骆驼β-防御素-1(caBD-1)的分子克隆和组织表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内源性抗微生物肽是生物体内先天性免疫的重要组成成分,防御素(defensins)是广泛分布于动物和植物界的一类富含半胱氨酸的阳离子内源性抗微生物肽,是内源性抗微生物肽中的一个大家族。根据防御素分子内半胱氨酸的位置和连接方式、前体性质及表达位置的差异可分为α-防御素、β-防御素、θ-防御素、昆虫防御素和植物防御素五种类型。β-防御素主要分布于哺乳动物的黏膜上皮细胞内,所以,β-防御素被确认为黏膜表面抗微生物屏障的组成成分。已有研究报道在哺乳动物—牛、羊、猪、鼠、猴体内有β-防御素的表达。
    本研究中我们在骆驼体内又发现了一种新的β-防御素,命名为骆驼β-防御素-1(camelβ-defensin-1,caBD-1)。从骆驼舌黏膜上皮组织中提取总RNA,根据反刍动物—牛和羊β-防御素cDNA的保守序列设计了一对引物,采用RT-PCR技术扩增出caBD-1的cDNA,并重组到pBlueselect T载体,经限制性内切酶图谱分析后进行DNA序列测定, 测序结果证实所克隆的caBD-1的cDNA为β-防御素,因为该cDNA包含一个由192个碱基组成的开放读码框(Open Reading Frame,ORF),该ORF编码64个氨基酸残基的前原防御素肽,该前原防御素肽含有β-防御素的特征性结构,即6个在特定位置上的保守半胱氨酸残基。
    获得全长cDNA序列是研究基因结构、基因表达和基因功能的重要前提。我们根据已获得的骆驼β-防御素caBD-1 cDNA的已知序列设计了一条序列特异性引物作为上游引物,反转录引物中的部分序列即3ˊ接合器引物作为下游引物,成功地克隆了骆驼β-防御素caBD-1 cDNA的3ˊ末端序列。另外,采用反向嵌套 PCR 5ˊRACE法,根据caBD-1 cDNA 的已知序列,设计了一条5ˊ末端磷酸化的特异性反转录引物和两对特异性反向嵌套PCR 引物,首先进行反转录(Reverse Transcription,RT), 然后将mRNA反转录成的cDNA进行环化,最后进行反向嵌套巢式PCR,成功地克隆了骆驼β-防御素caBD-1 cDNA的5ˊ末端序列。与锚定PCR法相比,反向嵌套PCR法具有特异性强、扩增效率高等优点,是一种有效扩增cDNA 5ˊ末端序列的方法。
    caBD-1 cDNA 序列全长322bp,其中192bp组成的ORF编码64个氨基酸残基的前原caBD-1肽,通过计算机软件预测该前原肽包含20个氨基酸残基的信号肽、6个氨基酸残基的前片段和38个氨基酸残基的成熟肽。在预测的38个氨基酸残基的成熟肽中有6个在特定位置上的不变的半胱氨酸残基,9个带正电荷的氨基酸残基(2个精氨酸Arginine-R,7个赖氨酸Lysine-K),没有带负电荷的氨基酸残基,因此caBD-1是一个阳离子肽。其分子量为4007.94Da , 等电点pI为9.71。
    通过计算机软件将caBD-1和其他哺乳动物、人及禽类的β-防御素进行cDNA碱基序列和前原肽氨基酸序列的同源性比较分析,结果显示:caBD-1与猪的β-防御素pBD-1
    
    
    的同源性最高(78.1%,76.6%),与牛和羊的β-防御素之间的同源性次之(67.7%~74.9%,51.6%~60.9%),与人、猴、鼠和禽类的β-防御素的同源性最低(大部分在30%以下)。由此可以看出caBD-1无论是cDNA序列还是前原肽序列与猪的β-防御素pBD-1的亲缘关系比与其他反刍动物—牛、羊的β-防御素近,这说明防御素进化的多样性。
    为了检测caBD-1 mRNA在骆驼体内的可能表达器官,我们又根据已知的caBD-1 cDNA序列设计了一对预计扩增产物为203bp的引物,通过RT-PCR检测了骆驼的整个消化管(舌、食管、前胃、皱胃、十二指肠、空肠、回肠、结肠前段、结肠后段、直肠)黏膜、肝脏、胰腺、气管黏膜、肺脏、肾脏、膀胱黏膜、卵巢、子宫内膜、脾脏、淋巴结、心脏等器官内caBD-1 mRNA的表达。结果显示:caBD-1 mRNA在整个消化道、气管、膀胱、子宫等管状器官内的黏膜层内有表达,而在实质性器官如心脏、肝脏、胰腺、肺脏、脾脏、淋巴结、卵巢、肾脏中无caBD-1 mRNA表达。caBD-1 mRNA的这种表达形式提示我们骆驼体内的这种内源性抗微生物肽有助于骆驼的黏膜宿主防御。
    为了进一步确定caBD-1在消化道内的表达部位,我们选择了被覆有复层扁平上皮的舌和被覆有单层柱状上皮的回肠作为组织代表,根据已克隆的骆驼β-防御素caBD-1 cDNA的序列设计并合成了长为42bp的反意核酸探针,探针经地高辛标记后应用原位杂交技术检测了caBD-1 mRNA的表达部位。结果表明:caBD-1 mRNA表达于骆驼回肠隐窝的柱状上皮以及舌背表面复层扁平上皮的中层和深层上皮内,而在舌的表层角化上皮中不表达。
    caBD-1的发现为我们更好地理解骆驼黏膜防御机制提供了有力的依据。
Endogenous antimicrobial peptides are an important component in innate immunity of organism and defensins are a kind of positive endogenous antimicrobial peptides, which contain cysteine-rich and distribute abroad in the kingdoms of animal and plant. Defensins are a big family among endogenous antimicrobial peptides. According to the differences of the position and connect manner of cysteines, the property of precursors, the position of expression, defensins are devided into five subfamilies: α-defensin,β-defensin,θ-defensin, insect defensin and plant defensin. β-defensins are proved to be a component of antimicrobial barrier because they distribute prominently in muscosal epithelial cells of mammals and aves. It has been reported that β-defensins express extensively in the epithelial tissues of many organs in mammals (cow, sheep, goat, pig, mouse, rat, human, monkey) and aves (chicken, turkey).
