前列腺癌细胞中HEY1基因转录调控分子机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HEY1是在内皮细胞血管形成中发挥重要作用的转录抑制子,是HEY基因家族成员,该家族成员参与心脏瓣膜形成,心肌及大血管发育,还可通过介导Notch信号系统影响心脏发育。HEY1是一个Notch信号通路的直接靶基因,而Notch信号通路在肿瘤发生发展中具有重要的意义。Notch1信号激活导致前列腺癌细胞的生长抑制。但是,HEY1的机制以及其对前列腺癌细胞影响的研究还未见报道。
     我们的实验发现,HEY1与Polycomb group(PcG)蛋白在两种恶性程度不同的前列腺癌细胞系LNCaP和DU145中表达水平明显呈现负相关,并且将PcG蛋白成员EZH2,SUZ12,BMI1干涉后提高了细胞内源HEY1基因mRNA和蛋白表达水平,证实PcG家族蛋白尤其是SUZ12能够调控HEY1基因的转录;RT-PCR,Real time PCR和Western blot结果显示,抗癌药物DNA甲基化酶抑制剂5-aza-dc能够显著提高HEY1基因的mRNA和蛋白表达水平,这也揭示了DNA甲基化可能参与HEY1基因的调控;我们在DU145细胞中过表达HEY1,结果显示,细胞生长停滞在G1期,说明HEY1与细胞周期密切相关。
     本项研究初步探讨了HEY1基因转录调控的机制,为深入研究HEY1基因在前列腺癌发生发展中的作用奠定了基础。
HEY1 is an important transcription corepressor in the formation of vascular endothelial cells,and it is a member of HEY gene family which participates in the formation of cardiac valves,development of cardiac muscle and aorta. What is more,it can influence heart development by mediating Notch signaling pathway. HEY1 is the direct target gene of the Notch signal pathway, whereas Notch signaling pathway has a significant role in generation and development of tumor. The activation of Notch1 can result in growth inhibition of prostate cancer cell. However, the transcriptional regulation mechanism and influence on prostate cancer cell of HEY1 gene remain to be discovered.
     According to the experiment, we found that the expression of HEY1 had a significant negative correlation in two prostate cancer cells of distinct grade malignancy—LNCaP and DU145. And interference of the PcG protein components EZH2,SUZ12,BMI1 promoted the mRNA and protein level of HEY1 gene, indicating PcG protein, especially SUZ12 can regulate the transcription of HEY1 gene; The result of RT-PCR, Real time PCR and Western blot showed that anti-cancer drug DNA methylase inhibitor 5-aza-dc could remarkably promote the mRNA and protein level of HEY1 gene, indicating that DNA methylation might participate in the regulation of HEY1 gene; We overexpressed HEY1 gene in DU145, and the result showed that the cell growth arrested in the G1 phase, indicating HEY1 gene was closely related to the cell cycle.
     The study briefly exploited transcriptional regulation mechanism of HEY1 gene, laying a good foundation to deeply further study the role of HEY1 gene in generation and development in prostate cancer cells.
引文
[1] Shi, W, Harris, A L. Notch signaling in breast cancer and tumor angiogenesis: cross-talk and therapeutic potentials[J]. J Mammary Gland Biol Neoplasia, 2006, 11(1): 41-52.
    [2] Bracken, A P, Dietrich, N, Pasini, D, et al. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions[J]. Genes Dev, 2006, 20(9): 1123-1136.
    [3] Cornell, R A, Eisen, J S. Notch in the pathway: the roles of Notch signaling in neural crest development[J]. Semin Cell Dev Biol, 2005, 16(6): 663-672.
    [4] Callahan, R, Egan, S E. Notch signaling in mammary development and oncogenesis[J]. J Mammary Gland Biol Neoplasia, 2004, 9(2): 145-163.
    [5] Niessen, K, Karsan, A. Notch signaling in the developing cardiovascular system[J]. Am J Physiol Cell Physiol, 2007, 293(1): C1-11.
    [6] Leong, K G, Karsan, A. Recent insights into the role of Notch signaling in tumorigenesis[J]. Blood, 2006, 107(6): 2223-2233.
