DNA和凝血酶荧光分析新方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核酸是生命的遗传物质,蛋白质是生命的体现者。人类许多遗传疾病与DNA碱基序列的变异有关,人体中特定蛋白质浓度也可以作为疾病诊断的依据,因此,建立高灵敏度、高选择性、简单、快速检测特定序列DNA和蛋白质的分析方法,对疾病诊断和预防具有重要的意义。荧光分析方法因其高灵敏度、高选择性、简单、快速等优点,已在生命分析中得到广泛的应用。
     本论文由综述和研究报告两部分组成。第一部分介绍了荧光分析方法的原理及特点,简要评述了DNA、蛋白质检测方法的研究进展。以荧光纳米粒子为重点介绍了常见的荧光标记物,最后阐述了本论文的研究目的和内容。
     第二部分为研究报告,由两部分组成。第一部分以异硫氰酸罗丹明B嵌合二氧化硅纳米粒子为荧光信号物质构建纳米荧光核酸探针,使其与固定在磁性纳米粒子上的目标单链DNA杂交,经磁场分离后测量沉淀物的荧光强度。实验结果表明,该荧光强度与目标单链DNA的浓度在1.3×10~(-14)~2.5×10~(-13) mol/L范围内呈线性关系,线性方程为I=40.1C+10.1(C的单位为10~(-13) mol/L),相关系数为0.9968。对6.7×10~(-14) mol/L浓度的目标单链DNA进行11次测定,相对标准偏差为2.6%。方法的检出限为1.6×10~(-15) mol/L。本研究结合纳米技术及生物磁场分离技术通过磁性材料标记生物分子实现了磁性分离,结合分子识别技术,通过磁性材料标记生物分子实现了磁性分离,提高了分离的选择性。建立了一种高灵敏的DNA杂交荧光检测方法,对DNA分析方法的研究具有一定的参考价值。
     研究报告的第二部分提出了基于竞争反应的非标记荧光蛋白质检测方法。以凝血酶为检测对象,使用能够专一结合凝血酶的核酸适体作为识别分子,设计了含AP位点的适体的互补DNA,建立了高选择性荧光检测凝血酶的新方法。没有凝血酶时,核酸适体可以和内含AP位点单链DNA最大程度地杂交形成双链DNA,荧光分子氨氯吡咪嵌合在双链DNA中的AP位点处并与AP位点对面碱基T结合,使得氨氯吡咪的荧光信号下降;当凝血酶存在时,凝血酶竞争结合其适体,释放出双链中嵌在碱基缺失位点(AP site)的荧光报告分子氨氯吡咪,荧光信号增强,并且荧光强度的增强程度与凝血酶浓度呈线性关系。据此,可基于荧光强度的增强来对凝血酶进行定量测定。在选定实验条件下,检测凝血酶的线性范围为4.2×10~(-9)~4.2×10~(-8) mol/L,线性方程为△I=0.0204C-0.0251(C的单位:10~(-9) mol/L),相关系数为0.9962,对3.0×10~(-8) mol/L凝血酶进行11次测定,相对标准偏差为3.2%。方法的检出限为1.3×10~(-9) mol/L。实验结果表明,利用凝血酶与其核酸适体的互补链的竞争作用,释放出嵌在双链DNA中AP位点的荧光分子的原理可建立高选择性、均相、非标记检测凝血酶的分析方法。该方法的建立为基于含核酸适体和AP位点双链DNA非标记测定蛋白质提供了一条新思路。
Deoxyribonucleic acid is an important hereditary material. The basevariation of DNA is tightly related to genetic diseases. Protein is one of the importantparts of organism. The quantity changes of protein in the human body may lead topathological changes, so it is important to detect DNA sequence and protein sensitivelyfor disease diagnosis and clinical applications.
     Fluorescence is becoming increasingly promising method for biomedical andenvironmental analysis because of its advantages such as simple instrumentation, highsensitivity, simplicity and rapidity.
     This thesis includes a review and a research section. In the review section, thebasic principles, characteristics and the applications of fluorescence in DNA and proteinanalysis are introduced. Development of various kinds of fluorescence labels is mainlyreviewed. Finally, the purpose and content of the research work in this thesis arepresented.
