5-氮-2-脱氧胞苷对牛成纤维细胞周期、染色体和凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核移植效率低是限制体细胞核移植技术应用的主要原因,目前普遍认为,供体核的不完全表观重编程导致在发育过程中有重要作用的基因异常表达或没有表达是动物核移植失败的主要原因。DNA甲基化酶抑制剂是目前应用较普遍的一种药物。然而DNA甲基化酶抑制剂存在一些问题:如核苷类似物的细胞毒性、寡核苷酸在体内或细胞内作用的稳定性与长期疗效性等。在培养液中添加这种试剂可以诱发细胞形态变化、细胞中的基因突变、细胞凋亡以及失活X染色体和印记等位基因的重新活化等,这些都影响了甲基化抑制剂的应用。故本实验针对以上问题设计如下试验:
     1.建立体细胞核移植所需要的供体细胞细胞系,本实验采用荷斯坦奶牛耳组织块贴壁法获得原代细胞,经过传代培养得到纯化的成纤维细胞。通过细胞冷冻保存与复苏、细胞生长曲线的绘制及细胞染色体的核型分析等得到了生长旺盛、染色体变异率低、可以稳定传代的荷斯坦奶牛成纤维细胞系。
     2.采用DNA甲基化酶(5-aza-dc)抑制剂处理供体成纤维细胞,尝试建立一种既不影响体细胞生物学特性,又可降低供体细胞细胞核的甲基化状态方法,从而提供一种提高体细胞核移植效率的方法。实验中用不同浓度的甲基化酶抑制剂(5-aza-dc)处理奶牛成纤维细胞72 h,分别采用流式细胞仪检测细胞周期方法、常规染色体核型分析方法及琼脂糖凝胶电泳测细胞凋亡法,检测5-aza-dc对细胞周期、染色体及细胞凋亡的影响。结果显示:经甲基化酶抑制剂5-aza-dc(0.005-0.1μmol/L)处理的细胞在G_0/G_1期的百分比与没有经5-aza-dc处理的对照组相比差异不显著(P>0.05);低浓度的甲基化酶抑制剂(0.005μmol/L和0.01μmol/L)处理的细胞,染色体没有发生明显的畸变(P>0.05),染色体能够保持正常的形态,高浓度(0.03μmol/L与0.05μmol/L)处理导致染色体畸变率显著增加(P<0.05),而高浓度0.1μmol/L的5-aza-dc处理后染色体畸形率增加更为显著(P<0.01);从琼脂糖凝胶电泳图谱上可见经0.005μmol/L、0.01μmol/L浓度组的5-aza-dc处理的细胞与对照组一样都没有出现明显的DNA拖带现象,而从0.03μmol/L组就开始有拖带现象,0.05μmol/L和0.1μmol/L浓度组与对照组相比细胞发生凋亡的比例显著增加。总之,此实验的结果说明在对供体细胞做甲基化处理时用0.005μmol/L和0.01μmol/L的5-aza-dc处理不会影响细胞的染色体结构和数目,并且细胞凋亡率很低,同时不会影响细胞周期,但是高浓度处理则会导致染色体畸变率与细胞凋亡显著增加,理论上不能用于体细胞克隆动物的生产。
Low efficiency of somatic cell nuclear transfer is the main problem to limit the application of this technology.Now it is generally accepted that the main reason for the failure of nuclear transfer is the apparent incomplete reprogramming of donor nuclear that leads to abnormal expression or the failure expression of genes during development process.Now,DNA Methyl-transferase inhibitor is the common used drug.However, there are some problems for the DNA Methyl-transferase inhibitor,such as:the cytotoxic of nucleoside analogues,the stability and long-term effects of oligonucleotides in vivo. Added this reagent to the culture medium may induce gene mutation,change of cell morphologic,cell apoptosis,as well as the inactivation of X chromosome and the re-activation of imprinting genes,all of which affected the application of the methylation inhibitors.Therefore,accoding to these problems,our experiment designed as follows:
     1.Established donor cell lines for somatic cell nuclear transfer.In this experiment the method of cow ear tissue adherence was used and then by purification procedure to obtain fibroblasts.Through the frozen preservation,recovery,mapping cell growth curve and analysing cell karyotype,we got dairy fibroblast cell line which had low rate of chromosome mutation,growed well and can steady passage.
     2.DNA Methyl-transferase inhibitor(5-aza-dc) was used to treat donor cells to seeking for its best concentration in this experiment.With this concentration,we could not only reduce the somatic cell nucleus for the methylation status but also have no adverse effect on the characteristics of cell biology,thereby providing a more efficiency method for somatic cell cloning.In this experiment different concentration of 5-aza-dc was used to treat cow fibroblasts