    [7] Kovall, R A. Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex[J]. Curr Opin Struct Biol, 2007, 17(1): 117-127.
    [8] Krejci, A, Bray, S. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers[J]. Genes Dev, 2007, 21(11): 1322-1327.
    [9] Rehman, A O, Wang, C Y. Notch signaling in the regulation of tumor angiogenesis[J]. Trends Cell Biol, 2006, 16(6): 293-300.
    [10] Nam, Y, Sliz, P, Pear, W S, et al. Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription[J]. Proc Natl Acad Sci U S A, 2007, 104(7): 2103-2108.
    [11] Wilson, J J, Kovall, R A. Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA[J]. Cell, 2006, 124(5): 985-996.
    [12] Nam, Y, Sliz, P, Song, L, et al. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes[J]. Cell, 2006, 124(5): 973-983.
    [13] Hansson, E M, Lendahl, U, Chapman, G. Notch signaling in development and disease[J]. Semin Cancer Biol, 2004, 14(5): 320-328.
    [14] Parr, C, Watkins, G, Jiang, W G. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer[J]. Int J Mol Med, 2004, 14(5): 779-786.
    [15] Politi, K, Feirt, N, Kitajewski, J. Notch in mammary gland development and breast cancer[J]. Semin Cancer Biol, 2004, 14(5): 341-347.
    [16] Axelson, H. Notch signaling and cancer: emerging complexity[J]. Semin Cancer Biol, 2004, 14(5): 317-319.
    [17] Stylianou, S, Clarke, R B, Brennan, K. Aberrant activation of notch signaling in human breast cancer[J]. Cancer Res, 2006, 66(3): 1517-1525.
    [18] Zamurovic, N, Cappellen, D, Rohner, D, et al. Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene HEY1 inhibits mineralization and Runx2 transcriptional activity[J]. J Biol Chem, 2004, 279(36): 37704-37715.
    [19] Wang, X D, Leow, C C, Zha, J, et al. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation[J]. Dev Biol, 2006, 290(1): 66-80.
    [20] Katoh, M, Katoh, M. Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells[J]. Int J Mol Med, 2006, 17(4): 681-685.
    [21] Jang, M S, Miao, H, Carlesso, N, et al. Notch-1 regulates cell death independently of differentiation in murine erythroleukemia cells through multiple apoptosis and cell cycle pathways[J]. J Cell Physiol, 2004, 199(3): 418-433.
    [22] Steidl, C, Leimeister, C, Klamt, B, et al. Characterization of the human and mouse HEY1, HEY2, and HEYL genes: cloning, mapping, and mutation screening of a new bHLH gene family[J]. Genomics, 2000, 66(2): 195-203.
    [23] Fischer, A, Schumacher, N, Maier, M, et al. The Notch target genes HEY1 and HEY2 are required for embryonic vascular development[J]. Genes Dev, 2004, 18(8): 901-911.
    [24] Henderson, A M, Wang, S J, Taylor, A C, et al. The basic helix-loop-helix transcription factor HESR1 regulates endothelial cell tube formation[J]. J Biol Chem, 2001, 276(9): 6169-6176.
    [25] Powell, S M, Brooke, G N, Whitaker, H C, et al. Mechanisms of androgen receptor repression in prostate cancer[J]. Biochem Soc Trans, 2006, 34(Pt 6): 1124-1127.
    [26] Lee, J M, Dedhar, S, Kalluri, R, et al. The epithelial-mesenchymal transition: new insights in signaling, development, and disease[J]. J Cell Biol, 2006, 172(7): 973-981.
    [27] Belandia, B, Parker, M G. Nuclear receptor regulation gears up another Notch[J]. Nucl Recept Signal, 2006, 4: e001.
    [28] Li, B, Tang, S B, Hu, J, et al. Protective effects of transcription factor HESR1 on retinal vasculature[J]. Microvasc Res, 2006, 72(3): 146-152.
    [29] Katoh, M, Katoh, M. Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer[J]. Int J Oncol, 2007, 31(2): 461-466.
    [30] Iso, T, Kedes, L, Hamamori, Y. HES and HERP families: multiple effectors of the Notch signaling pathway[J]. J Cell Physiol, 2003, 194(3): 237-255.