     In this study, we have identified in camels a novel β-defensin, named camel β-defensin-1 (caBD-1). Total RNA was extracted from the tougue epithelial tissue of a camel and the cDNA encoding caBD-1 was amplified by the reverse transcription-PCR ( RT-PCR ) with the pair of primers which were designed according to the cDNA conserve sequences of reported ruminents’ (cow, sheep and goat )β-defensins. The purified RT-PCR product was cloned in pBlueselect T vector. After the restriction endonuclease pattern analysis of reombinant plasmid, the cDNA was sequenced and the result of cDNA sequencing demonstrated that the caBD-1 is belong to the family of β-defensins because the cDNA contain a open reading frame (ORF) of 192 bases which encoded a 64 amino acid prepro-peptide and the prepro-peptide contained the β-defensin consensus sequence of six invariantly spaced cysteine residues.
    Obstaining full-length cDNA is the essential foundation of the research on gene structures, gene expressions and gene functions. Based on the known cDNA sequence of caBD-1, we successfully cloned the 3ˊcDNA end of caBD-1 using anchored PCR RACE with a sequence specific primer as up primer and 3ˊsites adaptor primer as down primer. In addition, inverse nestd PCR can rapidly amplify 5ˊcDNA end by using a specific RT primer whose 5ˊend is phosphated and two pairs specific inverse nested PCR primers, which are designed basing on the known cDNA sequence of caBD-1. The caBD-1 cDNA which come from caBD-1 mRNA by RT is encircled, then inverse nestd PCR is performed. Contrasting with the anchored PCR, inverse nestd PCR has better specificity and higher amplification effects. It is a very effective method of amplifying 5ˊcDNA ends.
    The full-length caBD-1 cDNA is 322bp and includes a ORF of 192bp which encode the prepro-caBD-1 of 64 amino acid residues. With computer software we predict that the prepro-caBD-1 contain a signal peptide of 20 amino acid residues, a propiece of 6 amino acid
    
    
    residues, a muture peptide of 38 amino acid residues. In the muture peptide there are six invariantly spaced cysteine residues and 9 positive amino acid residues ( 2 Arginine-R, 7 Lysine-K ) , there is no negative amino acid residue in the muture peptide. Therefore the caBD-1 is a positive peptide which molecular weight is 4007.94 dalton and pI is 9.71.
    The results of pair distances of the cDNA and prepro-peptide sequences of caBD-1 and otherβ-defensins in human, other mammals and aves by computer software indicate that the relative relationship of caBD-1 to pBD-1 is highest (78.1%, 76.6%), to the β-defensins of cow, sheep and goat is middle (67.7%~74.9%, 51.6%~60.9%), to the β-defensins of human, monkey, mouse, rat, chicken and turkey is lowest (mostly less than 30%). Therefore, we can conclude that the relationship of caBD-1 to pBD-1 is closer than caBD-1 to other ruminant’s (cow, sheep and goat) β-defensins with the sequences of cDNA and prepro-peptide. The result demonstrates the diversity of defensins evolution
    In order to examine the organs that express possibly caBD-1 mRNA in camels, we designed again another pair of primers, which expecte
引文
冯 云, 黄 宁, 吴 琦, 等. 卡介苗诱导人肺腺上皮细胞hBD-1 mRNA 的增强表达. 华西医科大学学报, 2000, 31: 285-288.
    吴琦. 中性粒细胞防御素体外杀钩端螺旋体活性观察. 华西医科大学学报, 1992, 23: 126-130.
    钟德钰, 吴 琦, 杨美薷, 等. 中性粒细胞防御素对牙周可疑致病菌抗菌活性的观察. 华西口腔医学杂志, 1998, 16: 26-28.
    钟德钰, 杨美薷, 吴 琦, 等. 人中性粒细胞防御素对龈下微生物的影响. 华西口腔医学杂志, 1997, 15: 123-125.
    陈颖, 葛毅强, 张利明, 等. 哺乳动物防御素的研究进展及其应用前景. 生物化学与生物物理进展, 2001, 28 (1 ) : 17-21.
    傅荣昭, 彭于法, 曹光诚, 等. 兔防御素NP-1 基因在转基因烟草中的表达及其对烟草青枯病的抗性研究. 科学通报, 1998 , 43 (14) : 1519-1521.
    冯德江, 刘翔, 李旭刚, 等. tRNA 丰度与基因表达的关系. 中国生物工程杂志, 2002, 6 (12) : 4-7.