for 72h,by flow cytometry,conventional karyotype analysis and agarose electrophoresis respectively,to test the effect of 5-aza-dc on cell cycle,chromosome karyotype and apoptosis.The results were as follows:The rate of G_0/G_1 phase cells treated with 5-aza-dc(0.005-0.1μmol/L) had no significant difference compared to the untreated group(P>0.05);For chromosome karyotype,there were no significant aberration of chromosome with lower concentration(0.005μmol/L and 0.01μmol/L) 5-aza-dc(P>0.05).The chromosome can maintain normal shape.While the 0.03μmol/L and 0.05μmol/L group can significantly induce the aberration of chromosome(P<0.05).The aberration rate of chromosome was the highest in group that treated with 0.1μmol/L 5-aza-dc.From the agarose gel electrophoresis patterns it can be seen that cells treated by 0.005μmol/L,0.01μmol/L concentration of had no "ladder" phenomenon just as control group.While the towing phenomenon began from group of 0.03μmol/L 5-aza-dc.The proportion of apoptosis treated by the concentration of 0.05μmol/L and 0.1μmol/L groups significantly increased compared with the control group. In a word,these results indicated that there was no effect to chromosome structure and its number when the donor cells treated by 0.005μmol/L and 0.01μmol/L 5-aza-dc for reducing the DNA methylation level.While in a high concentration,the donor cells treated by 5-aza-dc can induce higher aberration of chromosome and apoptosis which can't be used in animal somatic cell cloning production.
引文
1 晁红霞,孙建衡,陆士新.5-氮-2'-脱氧胞苷对人子宫内膜癌裸鼠移植瘤细胞凋亡及细胞周期的影响[J].癌症,2001,20(5):489-492
    2 邓欢,黄年根,张吉翔.DNA甲基化与细胞周期.国际遗传学杂志,2006,29(2):106-109
    3 丁向彬.牛体细胞核移植胚胎表观遗传修饰研究.[博士学位论文].西北农林科技大学,2008
    4方晓明,孙立峰,彭佳萍,等.5-氮-2'-脱氧胞苷对RKO结肠癌细胞株P16/CDKN2基因去甲基化的转录调节作用[J].中华医学杂志,2003,83(23):2077-2082.
    5 高国龙.牛体细胞克隆中供体和受体细胞制备及重构胚构建的影响因素研究.[博士学位论文].华中农业大学,2007
    6 李世杰.体细胞克隆中核的重编程.科学通报,2004,49(8):721-726
    7 马康目.细胞核重编程对克隆的影响.生命科学,2008,20(3):431-437
    8 沈羽飞.染色质与表观遗传调控.高等教育出版社.2005
    9 施巧婷.北山羊的异种核移植.[博士学位论文].新疆农业大学,2004
    10舒金辉.水牛体细胞核移植与甲基化检测的研究.[硕士学位论文].广西大学,2007
    11佟红艳,林茂芳.5-杂氮-2'-脱氧胞苷对高危组骨髓增生异常综合症细胞作用的体外研究[J].中国实验血液学杂志,2004,12(4):467-471
    12辛华主编.细胞生物学实验[M],北京:科学出版社,2001
    13张敏.牛三种体细胞体外培养研究.[硕士学位论文].华中农业大学,2006
    14征月良.动物克隆中供体核DNA的甲基化重编程.生物学教学,2008,33(2):6-7
    15 Amacher D and Turner G.The mutagenicity of 5-azacytidine and other inhibitors of replicative DNA synthesis in the L5178Y mouse lymphoma cell.Mutat.Res.1987.176,123-131.
    16 Beaujean N,Taylor J,Gardner J,Wilmut I,Meehan,Young L.Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer.Biol ReProd 2004:71(1):185-193
    17 Betthauser J,Forsberg E,Augenstein M,Childs L,Eilertsen K,Enos J,Forsythe T,Golueke P,Jurgella G,Koppang R,Lesmeister T,Mallon K,Mell G;Misica P,Pace M,Pfister G,Strelchenko N,Voelker G,Watt S,Thompson S,Bishop M.Production of cloned pigs from in vitro systems.Nat Biotechnol,2000,18:1055-1059
    18 Bird A P, Wolffe A P. Methylation-induced repression-belts, braces, and chromatin.Cell, 1999, 99:451-454.
    