    [31] Fischer, A, Gessler, M. Delta-Notch--and then? Protein interactions and proposed modes of repression by Hes and HEY bHLH factors[J]. Nucleic Acids Res, 2007, 35(14): 4583-4596.
    [32] Wu, C, Morris, J R. Genes, genetics, and epigenetics: a correspondence[J]. Science, 2001, 293(5532): 1103-1105.
    [33] Miremadi, A, Oestergaard, M Z, Pharoah, P D, et al. Cancer genetics of epigenetic genes[J]. Hum Mol Genet, 2007, 16 Spec No 1: R28-49.
    [34] Park, S Y, Kim, B H, Kim, J H, et al. Methylation profiles of CpG island loci in major types of human cancers[J]. J Korean Med Sci, 2007, 22(2): 311-317.
    [35] Lai, H C, Lin, Y W, Huang, T H, et al. Identification of novel DNA methylation markers in cervical cancer[J]. Int J Cancer, 2008, 123(1): 161-167.
    [36] Jacinto, F V, Ballestar, E, Esteller, M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome[J]. Biotechniques, 2008, 44(1): 35, 37, 39 passim.
    [37] Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome[J]. Hum Mol Genet, 2007, 16 Spec No 1: R50-59.
    [38] Esteller, M. The necessity of a human epigenome project[J]. Carcinogenesis, 2006, 27(6): 1121-1125.
    [39] Dahl, C, Guldberg, P. DNA methylation analysis techniques[J]. Biogerontology, 2003, 4(4): 233-250.
    [40] Esteller, M. CpG island methylation and histone modifications: biology and clinical significance[J]. Ernst Schering Res Found Workshop, 2006, (57): 115-126.
    [41] Riggs, A D, Jones, P A. 5-methylcytosine, gene regulation, and cancer[J]. Adv Cancer Res, 1983, 40:1-30.
    [42] Bird, A P. CpG-rich islands and the function of DNA methylation[J]. Nature, 1986, 321(6067): 209-213.
    [43] Cottrell, S E. Molecular diagnostic applications of DNA methylation technology[J]. Clin Biochem, 2004, 37(7): 595-604.
    [44] Jones, P A, Baylin, S B. The fundamental role of epigenetic events in cancer[J]. Nat Rev Genet, 2002, 3(6): 415-428.
    [45] Hellebrekers, D M, Jair, K W, Vire, E, et al. Angiostatic activity of DNA methyltransferase inhibitors[J]. Mol Cancer Ther, 2006, 5(2): 467-475.
    [46] Esteller, M. Aberrant DNA methylation as a cancer-inducing mechanism[J]. Annu Rev Pharmacol Toxicol, 2005, 45: 629-656.
    [47] Jacinto, F V, Esteller, M. Mutator pathways unleashed by epigenetic silencing in human cancer[J]. Mutagenesis, 2007, 22(4): 247-253.
    [48] Muthusamy, V, Duraisamy, S, Bradbury, C M, et al. Epigenetic silencing of novel tumor suppressors in malignant melanoma[J]. Cancer Res, 2006, 66(23): 11187-11193.
    [49] Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps[J]. Nat Rev Genet, 2007, 8(4): 286-298.
    [50] Esteller, M. DNA methylation and cancer therapy: new developments and expectations[J]. Curr Opin Oncol, 2005, 17(1): 55-60.
    [51] Feinberg, A P, Tycko, B. The history of cancer epigenetics[J]. Nat Rev Cancer, 2004, 4(2): 143-153.
    [52] Fackler, M J, McVeigh, M, Evron, E, et al. DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and Twist in in situ and invasive lobular breast carcinoma[J]. Int J Cancer, 2003, 107(6): 970-975.
    [53] Tomizawa, Y, Iijima, H, Nomoto, T, et al. Clinicopathological significance of aberrant methylation of RARbeta2 at 3p24, RASSF1A at 3p21.3, and FHIT at 3p14.2 in patients with non-small cell lung cancer[J]. Lung Cancer, 2004, 46(3): 305-312.
    [54] Malik, K, Salpekar, A, Hancock, A, et al. Identification of differential methylation of the WT1 antisense regulatory region and relaxation of imprinting in Wilms' tumor[J]. Cancer Res, 2000, 60(9): 2356-2360.