     The research section contains two subunits. In the first subunit, the fluorescencesignal amplification of DNA hybridization was studied, which was based on dye-dopedsilica nanoparticles used as fluorescence probe. The fluorescence emission enhancementwas significantly observed upon DNA probe hybriding with target DNA which wasattached on the surface of magnetic nanoparticles. It was found that DNA could bequantified in good linearity range of 1.2×10~(-14)~2.5×10~(-13) mol/L with a low detectionlimit of 1.6×10~(-15) mol/L, and the relative standard deviation for 6.7×10~(-14)mol/L DNAwas 2.6%(n=11). The method developed was sensitive, simple and suitable for thedetermination of DNA sequence.
     In the second subunit, a new strategy of fluorescence assay for protein based onDNA duplex containing AP site was proposed. In this work, a novel label freefluorescence method for homogeneous detection of thrombin, which chosen as a modelprotein, was developed on basis of dsDNA containing AP site and aptamer. Aptameragainst thrombin and amiloride was used as a molecular recognizer and a fluorescencereporter, respectively. In the absence of thrombin, the aptamer could hybridize with cDNA containing AP site in the highest degree and amiloride could bind to thymineopposite AP site in the DNA duplexes, resulting in fluorescence quenching. In theprescence of thrombin, amiloride exhibits enhancement of its fluorescence and theenhance degree was relative to the increase of the concentration of thrombin. Accordingto the fluorescence signal change, thrombin could be determined rapidly and sensitively.It was found that under optimal conditions the enhanced fluorescence intensity had agood linearity with the concentration of thrombin in the range from 4.2×10~(-9) mol/L to4.2×10~(-8) mol/L with a detection limit of 1.3×10~(-9) mol/L. The relative standard deviation(n=11) was 3.2% at 3.0×10~(-8) mol/L thrombin. This work demonstrated that the proposedmethod provides a promising strategy of fluorescence assay for protein based on DNAduplex containing AP site and an aptamer as molecular recognizer.
引文
[1] 罗国安,王义明.21世纪的分析化学(汪尔康主编)[M].北京:科学出版社,1999,102-111.
    [2] 程介克.分析化学进展(汪尔康主编)[M].南京:南京大学出版社,1994,10.
    [3] 李林.蛋白质组学的进展[J].生物化学与生物物理进展,2000,27(3): 227-231.
    [4] 许金钩,王尊本.(主编).荧光分析法(第三版)[M].北京:科学出版社,2006, 7.
    [5] 陈中举,张燕玲,黄金瑛.荧光标记生物大分子及其应用[J].国外医学生物医学工程分册,2004,27(6):348-352.
    [6] Zhen C, Levi J, Xiong Z M. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice [J]. Bioconjugate Chem. 2006, 17: 662-669.
    [7] 林丹樱,孙云旭,马万云.基于ICCD的快速荧光显微成像技术及在活细胞研究中的初步应用[J].光谱学与光谱分析,2006,126(15):917-921.
    [8] Yang D, Wang H L, Sun Z N, et al. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells [J]. J. Am. Chem. Soc., 2006, 128: 6004-6005.
    [9] Farruggia G, Iotti S, Prodi L. 8-Hydroxyquinoline derivatives as fluorescent sensors for magnesium in living cells [J]. J. Am. Chem. Soc, 2006, 128: 344-350.
    [10] 黄飓,肖华龙,朱利国.甲胎蛋白时间分辨荧光免疫分析[J].中华肝脏病杂志,2000,8(4):248.
    [11] 蔡其洪.荧光分析在卟啉作为肿瘤标志物研究中的应用[J].现代诊断与治疗,2006,17(2):96-98.
    [12] 肖延风,刘雅,姬晓梅.蛋白印迹法与免疫荧光法检测白血病患者Survivin表达[J].西安交通大学学报(医学版),2005,26(2):127-129.
    [13] 范雯,张燕玲.荧光标记在药物研究中的应用[J].国外医学,2007,34(1):52-55.
    [14] 陈岳青,邹学森,黄秀珍等.ATP-生物荧光肿瘤药敏试验在筛选肺癌化疗药物中的应用[J].江西医学检验,2006,24(6):501.