    19 Bourc'his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard J P,Viegas-Pequignot E. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol, 2001,11 (19): 1542-1546.
    
    20 Cameron E E, Bachman K E, Myohanen S, James G. Synergy of demethylation and histone deacetylase inhibition in the reexpression of genes silenced in cancer.Nature Genetics, 1999,21:103-107.
    
    21 Chao W, Huynh K D, Spencer R J, Davidow L S, Lee J T. CTCF, a candidate trans-acting factor for X-inactivation choice[J]. Science, 2002, 295(5553):345-347.
    
    22 Chesne P, Adenot PG, Viglietta C, Baratte M, Boulanger L, Renard JP. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol, 2002, 20:366-369
    
    23 Cezar C G, Bartolomei M S, Forsberg E J, First N L, Bishop M D, Eilertsen K J.Genome-wide epigenetic alterations in cloned bovine fetuses.Biol Reprod 2003;68(3):1009-1014.
    
    24 Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, Ponce de, Leon FA,Robl, JM. Cloned transgenic calves produced from nonquiescent fetal fibroblasts.Science, 1998,280: 1256-1258
    
    25 Daskalakis M, Nguyen T T, Nguyen C, Guldberg P, Kohler G, Wijermans P, Jones P A,Lubbert M. Demethylation of a hypermethylated P15/ IN K4B gene in patients with myelodysplastic syndrome by 5-Aza-2'- deoxycytidine (decitabine) treatment [J ].Blood, 2002, 100 (8):2957-2964.
    
    26 Davie J R. Covalent modifications of histories: expression from chromatin templates [J]. Curr Opin Genet Dev, 1998, 8:173-178.
    
    27 Dean W, Bowden L, Aitchison A, Klose J, Moore T, Meneses J J, Reik W, Feil R.Altered imprinted gene methylation and expression in completely ES cell-derived Mouse fetuses:association with aberrant phenotypes. Development, 1998, 125(12):2273-2282.
    
    28 Dean W, Santos F, Stojkovic M, Zakhartchenko V, Walter J, Wolf E, Reik W.Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA, 2001, 98 (24): 13734-13738
    
    29 Dean W, Santos F, Reik W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin Cell Dev Biol, 2003, 14 (1):93-100
    
    30 Eggan K, Akutsu H, Hochedlinger K, Rideout W, Yanagimachi R, Jaenisch R, Jaenish R. X-Chromosome inactivation in cloned mouse embryos. Science, 2000,290:1578-1581
    
    31 Egger G, Liang G N, Jones P A.Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004.429, 457-463.
    
    32 El Kharroubi A, Piras G, Stewart C L. DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts.J Biol Chem, 2001, 276(12):8674-8680.
    
    33 Enright B P, Jeong B S, Yang X, Tian X C. Epigenetic characteristics of bovine donor cells for nuclear transfer: levels of histone acetylation [J].Biol Reprod, 2003 a,69:1525-1530.
    
    34 Enright B P, Kubota C, Yang X, Tian X C. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2'-deoxycytidine [J]. Biol Reprod, 2003 b, 69:896-901.
    
    35 Enright B P, Sung L Y, Chang C C, Yang X, Tian XC. Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycytidine. Biol Reprod, 2005, 72:944-948.
    