    [55] Hanafusa, T, Yumoto, Y, Nouso, K, et al. Reduced expression of insulin-like growth factor binding protein-3 and its promoter hypermethylation in human hepatocellular carcinoma[J]. Cancer Lett, 2002, 176(2): 149-158.
    [56] Schneider-Stock, R, Roessner, A, Ullrich, O. DAP-kinase--protector or enemy in apoptotic cell death[J]. Int J Biochem Cell Biol, 2005, 37(9): 1763-1767.
    [57] Suzuki, M, Toyooka, S, Shivapurkar, N, et al. Aberrant methylation profile of human malignant mesotheliomas and its relationship to SV40 infection[J]. Oncogene, 2005, 24(7): 1302-1308.
    [58] van Noesel, M M, van Bezouw, S, Salomons, G S, et al. Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation[J]. Cancer Res, 2002, 62(7): 2157-2161.
    [59] Margetts, C D, Astuti, D, Gentle, D C, et al. Epigenetic analysis of HIC1, CASP8, FLIP, TSP1, DCR1, DCR2, DR4, DR5, KvDMR1, H19 and preferential 11p15.5 maternal-allele loss in von Hippel-Lindau and sporadic phaeochromocytomas[J]. Endocr Relat Cancer, 2005, 12(1): 161-172.
    [60] Nass, S J, Herman, J G, Gabrielson, E, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5' CpG islands increases with malignant progression in human breast cancer[J]. Cancer Res, 2000, 60(16): 4346-4348.
    [61] Fendrich, V, Slater, E P, Heinmoller, E, et al. Alterations of the tissue inhibitor of metalloproteinase-3 (TIMP3) gene in pancreatic adenocarcinomas[J]. Pancreas, 2005, 30(2): e40-45.
    [62] Kallakury, B V, Sheehan, C E, Winn-Deen, E, et al. Decreased expression of catenins (alpha and beta), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas[J]. Cancer, 2001, 92(11): 2786-2795.
    [63] Guitton, A E, Berger, F. Control of reproduction by Polycomb Group complexes in animals and plants[J]. Int J Dev Biol, 2005, 49(5-6): 707-716.
    [64] Steeg, P S, Ouatas, T, Halverson, D, et al. Metastasis suppressor genes: basic biology and potential clinical use[J]. Clin Breast Cancer, 2003, 4(1): 51-62.
    [65] Li, Z, Ren, Y, Lin, S X, et al. Association of E-cadherin and beta-catenin with metastasis in nasopharyngeal carcinoma[J]. Chin Med J (Engl), 2004, 117(8): 1232-1239.
    [66] Fukushima, T, Katayama, Y, Watanabe, T, et al. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea[J]. Clin Cancer Res, 2005, 11(4): 1539-1544.
    [67] Okuda, T, Kawakami, K, Ishiguro, K, et al. The profile of hMLH1 methylation and microsatellite instability in colorectal and non-small cell lung cancer[J]. Int J Mol Med, 2005, 15(1): 85-90.
    [68] Enokida, H, Shiina, H, Igawa, M, et al. CpG hypermethylation of MDR1 gene contributes to the pathogenesis and progression of human prostate cancer[J]. Cancer Res, 2004, 64(17): 5956-5962.
    [69] Ishida, E, Nakamura, M, Ikuta, M, et al. Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma[J]. Oral Oncol, 2005, 41(6): 614-622.
    [70] Makarla, P B, Saboorian, M H, Ashfaq, R, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms[J]. Clin Cancer Res, 2005, 11(15): 5365-5369.
    [71] Tada, M, Yokosuka, O, Fukai, K, et al. Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma[J]. J Hepatol, 2005, 42(4): 511-519.
    [72] Matros, E, Wang, Z C, Lodeiro, G, et al. BRCA1 promoter methylation in sporadic breast tumors: relationship to gene expression profiles[J]. Breast Cancer Res Treat, 2005, 91(2): 179-186.
    [73] Dammann, R, Schagdarsurengin, U, Seidel, C, et al. The tumor suppressor RASSF1A in human carcinogenesis: an update[J]. Histol Histopathol, 2005, 20(2): 645-663.
