5-氮杂-5'-脱氧胞苷的合成工艺优化及其对SKOV3作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多数肿瘤细胞的DNA甲基转移酶(DNA methyltransferase, DNMT)水平表达明显高于正常细胞,并与抑癌基因启动子高甲基化状态相关,DNMT抑制剂类药物是一类通过抑制DNMT的活性、逆转基因的异常甲基化状态,从而达到抗癌效果的药物。
     胞苷类似物作为DNA甲基化酶抑制剂,能够逆转基因的甲基化状态,从而恢复基因的表达水平,纠正肿瘤细胞的异常生物学特征,在肿瘤研究中受到极大的关注。本课题前期以双氰胺为原料合成、分离得到5-氮杂-5'-脱氧胞(5-Aza-5'- deoxycytidine, 5A5DC),实验证实了β-异构体有着较强的生物活性。但在合成方面,存在催化剂价格过高、反应时间长、纯化方法复杂等缺点。因此本文旨在优化其合成工艺、降低成本、提高产率,并探讨5A5DC对SKOV3的增殖及细胞周期的影响。
     具体研究工作分为以下两个部分:
     1. 5-氮杂-5'-脱氧胞苷(5A5DC)的合成及工艺优化
     通过分析各种核苷类化合物的合成方法,确定了本文的合成路线: 5-氮杂胞嘧啶经硅烷化保护,在路易斯酸作用下与1,2,3-三乙酰基-5-脱氧-D-核糖进行偶联得2',3'-二乙酰氧基-5'-脱氧-5-氮杂胞苷,最后经碱性脱保护、乙酸乙酯重结晶得5A5DC。通过正交设计,比较在Hilbert-Johnson偶联反应中不同Lewis酸、溶剂和反应时间对合成5A5DC的影响。以无水SnCl4为Lewis酸,1,2-二氯乙烷为催化剂、反应时间为8 h时,5A5DC的收率最高。以双氰胺计,总收率为31 %。
     2. 5A5DC对卵巢癌细胞株SKOV3的影响
     2.1. 5A5DC对SKOV3细胞生长曲线的影响
     SKOV3对数期生长期细胞,加入不同浓度的5A5DC,台盼蓝染色后光镜下进行细胞计数,连续计数7 d,绘制生长曲线。5A5DC对SKOV3细胞增殖具有不同程度的抑制作用,呈现剂量依赖关系。剂量愈大,生长曲线愈低平。其中剂量大于100μmol/L抑制作用较为明显。
     2.2. MTT法检测5A5DC对SKOV3细胞增殖的影响
     SKOV3对数期生长期细胞,加入不同浓度的5A5DC,MTT法检测5A5DC对SKOV3细胞增殖抑制的影响。5A5DC作用细胞72 h后,对SKOV3具有不同程度的抑制作用,呈现剂量依赖关系,其中以200μmol/L抑制效应最为强。
     2.3.流式细胞术检测对SKOV3细胞周期的影响
     流式细胞仪检测5A5DC作用SKOV3细胞72 h后,SKOV3细胞周期变化情况,当5A5DC的浓度达到100μmol/L以上,细胞周期的G0/G1期明显受到阻滞。
The expression level of DNA methyltransferase (DNA methyltransferase, DNMT) of most tumor cells was higher than normal cells, and relevant with the hypermethylation status of tumor suppressor gene promoter, DNMT inhibitors are a class of drugs by inhibiting the activity of DNMT to reverse the abnormal gene methylation status, to achieve the anti-cancer effect.
     Cytidine analogs as DNA methyltransferase inhibitors, could reverse the methylation status of genes, thereby restoring expression of the gene, correct the abnormal biological characteristics of tumor cells, ware concerned in cancer research.5 - aza -5 '- deoxy-cell (5-Aza-5'-deoxycytidine 5A5DC) was synthesised and isolated,and the strong biological activity of theβ-isomer has been confirmed. There was high price of the catalyst,time of the reaction, complexity of purification and other shortcomings in the synthesis. The aim of this article was to optimize the synthesis process, reduce costs and improve yield; study the effect of 5A5DC on the inhibition of proliferation of SKOV3 and its cell cycle .