    36 Faragher R G, Kipling D. How might replicative senescence contribute to human aging Bioessays, 1998,20:985-991
    
    37 Farin C E, Farin P W, Piedrahita J A. Development of fetuses from in vitro produced and cloned bovine embryos[J].J Anim Sci, 2004, 82:53 - 62.
    
    38 Farrell W E, Smpson D J, Frost S J, Clayton RN. Methylation mechnisims in pituitary tumori genesis [J]. Endocr Relat Cancer, 1999, 6 (4):437-447.
    
    39 Fatemi M, Hermann A, Pradhan S, Jeltsch, A. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leadingtoan allosteric activation of the enzyme after binding to methylated DNA [J] J Mol Biol, 2001, 309(5):1189-1199.
    
    40 Gardiner-Garden M, Frommer M. CPG islands in vertebrate genomes. [J] Mol Biol,1987, 196:261-282
    
    41 Galli C, Lagutina I, Crotti G, Colleoni S, Turini P, Ponderato N, Duchi R, Lazzari G.Pregnancy: a cloned horse born to its dam twin. Nature, 2003, 424: 635
    
    42 Han Y M, Kang Y K, Koo D B. Nuclear reprogramming of cloned embryos produced in vitro. Theriogenology, 2003, 59(1):33-44
    
    43 Hill J R, Burghardt R C, Jones K, Long C R, Looney C R, Shin T, Spencer T E, Thompson J A, Winger Q A, Westhusin M E. Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses [J].Biol Reprod, 2000, 63(6): 1787 -1794.
    
    44 Holt S E, Shay J W, Wright W E. Refining the telomere-telomerase hypothesis of aging and cancer. Nat Biotechnol, 1996,14:836-839
    
    45 Hu J F, Nguyen P H,Pham N V, Vu T H, Hoffman A R. Modulation of IGF2 genomic imprinting in mice induced by 5-azacytidine, an inhibitor of DNA methylation. Mol Endocrinol, 1997,11(13):1891-1898.
    
    46 Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout W M, Biniszkiewicz D,Yanagimachi R, Jaenisch R. Epigenetic instability in ES cells and cloned mice.Science, 2001, 293:95-97.
    
    47 Issa J P, Guillermo G M, Giles F J, Mannari R, Thomas D, Faderl S, Bayar E, Lyons J,Rosenfeld C S, Cortes J, Kantrjian H M. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine in hematopoietic malignancies. Blood. 2004. 103,1635-1640
    
    48 Jeanisch R, Eggan K, Humpherys D, Rideout W, Hochedlinger K. Nuclear cloning,stem cells, and genomic reprogramming. Cloning Stem Cells, 2002, 4:389-96.
    
    49 Jones P A, Taylor S M, Mohandas T, Shapiro L J.Cell cycle-specific reactivation of an inactive X-chromosome locus by 5-azadeoxycytidine. Proc. Natl. Acad. Sci.1982.79, 1215-1219.
    
    50 Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N,Strouboulis J, Wolffe AP. Methylated DNA and MeCP2 recruithistone deacetylase to repress transcription.Nat Genetics, 1998, 19:187-191.
    
    51 Jones P A, Takai D. The role of DNA methylation in mammalian epigenetics.Scicnee, 2001, 293:1086-1070
    
    52 Jones P A, Laird P W. Cancer epigenetics comes of age [J]. Nat Genet, 1999, 21(2):1632167.
    
    53 Kumar B M, Jin H F, Kim H J, Song H J, Hong Y, Balasubramanian S, Choe S Y,Rho G J. DNA methylation leves in porcine fetal fibroblasts induced by an inhibitor of methylation, 5-azacytidine.Cell Tissue Res.2006.325, 445-454.
    
    54 Kang Y K, Koo D B, park J S, Choi Y H, Chung AS, Lee K K, Han Y M. Aberrant methylation of donor genome in cloned bovine embryos.Nat Genet, 2001, 28: 173-177.
    
    55 Kang Y K, Park J S, Koo D B, Choi Y H, Kim S U, Lee K K, Han Y M. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre- implantation embryos. EMBO J, 2002, 21 (5): 1092-1100.
    