    [74] Jemal, A, Ward, E, Hao, Y, et al. Trends in the leading causes of death in the United States, 1970-2002[J]. Jama, 2005, 294(10): 1255-1259.
    [75] Andriole, G, Bostwick, D, Civantos, F, et al. The effects of 5alpha-reductase inhibitors on the natural history, detection and grading of prostate cancer: current state of knowledge[J]. J Urol, 2005, 174(6): 2098-2104.
    [76] Feldman, B J, Feldman, D. The development of androgen-independent prostate cancer[J]. Nat Rev Cancer, 2001, 1(1): 34-45.
    [77] Jarrard, D F, Kinoshita, H, Shi, Y, et al. Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells[J]. Cancer Res, 1998, 58(23): 5310-5314.
    [78] Dong, J T. Chromosomal deletions and tumor suppressor genes in prostate cancer[J]. Cancer Metastasis Rev, 2001, 20(3-4): 173-193.
    [79] Schulz, W A, Burchardt, M, Cronauer, M V. Molecular biology of prostate cancer[J]. Mol Hum Reprod, 2003, 9(8): 437-448.
    [80] Karayi, M K, Markham, A F. Molecular biology of prostate cancer[J]. Prostate Cancer Prostatic Dis, 2004, 7(1): 6-20.
    [81] Kindich, R, Florl, A R, Kamradt, J, et al. Relationship of NKX3.1 and MYC gene copy number ratio and DNA hypomethylation to prostate carcinoma stage[J]. Eur Urol, 2006, 49(1): 169-175; discussion 175.
    [82] Nakayama, M, Gonzalgo, M L, Yegnasubramanian, S, et al. GSTP1 CpG island hypermethylation as amolecular biomarker for prostate cancer[J]. J Cell Biochem, 2004, 91(3): 540-552.
    [83] Holliday, R. Epigenetics: an overview[J]. Dev Genet, 1994, 15(6): 453-457.
    [84] Slack, J M. Conrad Hal Waddington: the last Renaissance biologist?[J]. Nat Rev Genet, 2002, 3(11): 889-895.
    [85] Deininger, M W, Goldman, J M, Melo, J V. The molecular biology of chronic myeloid leukemia[J]. Blood, 2000, 96(10): 3343-3356.
    [86] Jacobs, J J, van Lohuizen, M. Cellular memory of transcriptional states by Polycomb-group proteins[J]. Semin Cell Dev Biol, 1999, 10(2): 227-235.
    [87] Simon, J A. Polycomb group proteins[J]. Curr Biol, 2003, 13(3): R79-80.
    [88] del Mar Lorente, M, Marcos-Gutierrez, C, Perez, C, et al. Loss- and gain-of-function mutations show a polycomb group function for Ring1A in mice[J]. Development, 2000, 127(23): 5093-5100.
    [89] Martinez, A M, Cavalli, G. The role of polycomb group proteins in cell cycle regulation during development[J]. Cell Cycle, 2006, 5(11): 1189-1197.
    [90] Gil, J, Bernard, D, Peters, G. Role of polycomb group proteins in stem cell self-renewal and cancer[J]. DNA Cell Biol, 2005, 24(2): 117-125.
    [91] Valk-Lingbeek, M E, Bruggeman, S W, van Lohuizen, M. Stem cells and cancer; the polycomb connection[J]. Cell, 2004, 118(4): 409-418.
    [92] Jacobs, J J, van Lohuizen, M. Polycomb repression: from cellular memory to cellular proliferation and cancer[J]. Biochim Biophys Acta, 2002, 1602(2): 151-161.
    [93] Shao, Z, Raible, F, Mollaaghababa, R, et al. Stabilization of chromatin structure by PRC1, a Polycomb complex[J]. Cell, 1999, 98(1): 37-46.
    [94] Tie, F, Prasad-Sinha, J, Birve, A, et al. A 1-megadalton ESC/E(Z) complex from Drosophila that contains polycomblike and RPD3[J]. Mol Cell Biol, 2003, 23(9): 3352-3362.
    [95] Cao, R, Wang, L, Wang, H, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing[J]. Science, 2002, 298(5595): 1039-1043.