    [15] 周兴旺,李军,王柯敏等.发夹型荧光分子探针用于DNA甲基化酶的活性分析及其在药物筛选中的应用[J].化学学报,2006,64(20):2096-2100.
    [16] 赵启仁,李美佳,刘洁.核酸杂交的酶放大时间分辨荧光分析[J].中国医学科学院学报,2002,24(1):84-88.
    [17] Kushon S A, Ley K D, Bradford K, et al. Detection of DNA hybridization via fluorescent polymer superquenching [J]. Langmuir, 2002, 18(20): 7245-7249.
    [18] Gill R, Willner I, Shweky I, Banin U. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage [J]. J. Phys. Chem. B, 2005, 109: 23715-23719.
    [19] Lavis L D, Chao T Y, and Raines R T. Fluorogenic label for biomolecular imaging [J]. Chem. Biol., 2006, 1 (4): 252-260.
    [20] 李元宗编.生化分析(第一版)[M].高等教育出版社,2003,01.
    [21] 朱晴晖,张锦锋.核酸检测方法及进展[J].上海医学检验杂志,2001,6(16): 325-329.
    [22] 张明琴,窦远,张建华等.核酸探针的原理及应用[J].生物学通报,2006, 41(7):11-12.
    [23] Cheng G F, Zhao J, Tu Y H, et al. A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by mutiwalled carbon nanotubes in polypyrrole [J]. Anal. Chim. Acta, 2005, 533(1): 11-16.
    [24] Kerman K, Matsubara Y, Morita Y, et al. Peptide nucleic acid modified magnetic beads for intercalator based electrochemical detection of DNA hybridization [J]. Sci. Technol Adv. Mater., 2004, 5 (3): 351-357.
    [25] Steichen M, Decrem Y, Godfroid E, et al. Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)_6]~(3+) on gold electrodes [J]. Biosens. Bioelectro., 2007, 22(9-10): 2237-2243.
    [26] Li A, Yang F, Ma Y, et al. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode [J]. Biosens.Bioelectro, 2007, 22(8): 1716-1722.
    [27] Lee J G, Yun K, Lim G S, et al. DNA biosensor based on the electrochemilumenscence of Ru(bpy)_3~(2+) with DNA-binding intercalators [J]. Bioelectrochem, 2007, 70: 228-234.
    [28] Li Y, Qi H L, Fang F, et al. Ultrasensitive electrogenerated chemluminescence detection of DNA hybridization using carbon-nanotubes loaded with tris (2, 2' bipyridyl) ruthenium derivative tags [J]. Talanta, In Press, Corrected Proof, Available online 9 February 2007.
    [29] Wei H, Du Y, Kang J Z, et al. Label free electrochemiluminescence protocol for sensitive DNA detection with a tris(2,2'-bipyridyl)ruthenium(Ⅱ) modified electrode based on nucleic acid oxidation [J]. Electrochem Commun, In Press, Corrected Proof, Available online 3 February 2007.
    [30] 杨孝容,刘志昌,刘凡.灿烂甲酚蓝标记分光光度法测定核酸[J].乐山师范学院学报,2004,19(5):66-68.
    [31] Miyamoto K I, Onodera K, Yamaguchi R T, et al. Hybridization of single -stranded DNA in water studied by infrared spectroscopy [J]. Chem. Phys. Lett., 2007, 436(1-3): 233-238.
    [32] Cheng Y Q, Li Z P, Su Y Q, et al. Ferric nanoparticle-based resonance light scattering determination of DNA at nanogram levels [J]. Talanta, 2007, 71(4): 1757-1761.
    [33] Jia Z, Yang J H, Wu X, et al. The sensitive determination of nucleic acids using resonance light scattering quenching method [J]. Spectrochim. Acta, Part A: Molecular and biomolecular spectroscopy, 2006, 64(3): 555-559.
    [34] Tong C L, Hu Z and Liu W P. Enoxacin-Tb~(3+) complex as an nvironmentally friendly fluorescence probe for DNA and its application [J]. Talanta, 2007, 71(2): 816-821.
