field study. Physiol. Plant, 1990,80:5-11.
    [114] Stewart JD, Hoddinott J. Photosynthetic acclimation to elevated atmospheric carbon dioxide and UV irradiation in Pinus banksiana. Physiol. Plant, 1993, 88:493-500.
    
    
    [115] Bjorn LO. Effects of ozone depletion and increased UV-B on terrestrial ecosystem. Intern. J.Environ. Studies, 1996, 51:217-243.
    [116] Wand SJE, Midgley, Musil CF. Physiological and growth response of two African species, Acacia karroo and Themeda triandra, to combined incrases in CO_2 and UV-B radiation. Physiol. Plant, 1996,98:882-890.
    [117] Feng HY, An LZ, Tan LL, et al. Effect of enhanced UV-B radiation on pollen germination and tube growth of 19 taxa in vitro. Environ. Exp. Bot., 2000, 43:45-53.
    [118] Caldwell MM. Solar ultraviolet radiation and the growth and development of higher plant. In: Giese AC ed. Photophysiol. Vol.6, New York: Academic Press, 1971,131-177.
    [119] 黄祥辉.作物栽培生理学.上海:上海科技出版社,1984.
    [120] Arnon DI. Copper enzymes in isolated chloroplasts poly-phenoloxidase in Bete vulgaris. Plant Physiol., 1949,24:1-4.
    [121] Mirecki RM, Teramura AH. Effects of ultraviolet-B irradiance on soybean. V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant physiol., 1984,74:475-480.
    [122] 王爱国,罗广华,邵从本,等.大豆种子超氧物歧化酶的研究.植物生理学报,1983,9(1):77-88.
    [123] 李合生,孙群、赵世杰,等.植物生理生化实验原理和技术.北京:高等教育出版社,2000,164-261.
    [124] Dhidsa RS, Thorpe TA. Leaf senescence: correlated with increased levels of membrane permeability and lipid per oxidation and decreased levels of super oxide dismutase and catalase. Exp. Bot., 1981,32:93-101.
    [125] Cakmak I, Marschner H. Magnesium deficiency and high light intensity on enhance activities of superoxide dismutase, peroxidase and glatation reductase in bean leaves. Plant Physiol., 1992,98:1222-1227.
    [126] 欧阳光察.植物生理学实验手册.上海:上海科学技术出版社,1985,191-192.
    [127] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific
    
    peroxidase in spinach chloroplasts. Plant Cell Physiol., 1981,5: 867-880.
    [128] Narimasa S, Werbin H.Evidence for a DNA-photoreactivating enzyme in higher plants. Photochem. Photobiol., 1969,9:389-393.
    [129] Raeri A, Lencioni L, Schenone G, et al. Glutathione-ascorbic acid cycle in pumplein plants grown under polluted air in open-up chambers. Plant Physiol., 1993,1420): 286-29.
    [130] 高俊凤.植物生理学实验技术.北京:世界出版社,1999,122-124.
    [131] Ellman GL. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959,82:70-77.
    [132] 韩榕,王勋陵,岳明.He-Ne激光对小麦可溶性蛋白合成的影响.山西师范大学学报(自然科学版),2001,15(3):56-59.
    [133] He J, Huang LK, Chow WS, et al. Effects of supplementary ultraviolet-B radiation on rice and pea plants. Aus. J. Plant Physiol., 1993,20:129-142.
    [134] Tong XY, Madronich S. Effects of increased solar ultraviolet radiation on tropospheric composition and air quality. Ambio., 1995,24(3): 188-190.
    [135] Zepp RG, Callaghan TV, Erikson DJ. Effects of increased solar ultraviolet radiation on biogeochemical cycle. Ambio. 1995,24(3): 181-187.
    [136] Bowes G. Facing the inevitable: Plants and increasing atmospheric CO_2. Ann. Rev. Plant Physiol. Plant Mol. Biol., 1993,44:309-332.
    [137] Tevini M, Iwanzik W, Thoma U. Some effects of enhanced UV-B irradiation on the growth and composition of plants. Planta, 1981,153:388-394.
    [138] 王修兰,徐师华,梁红.CO_2浓度增加对C_3、C_4作物生育和产量影响的实验研究.中国农业科学,1998,31(1):56-61.
    [139] Beggs CJ, Andrea SJ, Eckard W. Isoflavonoid formation as an indication of UV stress in bean leaves. Plant Physiol., 1985,79:630-634.
    [140] 陈章和,林丰平,张德明.高CO_2浓度下4种豆科种子萌发和乔木幼苗生长.植物生态学报,1999,23(2):161-170.
    [141] 王春乙,潘亚茹,白月明,等.CO_2倍增对中国主要作物影响的试验研究.气象学报,1997,55(1):86-94.
    [142] Hopkins L, Bond MA, Tobin AK. Effects of UV-B on the development and
    