     The study includes two parts as follows:
     1. 5 - aza -5 '- deoxycytidine (5A5DC) synthesis and process optimization The synthetic route was determined by analyzing a variety of methods of nucleoside compounds: 5 - aza cytosine coupling with 1,2,3 - triethylene acyl -5-deoxy - D-ribose to 2 ', 3'-acetoxy-5'-deoxy -5-azacytidine with Lewis acid and protection of silylation, then recrystallized by ethyl acetate. Compare he Hilbert-Johnson-coupling reaction of different Lewis acid and catalysts on the synthesis of 5A5DC by orthogonal design. SnCl4 as the catalyst, 1,2 - dichloroethane as the Lewis acid, reaction time 8 h, The yield of 5A5DC was highest. The total yield was 31% to dicyandiamide.
     2. The effect of 5A5DC on the proliferation of ovarian cancer cell SKOV3
     2.1 The effect of 5A5DC on SKOV3 cell growth curve
     Logarithmic growth phase of SKOV3 cells with different concentrations of 5A5DC, cells were stained by trypan blue and counted under light microscope, continuous counting 7 d, drawn the growth curve. 5A5DC with different degrees of inhibition of SKOV3 cells with different degrees of inhibition in a dose dependent manner. The growth curve was lower when the dose was larger. The inhibition was obvious when the dose of more than 100μmol/L.
     2.2. Assay 5A5DC inhibition of SKOV3 cell proliferation by MTT
     Logarithmic growth phase of SKOV3 cells with different concentrations of 5A5DC, Assay 5A5DC inhibition of SKOV3 cell proliferation by MTT. After 72 h of 5A5DC treatment, varying degrees of inhibition of SKOV3 with a dose dependent manner, of which 200μmol / L inhibitory effect is most significant.
     2.3. Detect the cell cycle of SKOV3 by flow cytometry
     The cycle changes of SKOV3 cells after 72 h of 5A5DC treatment was detected by flow cytometry, when the concentration of 5A5DC was 100μmol / L or more, the G0/G1 cell cycle was obvious blocked.
引文
1. Peedicayil J. The role of epigenetics in mental disorders[J]. IndianJ Med Res, 2007, 126(2):105-111.
    2. Esteller T. Detection and interpretation of altered methylation patterns in cancer cells[J]. N Engl J Med, 2008, 358(11): 48-59.
    3. Vertino P M, Sekowski J A, Coll J M, Applegren N, et al. DNMT1 is a component of a multiprotein DNA replication complex. Cell Cycle, 2002, 1(6) :416-423.
    4. Hansen R S, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome[J]. Proc Nat Acad Sci, 1999, 96(25): 14412.
    5. Goffin J, Eisenhauer E. DNA methyltransferase inhibitors-state of the art[J]. Ann Oncol, 2002, 13(11): 1699-1716.
    6. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene[J]. Cancer Cell, 2003, 3(1): 89-95.
    7. Lyko F, B rown R. DNA methyltransferase inhibitors and the development of epigenetic cancer therapies[J]. Nat Cancer Inst, 2005, 97(20): 1498-1506.
    8. Eric W, Jennifer K, JeanPierre A, et al. Phase II trial of DNAmethyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a national cancer institute of Canada clinical trials group investigational new drug study[J]. Invest New Drugs, 2006, 24(2): 159-167.
    9. Bodo B, Fank L. DNA methyltransfrase inhibitors. Old and new drugs from an epigenetic cancer therapy[J]. Trends in Pharmacological Science. 2004, 25(11): 551-554.
    10. Edvardas K, Ann T F, Wang Y C, et al. FDA drug approval summary: Azacitidine (5-azacytidin e, Vidaza TM) for injectable suspension[J]. The Oncologist, 2005, 10(3):176-182.
    11. Kantarjian H, Okiy, Garcia-Manero G,et al. Results of a randomized study of three schedules of low-dose decitabine in higher risk myelodysplastic syndrome and chronic myelomonocytic leukemia[J]. Blood, 2007, 109(1): 52-57.