    [35] Kim D K, Tamiya E and Kwon Y S. Development of a novel DNA detection system for real-time detection of DNA hybridization [J]. Curr. Appl. Phys, 2006, 6(4): 669-674.
    [36] Wu Z S, Jiang J H, Fu L, et al. Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles [J]. Anal. Biochem, 2006, 353(1): 22-29.
    [37] Massey M, Russ Algar W. and Krull U J. Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Forster distances for various dyes-DNA conjugates [J]. Anal. Chim. Acta, 2006, 568(1-2): 181-189.
    [38] Zheleznaya L A, Kopein D S, Rogulin E A, et al. Significant enhancement of fluorescence on hybridization of a molecular beacon to a target DNA in the presence of a site-specific DNA nickase [J]. Anal. Biochem, 2006, 348(1): 123-126.
    [39] 张明琴,窦远,张建华.核酸探针的原理及应用[J].生物学通报,2006, 41(7):11-12.
    [40] 陈秀英,.彭孝军.DNA分子荧光探针[J].染料与染色,2004,41(6):315-320.
    [41] 郁美娟,孟庆华,任吉存等.基于生命体系中氨基键合标记的荧光探针研究进展[J].染料与染色,2004,41(3):137-144.
    [42] 颜范勇,陈立功,闫喜龙等.罗丹明类荧光染料的合成及应用[J].化学进展,2006,18(2/3):252-261.
    [43] 施锋,李宏洋,彭孝军.生物分析用近红外荧光染料研究进展[J].精细化工,2003,20(5):268-272.
    [44] 王丽秋,彭孝军.生物标示用3H-吲哚箐染料[J].染料工业,2002,39(4):8-11.
    [45] 张华山,王红,赵媛媛.分子探针与检测试剂[M].北京:科学出版社,2002, 246-252.
    [46] 张卫芳,刘德文.稀土配合物发光研究及其在生物化学中的应用[J].北京轻工业学院学报,1999,117(12):60-64.
    [47] Hasegawa Y, Wada Y J and Yanagida S. Strategies for the design of luminescent lanthanide (Ⅲ) complexes and their photonic applications [J]. J. Photochem. Photobiol C: Photochem. Rev., 2004, 5(3): 183-202.
    [48] Lin C G, Zhang G L and Yang J G. Fluorimetric determination of nucleic acids with terbium and lutetium [J]. Microchem, 2002, 71 (1): 9-14.
    [49] Wang G L, Yuan J L, Matsumoto K, et al. Homogeneous time-resolved fluorescence DNA hybridization assay by DNA-mediated formation of an EDTA -Eu(Ⅲ)-β-diketonate ternary complex [J]. Anal. Biochem, 2001, 299(2): 169-172.
    [50] 慈云祥,陈勇,李元宗等.DTPA-Eu~(3+)螯合物在核酸杂交分析中的应用[J].高等学校化学学报,1995,16(2):184-187.
    [51] Salem A A. Fluorimetric determinations of nucleic acids using iron, osmium and samarium complexes of 4, 7-diphenyl-1,10-phenanthroline [J]. Spectrochim. Acta, Pan A: Molecular and Biomolecular Spectroscopy, 2006, 65(1): 235-248.
    [52] Tyagi S, Kramer F R. Molecular beacons: probe that fluoresce upon hybridization [J]. Nat.Biotechnol, 1996, 14(3): 303-308.
    [53] Ahtony T and Subramaniam V. Molecular Beacons: Nucleic acid hybridization and emerging applications [J]. J. Biomol. Struct. Dyn, 2001, 19(3): 497-504.
    [54] Yao G and Tan W. Molecular-beacon-based array for sensitive DNA analysis [J]. Anal. Biochem, 2004, 331: 216-223.
    [55] Kong D M, Gu L, Shen H X. A modified molecular beacon combining the properties of TaqMan Probe [J]. Chem. Commun, 2002, 854-855.
    [56] Petersena K, Vogelb U, Rockenbauerc E, et al. Short PNA molecular beacons for real-time PCR allelic discrimination of single nucleotide polymorphisms [J]. Mol. Cell. Probe., 2004, 18:117-122.