    ultrastructure of the primary leaf of wheat. J. Exp. Bot., 1996,47:20.
    [143] 郑有飞,杨志敏,颜景义.作物对太阳紫外辐射增加的生物效应及评估.应用生态学报,1995,7(1):107-109.
    [144] Barnes PW, Flint SW, Caldwell MM. Early season effects of supplemental solar UV-B radiation on seedling emergence, canopy structure, simulated stand photosynthesis and competition for light. Globa Chang Biol., 1995,1:43-53.
    [145] 岳明,王勋陵.紫外-B辐射对小麦和燕麦繁殖特性影响的研究.中国环境科学,1998,18(1):68-71.
    [146] Miller A, Tsai CH, Hemphill D, et al. Elevated carbon dioxide affects during leaf ontogeny. Plant physiol., 1997,115:1195-1200.
    [147] Ernst WHO, Jos WM, Van de Staaij, et al. Reaction of savanna Plants form Bostwana on UV-B radiation. Plant Ecology,1997,128:162-170.
    [148] Cure JD, Norby B. Crop response to carbon dioxide doubling a literature survey. Agr. for Meteorol., 1986,38:127-145.
    [149] 冯虎元,安黎哲,谭玲玲,等.UV-B辐射对植物花粉萌发率和花粉管生长的累积效应.应用生态学报,2002,13(7):814-818.
    [150] Bindi M, FibbiL, Lanini M, et al. Free air CO_2 enrichment of potato. In: Annual Report for Chaning Climate and Potential Impacts on Potato Yield and Quality, Contract ENV4-CT97-0489. Brussels, Belgium:Commission of the European Union. 1999,160-196.
    [151] Teramura AH, Ziska LH, Sztein AE. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol. Plant, 1991,83:373-380.
    [152] Allen D J, Baker AD. A thirty percent increase in UV-B has no impact on photosynthesis in well-watered and drought of pea plants in the field. Glob. Chan. Biol., 1999,5:235-244.
    [153] 卢从明,张其德,冯丽沽,等.CO_2浓度倍增对谷子拔节期和灌浆期光合色素含量和PSII功能的影响.植物学报,1997,39(9):874-878.
    [154] Baker NR, Nouges S, Allen DJ. Photosynthesis and photoinhibition. In: Lumsden P, ed. Plants and UV-B response to environmental change. Cambridge: Cambridge University Press, 1997,399-417.
    
    
    [155] Drennan PM, Nobel PS. Responses of CAM species to increasing atmospheric CO_2 concentrations. Plant Cell Environ., 2000,23:767-781.
    [156] Guderson CA, Wullschleger SD. Photosynthetic acclimation in tress to rising atmospheric CO_2 : A broader perspective. Photosynthesis Res., 1994,39:369-358.
    [157] Moody SA, Coop DJS, Paul ND. Effects of elevated UV-B radiation and elevated CO_2 on heathland communities. In:lumsden PJ, ed. Plants and UV-B: responses to environmental change. Cambridge:Cambridge University Press, 1997,283-304.
    [158] Eamus D. The interaction of rising CO_2 and temperatures with water use efficiency. Plant Cell Environ., 1991,14: 843-852.
    [159] 侯扶江,贲桂英,颜景义,等.田间增加紫外线辐射对大豆幼苗生长和光合作用的影响.植物生态学报,1998,22(3):256-261.
    [160] Davis WJ and Zhang JH. Root singles and the regulation of growth and development of plants in drying soil. Ann. Rev. Plant Physiol. & Plant Mol. Biol., 1991,42:55-76.
    [161] Morison JIL. Sensitivity of stomata and water use efficiency to high CO_2. Plant Cell Environ., 1985,8:467-474.
    [162] Ficus EL, Booker FL. Is increased UV-B a threat to crop photosynthesis and productivity. Photosynthesis Research, 1995,43(2):81-92.
    [163] Klironomos JN, Allen MF UV-B medicated changes on below-ground communitis with the roots ofAcer saccharum. Funct. Eco1.,1995,9:323-330.
    [164] Tevini M, Braun J, Fieser G. The protective function of the epidermal layer of rye seedling against ultraviolet-B radiation. Photochem. Photobiol., 1991, 53:329-333.
    [165] Chappell JH, Halbrock K. Transcription of plant defense genes in response to UV light or fungal elicitor. Nature, 1984,311 (1):76-78.
    [166] 冯虎元,安黎哲,陈书燕,等.增强UV-B辐射与干旱复合处理对小麦幼苗生理特性的影响.生态学报,2002,22(9):1564-1568.
    [167] Mark U, Tevini M. Cobination effects of UV-B radiation and temperature on sunflower and maize seedlings. J. Plant Physiol., 1996,148:49-56.
    