    Sambrook J, Fritsch E F, Maniatis T.著. 金冬雁, 黎孟枫等译. 分子克隆实验指南, 第二版, 北京: 科学出版社, 1996: 464-467, 45-55, 19-22.
    张映宽. 骆驼放牧采食的生态行为. 经济动物, 1999, 2: 13-14.
    沈霞芬, 腾可导, 李玉古, 等. 家畜组织学与胚胎学. 第三版, 中国农业出版社, 2000, 153.
    Zeya H I, Spitznagel J K. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol, 1966, 91: 755-762.
    Zeya H I, Spitznagel J K. Cationic proteins of polymorphonuclear leukocyte lysosomes. I. Resolution of antibacterial and enzymatic activities. J Bacteriol, 1966, 91: 750-754.
    Ganz T, Selsted M E, Szklarek D, et al. Defensins: natural peptide antibiotics of human neutrophils. J Clin lnvest, 1985, 76: 1427-1435.
    Lambert J, Keppi E, Dimarcq J L. Insect immunity: isolation from immune blood of the dipteran phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bacterial peptides. Proc Natl Acad Sci USA, 1989, 86 (1 ): 262-266.
    Terras F R G, Schoofs H M E, De Bolle M F C, et al. Analysis of two novel classes of antifungal proteins from radish ( Raphanus sativus L ) seeds. J Biol Chem, 1992, 267: 15301-15309.
    Cornet B, Bonmatin J M, Hertru C, et al. Refined three-dimensional solution structure of insect defensin A. Structure, 1995, 3 (5 ): 435-448.
    Liu L, Ganz T. The proregion of human neutrophil defensin contains a motif that is essential for normal subcellular sorting. Blood , 1995 , 85 : 1095-11031.
    Valore E V, Martin E, Harwig S S, Ganz T. Intramolecular inhibition of human defensin HNP-1 by its propiece. J Clin Invest, 1996, 97: 1624-1629.
    Bach A C 2nd, Selsted M E, Pardi A. Two-dimensional NMR studies of the antimicrobial peptide NP-5. Biochemistry, 1987, 26 (14 ): 4389- 4397.
    Eisenhauer P B, Lehrer R I. Mouse neutrophils lack defensins. Infect Immun, 1992, 60: 3446
    
    
    -3447.
    Selsted M E, Harwig S S, Ganz T, et al. Primary structure of three human neutrophil defensins. J clin Invest, 1985, 76 : 1436-14391.
    Wilde G C, Griffith J E, Marra M N, et al. Purification and characterization of human neutrophil peptide 4, a new member of the defensin family. J Biol Chem, 1989, 264: 11200-11203.
    Leher R I, Lichtenstein A K, Ganz T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu Rev Immunol, 1993, 11: 105-128.
    Zimmerman G R, Legault P, Selsted M E, Pardi A. Solution structure of bovine β-defensin-12: the peptide fold of the β-defensins is identical to that of the classical defensins. Biochemistry, 1995, 34: 13663-13671.
    Diamond G, Zasloff M, Eck H, et al. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA, 1991, 88: 3952-3956.
    Wu Z B, Hoover D M, Yang D, et al. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of humanβ-defensin 3. PNAS, 2003; 100: 8880-8885.
    Zhao C, Nguyen T, Liu L, et al. Gallinacin-3, an inducible epithelial β –defensin in the chicken. Infect. Immun, 2001, 69(4): 2684-2691.
    Mitta G, Vandenbulcke F, Hubert F, Roch P. Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. J Cell Sci, 1999, 112: 4233-4242.
    Fujiwara S, Imai J, Fujiwara M Y, et al. A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem, 1990, 265: 11333-11337.
    Rees J A, Moniatte M, Bulet P. Novel antibacterial peptides isolated from a European bumblebee, Bombus pascuorum (Hymenoptera, Apoidea). Insect Biochem Mol Biol, 1997, 27: 413-422.
    Saito T, Kawabata S, Shigenaga T, et al. A novel big defensin identified in horseshoe crab hemocytes: isolation, amino acid sequence, and antibacterial activity. J Biochem, (Tokyo) 1995, 117: 1131-1137.
    Michaelson D, Rayner J, Couto M, Ganz T. Cationic defensins arise from charge-neutralized propeptides: a mechanism for avoiding leukocyte autocytotoxicity? J Leukocyte Biol, 1992, 51: 634-639.
    Valore E V, Ganz T. Posttranslational processing of defensins in immature human myeloid cells. Blood, 1992, 79: 1538-1544.
    Valore E V, Park C H, Quayle A J, et al. Human β–defensin-1: an antimicrobial peptide of urogenital tisses. J Clin Invest, 1998, 101: 1633-1642.
    Lehrer R I, Ganz T. Endogenous vertebrate antibiotics: defensins, protegrins, and other cysteine-rich antimicrobial peptides. Ann N?Y?Acad Sci, 1996, 797: 228-239.
    Leonova L, Kokryakov V N, Aleshina G, et al. Circular minidefensins and posttranslational generation of molecular diversity. J Leukoc Biol, 2001, 70: 461-464.
    
    Tang Y-Q, Yaun J, Osapay G, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated α-defensins. Science, 1999, 286: 498-502.
    Lepage P, Bitsch F, Roecklin D, et al. Determination of disulfide bridges in natural and recombinant insect defensin A.Eur. J. Biochem., 1991; 196: 735-742.