    12. Devos D, Van Overveid W. Decitabine: a historical review of the development of an epigenetic drug[J]. Ann Hematol, 2005, 84 (Suppl 13): 3-8.
    13. Rosenfeld C S. Clinical development of decitabine as a prototype for an epigenetic drug program[J]. Semin Oncol, 2005, 32(5): 465-472.
    14. Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phaseⅢrandomized study[J]. Cancer, 2006, 106(8): 1794-1803.
    15.张志军,温明浩,王克文,等.核苷酸生产技术现状及展望[J].现代化工,2004,24(11):19-31.
    16.史丽鸿,金东哲,周伟澄. L-核苷类化合物的合成方法综述[J].中国医药工业杂志,2008,39(8):619-626.
    17. Gumina G,Chong Y,Chu C.K. L-Nucleosides as Chemo therapeutic Agents[M]. New Jersey: Humana Press, 2007: l73-198.
    18. Ning Li,Min-Hua Zong, Ding Ma. Thermomyces lanugi nosuslipase-catalyzed regioselective acylation of nucleosides: enzyme substrate recognition[J]. Jounral of Biotechnology, 2009: 02-13.
    19.姚其正.核苷化学合成[M].北京:化学工业出版社,2005:2-8.
    20.林志财,李俊,汤文建等. 5-氮杂-5-脱氧胞嘧啶核苷的合成及其抗肿瘤活性筛选[J].安徽医科大学学报,2011,45(5):634-637.
    21. Cilles Gosselin, Marine Christine, De Rudder, et al. Systematic Synthesis and Biological valuation ofα- andβ-D-Lyxofuranosyl Nucleosides of the Five Naturally Occuring Nucleic Acid Bases[J]. J. Med. Chem, 1987, 30: 982-991.
    [1]姚其正.核苷化学合成[M].北京:化学工业出版社,2005:23-27.
    [2]张礼和.以核糖为作用靶的药物研究[M]:北京:科学出版社,1997,195-219.
    [3]彭司勋.药物化学[M].北京:中国医药科技出版社,1999,319-322,341-347.
    [4]李子成,陈淑华,蒋宁等.化学研究与应用.2002,14:15-16.
    [5] M ansour TS,Storer R. Curr Pharma Design. 1997,3:227.
    [6]氨基酸,核酸集谈会(日)编.张克旭,杜连祥译.核酸发酵[M].北京:轻工业出版社,1987,412-441.
    [7]张致平.微生物药物学[M].北京:化学工业出版社,2003,325-332
    [8]李良铸,李明哗.最新生化药物制备技术[M].北京:中国医药科技出版社,2001,227-280.
    [9] Kurkjian C,Kummar S,Murgo A J,et a1. DNA methylation:its role in cancer development and therapy [J]. Curr Probl Cancer,2008,32(5):187-235.
    [10]林志财,李俊,汤文建,等. 5-氮杂-5'-脱氧胞嘧啶核苷的合成及其抗肿瘤活性筛选[J]安徽医科大学学报,2010,45(5):634-7.
    [11] Piskala A. Nucleic Acid Components and Their Analogues. CI. Synthesis of Dihydro-1,3,5 -Triazin-2-One and Its Derivatives[J]. Collection Czechslov Chem Commun, 1976, 32: 3966-3976.
    [12] Niedballa U, Vobr H. A General Synthesis of N-gly-cosides V. Synthesis of 5-Azacytidines [J]. J Org Chem, 1974, 39(25): 3762-3764.
    [13]张文生,申艳红,刘启宾,等. 5-氮杂胞嘧啶的合成研究[J].武汉大学学报(理学版) ,2003,49(4)454~456.
    [14]幸松民,王一璐.有机合成工艺及产品应用[M].北京:化学工业出版社,1999:120-127.
    [15]邓锋杰,陈萍华.温远庆,等.位阻型硅烷化试剂在药物合成中的研究与应用[J].精细化工中间体,2005.35(5):6-9.