    56 Kharroubi A E, Piras G, Stewart.DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts.The Journal of Biological Chemistry.2001.276, 8674-8680.
    
    57 Kishigami S, Mizutani E, Ohta H, Hikichi T, Thuan N V, Wakayama S, Bui H T,Wakayama T. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer.Biochem Biophys Res Commun,2006,340:183-9.
    
    58 Kubota C, Tian X C, Yang X. Serial bull cloning by somatic cell nuelear transfer. Nat Biotechnol 2004:22(6):693-694.
    
    59 Lanza R P, Cibelli J B, Blackwell C, Cristofalo V J, Francis M K, Baerlocher G M,Mak J, Schertzer M, Chavez EA, Sawyer N, Lansdorp PM, West MD. Extension of cell: life-span and telmere length in animals cloned from senescent somatic cells [J].Science, 2000, 288: 665-669.
    
    60 Lie, Bestor T H, Jaenisch R.Targeted mutation of the DNA methyltransferase gene results in embryonic lethality [J]. Cell, 1992, 69:915-926.
    
    61 Lubbert M, Wijermans P, Kunzmann R, Verhoef G, Bosly A, Ravoet C, Andre M,Ferrant A. Cytogenetic responses in highrisk myelodysplastic syndrome following lowdose treatment with the DNA methylation inhibitor 5-aza-2-deoxycytidine[J].Br J Haematol, 2001,114 (2) :349-357.
    
    62 Lyon M F. X-chromosome inactivation. Curr Biol, 1999, 8-9: R235-237
    
    63 Miyashita N, Shiga K, Yonai M, Kaneyama K, Kobayashi S, Kojima T, Goto Y, Kishi M, Aso H, Suzuki T, Sakaguchi M, Nagai T. Remarkable differences in telomere lengths among Cloned cattle derived ftom different cell types. Biology of Reproduetion 2002:66(6): 1649-1655.
    
    64 Momparler R L, Bovenzi V. DNA met hylation and cancer [J]. Cell Physiol, 2000,183 (2):145-154.
    
    65 Nan X, Ng H H, Johnson C A, Laherty C D, Turner B M, Eisenman R N, Bird A.Transcriptional repression by the methyl-CpG- binding protein MeCP2 involves a histone deacetylase complex. Nature, 1998, 393: 386-389.
    
    66 Nolen L D, Gao S, Han Z, Mann M R, Gie Chung Y, Otte A P, Bartolomei M S,Latham K E. X chromosome reactivation and regulation in cloned embryos.Dev Biol 2005:279(2):525-540
    
    67 Ohgane J, Wakayama T, Kogo Y, Senda S, Hattori N, Tanaka S, Yanagimachi R,Shiota K. DNA methylation variation in cloned mice. Genesis 2001, 30:45-50.
    68 Okano M, Bell D W, Haber D A, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for denovo methylation and mammalian development [J]. Cell, 1999,99:247-257.
    
    69 Pedone P V, Pikaart M J, Cerrato F, Vernucci M, Ungaro P, Bruni C B, Riccio A. Role of histone acetylation and DNA methylation in the maintenance of the imprinted expression of the H19 and IGF2 genes.FEBS Lett,1999,458(l):45-50.
    
    70 Reik W, Dean W, Walter J.Epigenetic reprogramming in mammalian development.Science, 2001, 293(5532): 1089-1093.
    
    71 Robert MF, Morin S, Beaulieu N, Gauthier F, Chute IC, Barsalou A, Macleod R.DNMT1 is required to maintain Cp G met hylation and aberrant gene silencing in human cancer cells [J]. Nat Genet, 2003, 33 (1) :61-65.
    
    72 Rybouchkin A, Kato Y, Tsunoda Y.Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer.Biol Reprod, 2006, 74:1083-9.
    
    73 Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo.DevBiol 2002:241(1):172-182.
    
    74 Santos F, Zakhartchenko V, Stojkovic M, Peters A, Jenuwein T, Wolf E, Reik W,Dean W. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos [J].Curr Biol, 2003,13:1116-1121.
    