    Cammue B P, De Bolle M F, Terras F R, et al. Isolation and characterization of a novel class of plant antimicrobial peptides from Mirabilis jalapa L. seeds. J. Biol. Chem., 1992; 267: 2228-2233.
    Bruix M, Jimenez M A, Santoro J, et al. Solution structure of C12H and C12P thionins from barely and wheat endo sperm deterimined by 1H2NMR: a structure motif common to toxic arthropod proteins. Bio chem istry, 1993, 32: 715-724.
    Haynes R L, Tighe P J, Dua H S. Antimicrobial peptides of the human ocular surface. Br J Ophtalomo,1999, 183 (6 ): 731-741.
    Mizukawa N, Sugiyama K, Ueno T, et al. Levels of human β-defensin-1, an antimicrobial peptide, in saliva of patients with oral inflamnation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1999, 87(50): 539-543.
    Ganz T, Lehrer R I. Defensins. Curr Opin Immunol, 1994, 6: 584-589.
    Yount N Y, Wang M S, Yuan J Banaiee N, et al. Rat neutrophil defensins. Precursor structures and expression during neutrophilic myelopoiesis. J Immunol, 1995, 155(9 ): 4476-4484.
    Selsted M E, Harwig S S L. Purification, primary structure, and antimicrobial activities of a guinea pig neutrophil defensin. Infect Immun, 1987, 55: 2281-2286.
    Kokryakov V N, Harwig S S, Panyutich E A, et al. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett, 1993, 327: 231-236.
    Couto M A, Harwig S S , Cullor J S, et al. Identification of eNAP-1, an antimicrobial peptide from equine neutrophils. Infect Immun, 1992, 60: 3065-3071.
    Shamova O, Brogden K A, Zhao C Q, et al. Purification and properties of Proline-rich antimicrobial peptides from sheep and goat leukocytes. Infect Immun, 1999, 67(8): 4106-4111.
    Selsted M E, Tang Y Q, Morris W L, et al. Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem, 1993, 268: 6641-6648.
    Quayle A J, Porter E M, Nussbaum A A, et al. Gene expression, immunolocalization, and secretion of human defensin-5 in human female reproductive tract. Am J Pathol, 1998, 152: 1247-1258.
    Cunliffe R N, Rose F R A, Keyte J, et al. Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut, 2001, 48: 176-185.
    Mallow E B, Harris A, Salzman N, et al. Human enteric defensins: gene structure and developmental expression. J Biol.Chem, 1996, 271: 4038-4045.
    Ouellette A J, Selsted M E. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J, 1996, 10: 1280-1289.
    Tanabe H, Yuan J, Zaragoza M M, Dandekar S. Paneth cell α-defensins from rhesus macaque small
    
    
    intestine. Infect Immun, 2004, 72 (3 ): 1470-1478.
    Condon M R,Viera A, Alessio M D, et al . Induction of a rat enteric defensin gene by hemorrhagic shock. Infect Immun, 1999, 67 (9 ): 4787-4793.
    Portor M, Liu L, Oren A, et al. Location of human intestinal defensin-5 in Paneth cell granules. Infect Immun, 1997, 65: 2389-2395.
    Jones D E, Bevins C L. Paneth cell of the human small intestine express an antimicrobial peptide gene. J Biol Chem, 1992, 267: 23216-23225.
    Ouellette A J, Greco R M, Jame M, et al. Developmental regulation of cryptdin, a corticostatin /defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol, 1989, 108: 1687-1695.
    Selsted M E, Miller S I, Henschen A H, Ouellette A J. Enteric defensins: antibiotic peptide components of intestinal host defensin. J cell Biol, 1992, 118: 929-936.
    Ouellette A J, Satchell D P, Hsieh M M, et al. Characterization of luminal Paneth cell alpha-defensins in mouse small intestine.Atlenuated antimicrobiol activities of peptides with truncated amino termini. J Biol Chem, 2000, 275: 33969-33973.
    Ouellette A L, Hsieh M M, Nosek M T, et al. Mouse Paneth cell defensin: primary structure and antibacterial activities of numerous cryptdin isoforms. Infect Immun, 1994, 62: 5040-5047.
    Bensch K W, Raida M, Magert H J, et al. hBD-1: a novel beta -defensin from human plasma. FEBS Lett, 1995, 368: 331-335.
    Tunzi C R, Harper P A, Bar-Oz B, et al. Beta-defensin expression in human mammary gland epithelia. Pediatr Res, 2000, 48: 30-35.
    Suttchai K, Aaron W, Christopherr N. Expression of the peptide antibiotic human β-defensins-1 in cultured gingival epithelial cells and gingival tissue. Infect Immun, 1998, 4222-4228.
    Stephen M, Milher, Marcos R. Reduced antimicrobiol peptide expression in human burn wounds. Burns, 1999, 25: 411-413.
    Harder J, Bartels J, Christophers E , Schroder J M. A peptide antibiotic from human skin. Nature, 1997, 387: 861.
    Jia H P, Schutte B C, Schudy A, et al. Discovery of new human beta-defensins using a genomics -based approach. Gene, 2001, 263: 211-218.
    Garcia J R, Jaumann F, Schulz S, et al. Identification of a novel, multifunctional beta-defensin (human beta-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res, 2001, 306: 257-264.