    [96] Kuzmichev, A, Nishioka, K, Erdjument-Bromage, H, et al. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein[J]. Genes Dev, 2002, 16(22): 2893-2905.
    [97] Schwartz, Y B, Pirrotta, V. Polycomb complexes and epigenetic states[J]. Curr Opin Cell Biol, 2008, 20(3): 266-273.
    [98] Muller, J, Kassis, J A. Polycomb response elements and targeting of Polycomb group proteins in Drosophila[J]. Curr Opin Genet Dev, 2006, 16(5): 476-484.
    [99] Simon, J, Chiang, A, Bender, W, et al. Elements of the Drosophila bithorax complex that mediate repression by Polycomb group products[J]. Dev Biol, 1993, 158(1): 131-144.
    [100] Poux, S, Melfi, R, Pirrotta, V. Establishment of Polycomb silencing requires a transient interaction between PC and ESC[J]. Genes Dev, 2001, 15(19): 2509-2514.
    [101] Pirrotta, V, Poux, S, Melfi, R, et al. Assembly of Polycomb complexes and silencing mechanisms[J]. Genetica, 2003, 117(2-3): 191-197.
    [102] Kuzmichev, A, Jenuwein, T, Tempst, P, et al. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3[J]. Mol Cell, 2004, 14(2): 183-193.
    [103] Francis, N J, Kingston, R E, Woodcock, C L. Chromatin compaction by a polycomb group protein complex[J]. Science, 2004, 306(5701): 1574-1577.
    [104] Schwartz, Y B, Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes[J]. Nat Rev Genet, 2007, 8(1): 9-22.
    [105] Dellino, G I, Schwartz, Y B, Farkas, G, et al. Polycomb silencing blocks transcription initiation[J]. Mol Cell, 2004, 13(6): 887-893.
    [106] Cao, R, Tsukada, Y, Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing[J]. Mol Cell, 2005, 20(6): 845-854.
    [107] Daujat, S, Zeissler, U, Waldmann, T, et al. HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding[J]. J Biol Chem, 2005, 280(45): 38090-38095.
    [108] Vire, E, Brenner, C, Deplus, R, et al. The Polycomb group protein EZH2 directly controls DNA methylation[J]. Nature, 2006, 439(7078): 871-874.
    [109] Glinsky, G V, Berezovska, O, Glinskii, A B. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer[J]. J Clin Invest, 2005, 115(6): 1503-1521.
    [110] Haupt, Y, Alexander, W S, Barri, G, et al. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice[J]. Cell, 1991, 65(5): 753-763.
    [111] van Lohuizen, M, Verbeek, S, Scheijen, B, et al. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging[J]. Cell, 1991, 65(5): 737-752.
    [112] Reya, T, Morrison, S J, Clarke, M F, et al. Stem cells, cancer, and cancer stem cells[J]. Nature, 2001, 414(6859): 105-111.
    [113] Shackleton, M, Vaillant, F, Simpson, K J, et al. Generation of a functional mammary gland from a single stem cell[J]. Nature, 2006, 439(7072): 84-88.
    [114] Kirmizis, A, Bartley, S M, Farnham, P J. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy[J]. Mol Cancer Ther, 2003, 2(1): 113-121.
    [115] van Kemenade, F J, Raaphorst, F M, Blokzijl, T, et al. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma[J]. Blood, 2001, 97(12): 3896-3901.
    [116] Raaphorst, F M, van Kemenade, F J, Blokzijl, T, et al. Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease[J]. Am J Pathol, 2000, 157(3): 709-715.
    [117] Visser, H P, Gunster, M J, Kluin-Nelemans, H C, et al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma[J]. Br J Haematol, 2001, 112(4): 950-958.
    [118] Kleer, C G, Cao, Q, Varambally, S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells[J]. Proc Natl Acad Sci U S A, 2003, 100(20): 11606-11611.
    [119] Varambally, S, Dhanasekaran, S M, Zhou, M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer[J]. Nature, 2002, 419(6907): 624-629.
    [120] van 't Veer, L J, Dai, H, van de Vijver, M J, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature, 2002, 415(6871): 530-536.
    [121] Lessard, J, Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells[J]. Nature, 2003, 423(6937): 255-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700