    [16]孙明宇,刘少杰,毕研英,等.硅烷化技术在制药上的应用[J].有机硅材料2001,15(5):18-20.
    [17] King F D.Wlton D R M. Protection of amino and hydroxyl group in the ullmann reaction and related organoeopper coupling. Synthesis.1976, 40:669-671.
    [18]张云岩,丁芸,张一兵. 2-氨基-5-硫代噻二唑β-D-核呋喃糖苷的合成[J].化学学报,1997,55:411-413.
    [19]季竞竞,杨守宁,董冬吟等.地西他滨的合成[J].中国医药工业杂志,2007,38(7):468-469.
    [20] Takashi M, Miyoko K, Keisuke S. Tetrahedron Lett. 1988, 29, 6935.
    [21] Dumitru I, Ann A, Pete B. Synthesis of 5-azacytidine[P].US, 038038,2006,03-02.
    [22]邢其毅,裴伟伟,徐瑞秋,等.基础有机化学(第三版)[M].高等教育出版社,2005,14:606-607.
    1. Peedicayil J. The role of epigenetics in mental disorders[J]. IndianJ Med Res, 2007, 126(2):105-111.
    2. Esteller T. Detection and interpretation of altered methylation patterns in cancer cells[J]. N Engl J Med, 2008, 358(11): 48-59.
    3.张志军,温明浩,王克文,等.核苷酸生产技术现状及展望[J].现代化工,2004,24(11):19-31.
    4.史丽鸿,金东哲,周伟澄. L-核苷类化合物的合成方法综述[J].中国医药工业杂志,2008,39(8):619-626.
    5. Gumina G,Chong Y,Chu C.K. L-Nucleosides as Chemo therapeutic Agents[M]. New Jersey: Humana Press, 2007: l73-198.
    6. Babinger P, Volkl R,Cakstina I, et al. Maintenance DNA methyltransferase (Metl) and silencing of CPG-methylated foreign DNA in Volvox carteri[J]. Plant Mol B iol, 2007, 63: 325.
    7.Robert M F, Morin S, Beaulieu N, et al. DNM T1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells[J]. Nature Genet, 2003, 33(1): 61.
    8.Stresemann C, B rueckner B, Musch T ,et al. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines[J]. Cancer Res, 2006, 66(5): 2794.
    9.王怡苹,吕雄文,赵斌,等.蜂毒素对胃癌细胞系SGC-7901细胞增殖抑制作用及机制[J]安徽医科大学学报,2010,45(4):503-508.
    10.柳旺艳,李娟,李岩,等.化合物OCAM的体外抗肿瘤活性[J].西安交通大学学报,2010,31(2):255-7.
    11. Buttitta LA, Edgar BA. Mechanisms controlling cell cycle exit upon terminaldifferentiation[J]. Curr Opin Cell Biol, 2007: 19(6): 697-704.
    12. Gansauge S,Gansauge F,Ramadani M, et al.0verex Pression of cyclin D1 in human pancreatic carcinoma is associated with poor prognosis.Cancer Res, 1997, 57: 1634-1637.
    13. Massague J. G1 cell-cycle control and cancer[J]. Nature, 2004: 432(7015): 298-306.
    14. Bindels EM,Lallemand F,Balkenende A,et al.Involvement of G1/S cyclins in estrogen-independent proliferation of estrogen receptor-positive breast cancer cells. Oncogene, 2002, 21: 8158- 8165.
    1. P AJones,S B Baylin. The epigenomics of cancer[J].Cell, 2007, 128 (4) :683-710..
    2. Dubeau L. The cell of origin of ovarian epithelial tumours[J]. Lancet Oncol, 2008, 9(12): 1191-1197.
    3. Folkins AK,J arboe EA, Roh MH, et al. Precursors to pelvic serous carcinoma and their clinical implications[J]. Gynecol Oncol, 2009, 113(3): 391-396.