    Huttner K M, Kozak C A, Bevins C L. The mouse genome encodes a single homolog of the antimicrobial peptide human beta-defensin 1. FEBS Lett, 1997, 413: 45-49.
    Bals R, Goldman M J, Wilson J M. Mouse beta-defensin 1?is a salt-sensitive antimicrobial peptide present in epithelia of the lung and urogenital tract. Infect Immun, 1998, 66: 1225-1232.
    Morrison G M, Davidson D J, Dorin J R.. A novel mouse beta defensin, Defb2, which is
    
    
    upregulated in the airways by lipopolysaccharide. FEBS Lett, 1999, 442: 112-116.
    Bals R, Wang X, Meegalla R L, et al. Mouse beta-defensin 3 is inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect. Immun, 1999, 67: 3542-3547.
    Jia H P, Wowk S A, Schutte B C, et al. A Novel Murine beta -defensin expressed in tongue, esophagus, and trachea. J Biol Chem, 2000, 275: 33314-33320.
    Jia H P, Millis J N, Barahmand-Pour F, et al. Molecular cloning and characterization of rat genes encoding homologues of human beta -defensins. Infect Immun., 1999, 67: 4827-4833.
    Palladino M A, Mallonga T A, Mishra M S. Messenger RNA (mRNA) expression for the antimicrobial peptides β-defensins-1 and β-defensins-2 in the male rat reproductive tract: β-defensins-1 mRNA in initial segment and caput epididymidis is regulated by androgen and not bacterial Lipopolysaccharides. Biol Reproductive, 2003, 68: 509-515.
    Com E, Bourgeon F, Evrard B, et al. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans. Biol Reprod, 2003, 68: 95-104.
    Schonwetter B S, Stolzenberg E D, Zasloff M. Epithelial antibiotics induced at sites of inflammation. Science, 1995, 267: 1645-1648.
    Stolzenberg E D, Anderson G M, Ackermann M R, et al. Epithelial antibiotic induced in states of disease. Proc Natl Acad Sci USA, 1997, 94: 8686-8690.
    Tarver A P, Clark D P, Diamond G, et al. Enteric beta-defensin: molecular cloning and characterization of a gene with inducble intestinal epithelial cell expression associated with Cryptosporidium parvum infection. Infect Immun, 1998, 66(3): 1045-1056.
    Huttner K M, Brezinski-Caliguri D J, Mahoney M M, Diamond G. Antimicrobial peptide expression is developmentally regulated in the ovine gastrointestinal tract. J. Nutr, 1998, 128: 297S-299S.
    Zhao C, Nguyen T, Liu L, et al. Differential expression of caprine β–defensins in digestive and respiratory tisses. Infect Immun, 1999, 67(11): 6221-6224.
    Zhang G, Wu H, Shi J, et al. Molecular cloning and tissue expression of porcine beta-defensin-1. FEBS Lett, 1998, 424: 37-40.
    Shi J, Zhang G, Wu H, et al. Porcine epithelial beta-defensin 1 is expressed in the dorsal tongue at antimicrobial concentrations. Infect. Immun., 1999, 67: 3121-3127.
    Evans E W, Beach G G, Wunderlich J, Harmon B G. Isolation of antimicrobial peptides from avian heterophils. J Leukoc Biol, 1994, 56: 661-665.
    Brockus C W, Jackwood M W, Harmon B G. Characterization of beta-defensin prepropeptide mRNA from chicken and turkey bone marrow. Anim. Genet, 1998, 29: 283-289.
    Harwig S S, Swiderek K M, Kokryakov V N, et al. Gallinacins: cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett, 1994, 342: 281-285.
    Harwig S S, Swiderek K M, Kokryakov V, et al. Primary structure of Gallinacin-1, an antimicrobial β-defensin from chicken leukocytes. 1994, 4: 81-88. In J. Crabbs (ed.), Techniques in protein chemistry. Academic Press, San Diego, Calif.
    
    Thouzeau C, Maho Y L, Froget G, et al. Spheniscins: avian -defensins in preserved stomach contents of the king penguin, Aptenodytes patagonicus. J.Biol.Chem, 2003, 278: 51053-51058.
    Mendez E, Moreno A, Colllla F, et al.Primary structuxe and inhibition of protein synthesis in eukaryotic cell-free system ofa novel thionin, gamma-hordothionin, from barley endosperm. Eur J Biochem, 1990, 194 (2 ): 533-539.
    Broekaert W F, Terras F R G, Cammue B P A , et al. Plant defensins as components of the host defense system. Physiology, 1995, 108: 1353-1358.
    Linzeier R, Ho C H, Hoang B, et al. A 450-kb contig of defensin genes on human chromosome 8p23. Gene, 1999, 233: 205-211.
    Bevins C L, Porter E M, Ganz T. Defensins and innate host defence of the gastrointestinal tract . Gut , 1999, 45(6): 911 –915.
    Salzman N H, Polin R A, Harris M C, et al. Enteric defensin expression on necrotizing enterocolitis. Pediatr Res, 1998, 44 : 20-24.
    Liu L, Zhao C, Heng H H, et al. The human α–defensin-1 and β– defensins are encoded by adjacent genes: Two peptide families with differing disulfide topology share a common ancestry.Genomics, 1997, 43 (2 ): 316-320.
    Bevins C L, Jones D E, Dutra A, et al. Human enteric defensin genes: chromosomal map position and a model for possible evolutionary relationships. Genomics, 1996, 31(1 ): 95-106.