    
    [168] Cen YP, Bomman JF. The effects of exposure to enhanced UV-B radiation on the penetration of monochromatic and polychromatic UV-B in leaves of Brassia napus.Physiol. Plant, 1993,87:247-251.
    [169] Takeuchi Y, Kubo H, kasahara H, et al. Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B. J. Plant Physiol., 1996,147(5):589-592.
    [170] 王宝山.生物自由基与植物膜伤害.植物生理学通讯,1988,2:12-16.
    [171] 冯国宁,安黎哲,王勋陵.增强的UV-B辐射对菜豆蛋白代谢的影响.植物学报,1999,41:833-836.
    [172] Han SJ, Zhang JH. Influence of CO_2 doubling on water transport process at root/soil interface ofpinus sylvestris var. sylvestriformis seedling. Acta Bot. Sinia, 2001,43:385-388.
    [173] Steinback KE. Proteins of the chloroplast. In :Marcus A. ed. The Biochemistry and Nuclei Acids. Academic, 1981,6:303-319.
    [174] Van Oosten JJ, Wilkins D, Besford RT. Regulation of the expression of photosynthetic nuclear genes by CO_2 is mimicked by regulation bY carbohydrates: a mechanism for the acclimation of photosynthesis to high CO_2? Plant Cell Environ., 1994,17:913-923.
    [175] Lumsden PJ. Plants and UV-B responses to environmental change. Cambridge: Cambridge Univesity Press, 1997.
    [176] Yu SG, Bjorn LO. Ultraviolet B stimulates grana formation in Chloroplasts in the African .desert plant Dimorphotheca phuvialis. J. Photochem. Photobiol. B:Biol.,1999,49:65-67.
    [177] Mackerness SA, Liu LS. Individual members of the light-harvesting complex Ⅱ chlorophyll a\b bindng protein gene family in pea show differential responses to ultraviolet-B radiation. Physiol. Plant, 1998,103: 377-384.
    [178] Jordan BR. Changes in mRNA levels and polypeptide subunit of dbulose 1,5-bisphosphate caboxylase in response to supplementary ultraviolet-B radiation, Plant Cell Environ.,1992:1591-1598.
    [179] Nogues SN, Baker R. Evaluation of the role of damage to photosystem Ⅱ in
    
    the inhibition of CO2 assimilation in pea leaves on exposure to UV-B radiation. Plant Cell Environ.,1995,18: 781-787.
    [180] Jenkins ME, Suzuki TC, Mount DW. Evidence that heat and ultraviolet radiation activiate a common stress response program in plants that is altered in the UV-B mutant of Arabidops is thaliana. P nt Physiol.,1997,115: 1351.
    [181] Green R, Fluhr R. UV-B-induced PR-1 Accumulation is mediated by active oxygen species. Plant Cell, 1995,7:203-212.
    [182] Conconi A, et al. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature,1996,383: 826-829.
    [183] Sillavy D, Hutvagner G, et al. Isolation and characterization of a CO2-stress-inducable cDNA clone from solanum chacoense.Plant Mol.Biol., 1998,30(3) :594-599.
    [184] Takahashi R, Joshee N, et al. Intriduction of chilling resistance by CO2,and cDNA sequence-analysise and expression of CO2 regulated gene in rice.Plant Mol. Biol.,1999,31(1) :331-342.
    [185] Jacob J, Greitner C, Drake BG. Acclimation of photosynthesis in relation to Rubisco and non-structural carbohydrate contents and in situ carboxylase activity in Scirupus ohieyi grown at elevated CO2 in the field. Plant Cell Environ., 1995,18:875-884.
    [186] Nie GY, Long SP, Garcia RL. Effect of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat, as indicated by changes in leafproteins. Plant Cell Environ., 1995,18:855-864.
    [187] 赵广琦,王勋陵,岳明.增强的UV-B辐射和CO2复合作用对蚕豆幼苗 生长和光合作用的影响.西北植物学报,2003,23(1) :6-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700