    4. Herman J G, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation[J]. N Eng l J M ed, 2003, 349(21): 2042-2054.
    5. Ruter B, Wijermans PW, Lubbert M. DNA methylation as a therapeutic target in hematologic disorders: recent results in older patients with myelodysplasia and acu temyeloid leukemia[J]. Int J Hematol, 2004, 80(2): 128-135.
    6. Luczak, MW, Jagodzinski PP. The role of DNA methyla2tion in cancer development [J]. Folia Histochem Cytobiol, 2006, 44: 143.
    7. Wang Y, Leung FC. An evaluation of new criteria for CpG islands in the human genome as gene markers 2004(7).
    8. Larsen F. Gundersen G. Lopez R CpG islands as gene markers in the human genome. Genomics, 1992, 3(4): 1095-1107.
    9. Gardiner-Garden M.Frommer M CpG islands in vertebrate genomes 1987(2)
    10. Takai D. Jones P A. Comprehensive analysis of CpG islands in human hromosomes
    21 and 22 [J]. Proc Nail Acad Sci USA, 2002, 99(6):3740-3745
    11. Feinberg AP, Tycko B. The history of cancer egigenetie[J]. Nat Rev Cancer, 2004, 4(2):143一153
    12.黄庆,郭颖,府伟灵.人类表观基因组计划[J].生命的化学,2004,24(2):101-102.
    13. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev, 2002, 16(1): 6-2l.
    14. Reik W, Santos F, Dean W.Mammalian epigenomics: reprogramming the genomefor development and therapy[J]. Theriogenology, 2003, 59(1): 21-32.
    15. Hansen R S, Stoger R, Wijmenga C. Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant[J]. Hum Mol Genet, 2000, 9(18): 2575-2587.
    16. Yamada Y. Watanabe H. Miura F A. Comprehensive analysis of allelic methylation status of CpG islands on human chromosome 21q[J]. Genome Res, 2004, 14(2): 247-266
    17. Hanahan D. Weinberg R A. The hallmarks of cancer[J]. Cell, 2000, 100(1): 57-70.
    18. Jair KW,Bachman KE, Suzuki H, et al. Denovo CpG island methylation in human cancer cells[J]. Cancer Res, 2006, 66(2): 682-692.
    19. Bestor T, Landano A,Mattaliano R, et al. Cloning and sequeneing of a cDNA encoding DNA methyltransferase of mouse eells .The carboxyl-terminal domain of the mammalian enzymes is related to baeterial restrietion methyltransferases. J Mol Biol[J]. 1988, 203(4): 971-983.
    20. Richardson B. Impact of aging on DNA methylation. Ageing Res Rev[J]. 2003,2(3): 245-261.
    21. Araujo FD, Croteau S Slaek A D, et al. The DNMT1 target reeognition domain resides in the Nterminus. J Biol Chem [J]. 2001, 276(10): 6930-6936.
    22. Goyal R, Rathert P, Laser H, Gowher H,et al. Phosphorylation of serine-515 activates the Mammalian maintenance methyltransferase DNMT1[J]. Epigenetics. 2007, 2(3):155-160.
    23. Liu K, Wang Y F, Cantemir C, et al. Endogenous assays of DNA methyltransferase s: Evidence for differential activities of DNMT1, DNMT2, and DNMT3 in mammalian n cells in vivo. Mol Cell Biol, 2003, 23(8): 2709-2719.
    24. Vertino P M, Sekowski J A, Coll J M, Applegren N, et al. DNMT1 is a component of a multiprotein DNA replication complex. Cell Cycle, 2002, 1(6) :416-423.
    25. Hansen R S, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferasegene is mutated in the ICF immunodeficiency syndrome[J]. Proc Nat Acad Sci, 1999, 96(25): 14412.
    26. Goffin J, Eisenhauer E. DNA methyltransferase inhibitors-state of the art[J]. Ann Oncol, 2002, 13(11): 1699-1716.
    27. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene[J]. Cancer Cell, 2003, 3(1): 89-95.
    28. Li G M, Presnell S R, Gu L Y. Folate deficiency, mismatch repair-dependent apoptosis, and human disease. J Nutr Biochem, 2003,14(10): 568-575.