    Ouellette A J, Pravtcheva D, Ruddle F H , James M. Localization of the cryptdin lotus on mouse chromosome 8. Genomics, 1989, 5: 233-239.
    Zhang G, Hiraiwa H, Yasue H, et al. Cloning and characterization of the gene for a new epithelial β-defensin. J Biol Chem, 1999, 274 (34 ): 24031-24037.
    Iannuzzi L, Gallagher D S, Di Meo G P, et al. High-resolution FISH mapping of beta-defensin genes to river buffalo and sheep chromosomes suggests a chromosome discrepancy in ffttle standard karyotypes. Cytogenet Cell Genet, 1996, 75:10-13.
    Huttner K M, Lambeth M R, Burkin H R, et al. Localization and genomic organization of sheep antimicrobial peptide genes. Gene, 1998, 206: 85-91.
    Gallagher D S, Ryan A M, Diamond G, et al. Somatic cell mapping of β-defensin genes to cattle syntenic group U25 and fluorescent in situ hybridization localization to chromosome 27. Mamm Genome, 1995, 6: 554-556.
    Hughes A L. Evolutionary diversification of the mammalian defensins. Cell Mol Life Sci, 1999, 56 (12): 94-103.
    Thomma B P H J, Cammue B P A, Thevissen K. Plant defensins. Planta, 2002, 216: 193-202.
    Diamond G, Russell J P, Bevins C L. Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells. Proc Natl Acad Sci USA, 1996, 93: 5156-5160.
    Mathews M, Jia H P, Guthmiller J M, et al. Production of β-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect. Immun., 1999, 67 (6 ): 2740-2745.
    
    Kwok J, Hurlock G, Wu X, et al. Rhesus monkey homologue of human beta-defensin-1. Unpublished, GeneBank accession number AF014016.
    Schnapp D, Reid C J, Harris A. Localization of expression of human beta defensin-1 in the pancreas and kidney. J. Pathol. 1998,186: 99-103.
    Zhao C, Wang I, Lehrer R I. Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett, 1996, 396: 319-322.
    Yount N Y, Yuan J, Tarver A, et al. Cloning and expression of bovine neutrophil beta-defensins. Biosynthetic profile during neutrophilic maturation and localization of mature peptide to novel cytoplasmic dense granules. J Biol Chem, 1999, 274: 26249-26258.
    Liu L, Wang L, Jia H P, et al. Structure and mapping of the human beta-defensin HBD-2 gene and its expression at sites of inflammation. Gene, 1998, 222: 237-244.
    Russell J P, Diamond G, Tarver A P, et al. Coordinate induction of two antibiotic genes in tracheal epithelial cells exposed to the inflammatory mediators lipopolysaccharide and tumor necrosis factor alpha. Infect. Immun, 1996, 64: 1565-1568.
    Tomita T , Hitoni S, Nagase T, et al. Effect of ions on antibacterial activity of human beta defensin 2. Microbial Immunol, 2000, 44 (9): 749-754.
    Duits L A, Radenaker M, Rarensbergen B, et al. Inhibition of hBD-3, but not hBD-1 and hBD-2, mRNA expression by corticosteroids. Biochem Biophys Res Commun , 2001: 280 (2) : 522-525.
    Bals R, Wang X, Wu Z, et al. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Investig, 1998, 102: 874-880.
    Singh P K, Jia H P, Wiles K, et al. Production of beta-defensins by human airway epithelia. Proc Natl Acad Sci USA, 1998, 95: 14961-14966.
    Eisenhauer P B, Harwig S S, Lehrer R I. Cryptdins: antimicrobial defensins of the murine small intestine. Infect Immun, 1992, 60: 3556-3565.
    Taniai K, Wago H, Yamakawa M. In vitro phagocytosis of Escherichia coli and release of lipopo lysaccharide by adhering hemocytes of the silkworm,Bombyxmori. Biochem Biophys Res Comm, 1997, 231 (3): 623-627.
    Broekaert W F, Cammue B P A, De Bolle M F C, et al. Antimicrobial peptides from plants. Crit Rev Plant Sci, 1997, 16: 297-323.
    Tamamura H, Murakami T, Horiuchi S, et al . Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus activity. Chem Pharm Bull,1995, 43 (5): 853-858.
    Ogata K, Linzer B A, Zuberi R I, et al . Activity of defensins from human neutrophilic granulocytes against Mycobacterium avium-Mycobacterium intracellulare. Infect Immun , 1992 , 60: 4720-4725.
    Michael E, Selsted M E, Tang Y-Q, et al . Additions and corrections to purification, primary structures, and antibacterial activities of β-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem, 1996, 271: 16430.
    
    Sahly H, Schubert S, Harder J, et al. Burkh olderia is highly resistant to human beta-defensin 3 Antimicrob. Agents Chemother., 2003; 47(5): 1739-1741.
    Mitta G, Vandenbulcke F, Hubert F, et al. Involvement of mytilins in mussel antimicrobial defense. J Biol Chem, 2000, 275: 12954-12962.
    White S H, Wimley W C, Selsted M E . Structure, function, and membrane integration of defensins. Curr Opin Struct Biol, 1995, 5 : 521-527.
    Wimley W C, Selsted M E, White S H, et al . Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores. Protein Sci, 1994 , 3 : 1362-1373.
    Hill C P, Selsted Y J, Eisenberg M E, et al. Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization. Science, 1991, 251: 1481-1485.