    75 Shaker S, Bernstein M, Momparler L F, Momparler RL. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation(5-aza-2'-deoxycytidine)and histone deacetylation (trichostatin A, depsipeptide) in combinati on against myeloid leukemic cells [J].Leuk Res, 2003, 27(5):437-444.
    
    76 Shi W, Hoeflich A, Flaswinkel H, Stojkovic M, Wolf E, Zakhartchenko V. Induction of a senescent-like phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos .Biel Reprod, 2003, 69:301-309.
    
    77 Shiels PG, Campbell KH, Waddington D, Wilmut D, Colman AE. Analysis of telomere lengths in cloned sheep. Nature 1999:399(6734):316—31
    
    78 Stice S L, Robl J M, Ponce de Leon F A, Jerry J, Golueke P G, Cibelli J B, Kane J J.Cloning: new breakthroughs leading to Commercial opportunities. Theriogenology 1998; 49(1):129-138.
    
    79 Tamara L, Davis, Grace J, Yang, Mccarrey J R. The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Human Molecular Geneties 2000; 9(19):2885-2894.
    
    80 Vogel M C, Papadopoulos T, Muller-Hermelink H K, Drahovsky D, Pfeifer G P. Intracellular distribution of DNA methyltransferase during the cell cycle. FEBS Lett,1988,236:9-13.
    
    81 Wakayama T, Perry ACF, Zuccotti M, Johnson KR, Yanagimachi R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei Nature, 1998, 394: 369-374
    
    82 Wakayama T, Shinkai Y, Tamashiro K L, Niida H, Blanchard D C, Blanchard R J,Ogura A, Tanemura K, Tachibana M, Perry A C, Colgan D F, Mombaerts P,Yanagimachi R. Cloning of mice to six generations [J]. Nature, 2000, 407:318-319.
    
    83 Wijermans P, Lubbert M, Verhoef G, Bosly A, Ravoet C, Andre M, Ferrant A.Low-dose 5-aza-2'-deoxycytidine, a DNA hypomethylating agent, for the treatment of high-risk myelodysplastic syndrome: a multicenter phase II study in elderly patients[J]. Clin Oncol, 2002, 18(5):956-962.
    
    84 Wolffe AP, Jones PL, Wade PA. DNA demethylation[J].Proc Natl Acod Sci USA,1999, 96:5894-5896
    
    85 Xu J, Yang X. Telomerase activity in early bovine embryos derived from parthenogenetic Activation and nuclear transfer. Biol Reprod 2001:64(3):770-774
    
    86 Xue F, Tian X C, Du F, Kubota C, Taneja M, Dinnyes A, Dai Y, Levine H, Pereira L V,Yang X. Aberrant paterns of X chromosome inactivation in bovine clones[J].Nat Genet, 2002, 31(2):216-220.
    
    87 Yang Q, Shan L, Yoshimura G, Nakamura M, Nakamura Y, Suzuma T, Umemura T,Mori I, Sakurai T, Kakudo K. 5-aza-2'- deoxycytidine induces retinoic acid receptor beta 2 demethylation , cell cycle arrest and growth inhibition in breast carcinoma cells [J]. Anticancer Res, 2002, 22 (5):275322756.
    
    88 Yang X, Smith S L, Tian X C, Lewin H A, Renard J P, Wakayama T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet, 2007, 39(3):295-302.
    
    89 Yin H, Blanchard K L. DNA methylation represses the expression of the human erythropoietin gene by two different mechanisms [J].Blood, 2000, 95(1): 111-119.
    
    90 Young L E, Fairbum H R. Improving the safety of embryo technologies: possible role of genomic imprinting.Theriogenology, 2000, 53:627-648.
    
    91 Zatsepina O V, Airapetian V O, Kirianov G I. The effect of 5-azacytidine on the cell cycle and chromosome structure in cell cultures of swine embryonal kidney tissue.Mol Biol (Mosk), 1989, 23:772-782.
    
    92 Zhang Y, Li J, Villemoes K, Pedersen AM, Purup S, Vajta G An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer.Cloning Stem Cells, 2007, 9:357-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700