    29. Wainfan E, Poirier L A. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression.Cancer Res, 1992, 52(7): 2071-2077.
    30. van Engeland M, Weijenberg M P, Roemen G M, et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res, 2003, 63(12): 3133-3137.
    31. Heerdt B G, Houston MA,Wilson AJ , et al.The intrinsicmito chondrial membrane poteniial (Deltapsim)is associated with steady statemitochondrial activity and the extent to which colonic epithelial cells undergo butyrate-mediated growth arrest and apoptosis[J].Cancer Res, 2003, 63(19) 6311-6319.
    32.江小杰,李建国. DNA甲基化与RUNX3抑癌基因在肿瘤中的研究进展[J].国际消化病杂志.2010, 30(6):375-377.
    33. Robertson K D,UzvolgyiE Liang G et al. The human DNA methyltransferases (DNMTs)l,3a and 3b:coordinate mRNA expression in normal tissues and overexpression intumors. Nucleic Aeids Res.[J] 1999. 27(11): 2291-2298.
    34. Zemer R, Fishman A, Bernheim J,et al. Expression of cytokeratin-20in endometrial carcinoma[J].Gynecol Oncol, 1998, 70(3): 410.
    35. Hogg RP,Honorio S, Martinez A, et al. Frequent 3p allele liss and epigenetic inactivation of the RASSF1A tumor suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma[J]. Eur J Cancer, 2002, 38(12): 1585.
    36. Nakane Y, Natsume A, Wakabayashi T, et al. Malignant transformation related genes in meningiomas :allelic loss on p36 and methylation status of p73 and RASSF1A[J]Neurosurg, 2007, 107(2): 398-410..
    37.蒋鹏程,马圭,孟鑫等. RASSFlA在胃癌中的甲基化检测及表达[J].现代肿瘤医学,2009,17(6):1115-1118.
    38. X ing M, Cohen Y, Mambo E, et al. Early occurrence of RASSFlA hypermethylat ion tumorigenes is and its mutual exclusion with BRAF mutation in thyroid tumorigenesis[J]. Cancer Res,2 004, 64(5): 1664-1668.
    39. Dammann R, Schaqdarsurenqin U, Liu L, et al. Frequent RASSF1A promoter hypermethylation and K-rasmutations in pancreatic carcinoma[J]. Oncogene, 2003, 22(24): 3806.
    40. Nobuki Nakamura. RASSF1A and NORE1A methylation and BRAF-V600E mutations in thyroid tumors[J]. Laboratory Investigation, 2005, 85, 1065.
    41. Trasler J M.Gamete imprinting; setting epigenetic patterns for the next generation. Reprot Fertil Dev, 2006, 18(1-2): 63-69.
    42. Kantarjian H, Okiy, Garcia-Manero G,et al. Results of a randomized study of three chedules of low-dose decitabine in higher risk myelodysplastic syndrome and chronic myelomonocytic leukemia[J]. Blood, 2007, 109(1): 52-57.
    43. Devos D, Van Overveid W. Decitabine: a historical review of the development of an epigenetic drug[J]. Ann Hematol, 2005, 84 (Suppl 13): 3-8.
    44. Rosenfeld C S. Clinical development of decitabine as a prototype for an epigenetic drug program[J]. Semin Oncol, 2005, 32(5): 465-472.
    45. Kantarjian H, Issa JP, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phaseⅢrandomized study[J]. Cancer, 2006, 106(8): 1794-1803.
    46. Stuart A S, Ashakumary L, David P, et al. Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylationand reexpression[J]. Experimental Hematology, 2007, 35(2): 263-273.
    47. Bodo B, Regine G B, Pawel S, et al. Epigenetic Reactivation of Tum or Suppressor Genes by a Novel Small-Molecule In hibitor of Human DNA Methyltransf erases[J]. Cancer Res, 2005, 65(14): 6305-6312.
    48. Winquist E, Knox J,Ayoub JP, et al. PhaseⅡtrial of DNA methyltransferase l inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug studuy. Invest New Drugs. 2006: 24: 159-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700