    Lehrer R I, Barton A, Daher K A, et al. Interaction of human defcnsins with Ecoli : mechanism of bactericidal activity. J Clin Invest , 1989, 84: 553-561.
    Kagan B L,Selsted M E, Gaze T, Lehrer R I. Antimicrobial defensin peptides from voltage -dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA, 1990, 87: 210-214.
    Maget-Dana R, Ptak M. Penetration of the insect defensin A into phospholipid monolayers and formation of defensin A-lipid complexes. Biophys J,1997, 73: 2527-2533
    Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides.Biochim Biophys Acta, 1999,1462: 55-70.
    Thevissen K, Osborn R W , A cland D P, et al. Specific high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. The Journal of Biological Chemistry, 1997, 272: 32176-32181.
    Thevissen K, Osborn R W, Acland D P, et al. Specific binding sites for an antifungal plant defensin from dahlia (Dahlia merckii) on fungal cells are required for antifungal acitivity. Mol Plant-Microbe Interact, 2000, 13: 54-61.
    Hristova K, Selsted M E, White S H. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J Biol Chem, 1997, 272: 24224-24233.
    Yeaman M R, Yount N Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003, 55: 27-55.
    Ganz T. Defensin and host defensin. Science, 1999, 286 (5439 ): 420-421.
    Chernysh S I, Cociancich S, Briand J P, et al. The inducible antibacterial peptides of the hemipteran insect Polomena prasina: identification of a novel family of proline-rich peptides and of a novel insect defensin. Insect Biochem Molec Biol, 1996, 42(1): 81-89.
    Valore E V, Park C H, Quayle A J, et al. Human β-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest, 1998, 101: 1633-1642.
    Hoffmann J A, Hertru C. Insect defensins: inducible antibacterial peptides.Immunol Today, 1992, 13 (10 ): 411-415.
    
    Hwang P M , Vogel H J. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol, 1998, 76: 235-246.
    Ganz T, Selested M E, Lehrer R I. Defensins. Eur J Haematol, 1990, 44 (1): 1-8.
    Ouellette A J. Mucosal immunity and inflammation Ⅳ. Paneth cell antimicrobial peptids and the biology of the mucosal barrier. Am J Physiol, 1999, 277: G257-G261.
    Thevissen K, Terras F R G, Broekaert W F. Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl. Envir. Microbiol., 1999; 65(10): 5451- 5458.
    Terras F R G, Torrekens S, Van Leuven F, et al. A new family of basic cystein-rich antifungal proteins from Brassicaceae species. FEBS Lett, 1993, 316: 233-240.
    Broekaert W F, Terras F R, Cammue B P, et al. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol, 1995, 108 : 1353-1358.
    Patterson-Delafield J, Szklarek D, Martinez R J, Leher R I .Microbicidal cationic proteins of rabbit alveolar macrophages: amino acid composition and functional attributes. Infect Immun., 1981, 31(2 ): 723-731.
    Zhang L,Yu W, He T, et al. Contribution of human alpha-defensin1 ,2 , and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science, 2002 , 9 (5595 ): 995-1000.
    Barker E, Teisfeld R A. A mechanism for neutrophil-mediated lysis of human neuroblastoma cells. Cancer Res, 1993, 53: 362-367.
    Ford J M, Yang J M, Hait W N. P-glycoprotein-mediated multidrug resistance: expremental and clinical strategies for its reversal. Cancer Treat Res, 1996, 87: 3-38.
    Okrent D C, Lichtenstein A, Ganz T. Direct cytotoxicity of PMN granule proteins to human lung derived cells and endothelial cells. Am Rev Respir Dis, 1990, 141: 179-185.
    Lichtenstein A K, Ganz T, Selsted M E, et al. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood, 1986, 68: 1407-1410.
    Martin E, Ganz T, Lehrer R I. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukocyte Biol, 1995, 58: 128-136.
    Ganz T. Biosynthesis of defensins and other antimicrobial peptides. Ciba Found Symp CIBA Found Symp, 1994, 186: 62-76.
    Lichtenstein A K, Ganz T, Seleted M E, et al. Synergistic cytolysis mediated by hydrogen peroxide combined with peptide defensins. Cell Immun, 1988, 114: 104 -116.
    Gera J F, Lichtenstein A. Human neutrophil peptide defensins induce single strand DNA breaks in target cells. Cell Immunol, 1991, 138: 108-120.
    Lichtenstein A K. Mechanism of mammlican cell lysismediated by peptide defensins. Evidence for an initial alteration of the plasma membrane. J Clin Invest, 1991, 88: 93-100.
    Territo M C, Ganz T, Selsted M E, Lehrer R. Monocyte-chemotactic activity of defensins from human neutrophils. J Clin Invest, 1989, 84: 2017-2020.
    Chertov O, Michiel D F, Xu L, et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8 -stimulated
    
    
    neutrophils. J Biol Chem, 1996, 271: 2935-2940.
    Yang D, Chertov O, Bykovskaia S N, et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science, 1999, 286: 525-528.
    van Wetering S, Sterk P J, Rabe K F, Hiemstra P S. Defensins: key players or bystanders in infection, injury, and repair in the lung? J Allergy Clin Immunol, 1999, 104: 1131-1138.
    Redfern R L, Proske R J, McDermott A M. Effect of defensins on corneal cell migration and cytokine production. Invest. Ophthalmol. Vis. Sci., 2004; 45: 4866.
    Befus A D, Mowat C, Gilchrist M, et al. Neutrophil defensins induce histamine secretion from mast cells: mechanisms of action. J Immunol, 1999, 163 (1 ): 947-953.
    van Wetering S, van der Linden A C, van Sterkenburg M A, et al. Regulation of SLPI and elafin release from bronchial epithelial cells by neutrophil defensins. Am J Physiol Lung Cell Mol Physiol, 2000, 278: L51-L58.
    Gorter A D, Eijk P P, van Wetering S, et al. Stimulation of the adherence of Haemophilus influenzae to human lung epithelial cells by antimicrobial neutrophil defensins. J Infect Dis, 1998, 178: 1067-1074.
    Murphy C J, Foster B A, Mannis M J, et al. Defensins are mitogenic for epithelial cells and fibroblasts. J Cell Physiol, 1993, 155: 408-413.
    MacLeod R J, Hamilton J R, Bateman A, et al. Corticostatic peptides cause nifedipine-sensitive volume reduction in jejunal villus entercytes. Proc Natl Acad Sci USA, 1991, 88: 552-556.
    Reichhart J M, Petit I, Legrain J L, et al. Expression and secretion in yeast of active insect defensin, an inducible antibacterial peptide from the fleshfly Phormia terranovae. Inv Reprod Develop, 1992,21: 15-24.
    Piers K L, Brown M H, Hancock R E W. Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria. Gene, 1993, 134 (1): 7-13.
    Chen Y , Wang Y-Q , Sun Y-G , et al . Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet, 2001, 39 : 356-370.
    Schmid P, Grenet O, Medina J, et al. An intrinsic antibiotic mechanism in wounds and tissue -engineered skin. J Invest Dermatol, 2001, 116 (3 ): 471-472.
    Kevin O K,Leonid H,Michael H, Gill D. Antimycobacterial agent based on mRNA encoding human β-defensin 2 enables primary macrophages to restrict growth of Mycobacterium tuberculosis. Infect. Immun, 2001, 69 (4 ): 2692-2699.
    Florack D E A , Dirkse W G, Visser B, et al . Expression of biologically active hordothinoins in tabacco. effects of pre- and prosequences at the amino and carboxyl termini of the hordothionin precursor on mature protein expression and sorting. Plant Mol Biol, 1994, 24 (1): 233-242.
    Rancois I E, De Bolle M F, Dwyer G, et al . Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol, 2002, 128 (4): 1346-1358.
    Boman H G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol Annu Rev
    
    
    Immunol, 1995, 13: 61-92.
    Ganz T, Lehrer R I. Antimicrobial peptides of phagocytes and epithelia.Semin Hematol, 1997, 34: 343-354.
    Ganz T, Lehrer R I. Defensins. Pharmaxil Ther, 1995, 66: 191-205.
    Medzhitov R, Janeway C A. Innate immunity impact: on the adaptive immune response. Curr Opin Immunol, 1997, 9: 4-11.
    Frohman M A, Dush M K, Martin G R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA, 1988, 85: 8998-9002.
    Fox J W, Elzinga M, Tu A T. Amino acid sequence and disulfide bond assignment of myotoxin a isolated from the venom of Prairie rattlesnake (Crotalus viridis viridis). Biochemistry, 1979, 18: 678-684.
    Fenner P J, Williamson J A, Myers D. Platypus envenomation-a painful learning experience. Med J, 1992, 157(8): 829-832.
    Tonkin M A, Negrine J. Wild platypus attack in the antipodes. A case report. J Hand Surg , 1994, 19: 162-164.
    Torres A M, Plater G M, Doverskog M, et al. Defensin-like peptide-2 from platypus venom: member of a class of peptides with a distinct structural fold. Biochem J, 2000, 348: 649-656.
    Boman H G. Gene encoded peptide antibiotics and the concept of innate immunity: an update review. Scand. J Immunol, 1998, 48: 15-25.
    Hecht G. Innate mechanisms of epithelial host defense: spotlight on intestine. Am J Physiol, 1999, 277: C351-C358.
    Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res, 2000, 1: 141-150.
    Pardue M L, Gall J G. Molecular hybridization of radioactive DNA to the cytological preparetion. Proc Natl Acad sci USA, 1969, 64: 600-604.
    Zasloff M. Antibiotics peptides as mediators of innate immunity. Curr Opin Immunol, 1992, 4: 3-7.
    Bevins C L. Antimicrobial peptides as agents of mucosal immunity. Ciba Found Symp, 1994, 186: 250-269.
    Jones D E, Bevins C L. Defensin-6 mRNA in human Paneth cells: implications for antimicrobial peptides in host defense of the human bowel. FEBS Lett, 1993, 315: 187-192.
    Diamond G, Jones D E, Bevins C L. Airway epithelial cells are the site of expression of a mammalian antimicrobial peptide gene. Proc Natl Acad Sci USA, 1993, 90: 4596-4600.
    Trier J S. Studies on small intestinal crypt epithelium. I. The fine structure of the crypt epithelium of the proximal small intestine of fasting humans. J Cell Biol, 1963, 18: 599-620.
    Tournier I, Bernuau D, Poliard A, et al. Detection of albumin mRNAs in rat liver by in situ hybridization: usefulness of paraffin embedding and comparision of various fixation procedures. J Histochem Cytochem, 1987, 35: 453-459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700