    [57] Tang Z, Wang K, Tan W, et al.. Real-time investigation of nucleic acids phosphorylation process using molecular beacons [J]. Nucleic Acids Res., 2005, 33(11): e97.
    [58] Varma-Basil M, El-Hajj H, Marras SA, et al. Molecular beacons for multiplex detection of four bacterial bioterrorism agents [J]. Clin. Chem, 2004, 50(6): 1060-1063.
    [59] Medley C D, Drake T J, Tomasini J M, et al. Simultaneous monitoring of the expression of multiple genes inside of single breast carcinoma cells [J]. Anal.Chem, 2005, 77:4713-4718.
    [60] Perlette J, Tan W. Real-Time Monitoring of intracellular mRNA hybridization in side single living cells [J]. Anal. Chem., 2001, 73: 5544-5550.
    [61] Penn S G, He L, Natan M J. Nanoparticles for bioanalysis [J]. Curr. Opin.Chem. Biol, 2003, 7(5): 609-615.
    [62] 姜忠义(主编).纳米生物技术(第一版)[M].北京:化学工业出版社,2003, 1.
    [63] Alivisatos P. The use of nanocrystal sinbiological detection [J]. Nat. Biotechnol., 2004, 22(1): 47-52.
    [64] Derfus A M, Chan W, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots [J]. Nano Lett, 2004, 4(1): 11-18.
    [65] 李琨,焦嫦亮,尹翔等.量子点荧光标记及其应用[J].现代临床医学生物工程学杂志,2006,12(4):374-375.
    [66] 邹明强,杨蕊,李锦丰.量子点的光学特征及其在生命科学中的应用[J].分析测试学报,2005,24(6):133-137.
    [67] Chan W C W, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281 (5385): 2016-2018.
    [68] RussAlgar W and Krull U J. Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET) [J]. Anal. Chim. Acta, 2007, 581(2): 193-201.
    [69] Kim J H, Morikis D and Ozkan M. Adaptation of inorganic quantum dots for stable molecular beacons [J]. Sens. Actuators, B: Chemical, 2004, 102(2): 315-319.
    [70] Li Y, Chen J, Zhu C, et al. Preparation and application of cysteine-capped ZnS nanoparticles as fluorescence probe in the determination of nucleic acids [J]. Spectrochim Acta A Mol Biomol Spectrosc. 2004, 60(8-9): 1719-1724.
    [71] Han M, Gao X, Su J Z, et al.. Quantum dot tagged microbeads for multiplexed opt ical coding ofbimolecular [J]. Nat. Biotechnol, 2001, 19(7): 631-635.
    [72] Niemeyer C M. Nanoparticles, proteins, and nucleic acid: biotechnology meets materials Science [J|. Angew. Chem.Int.Edit, 2001, 40(22): 4128-4158.
    [73] 付英松,许鑫华,韩波等.微型传感器:荧光纳米微球的制备及表征[J].广州化学,2002,127(4):14-19.
    [74] Taylor J R, Fang M M, Nie, S. Probing specific sequences on single', DNA molecules with bioconjugated fluorescent nanoparticles [J]. Anal. Chem, 2000, 72(9): 1979-1986.
    [75] Wang L, Wang K, Santra S, et al. Watching silica nanoparticles glow in the biological world [J]. Anal Chem. A-Page, 2006, 78(3): 646-654.
    [76] Hilliard L R, Zhao X J, Tan W H. Immobilization of oligonucleotides ontosilica nanoparticles for DNA hybridization studies [J]. Anal. Chim. Acta, 2002, 470: 51-56.
    [77] Lian W, Litherland S A, Badrane H, et al. Ultrasensitive detection of biomolecules with Fuorescent dye-doped nanoparticles [J]. Anal. Biochem, 2004, 334:13.5-144.
    [78] He X X, Chen J Y, Wang K M, et al. Preparation of luminescent Cy5 doped coreshell SFNPs and its application as a near-infrared fluorescent marker [J]. Talanta, 2007, 72(4): 1519-1526.
    [79] Smith J E, Wang L and Tan W. Bioconjugated silica-coated nanoparticles for biosep aration and bioanalysis [J]. Trends in Anal Chem, 2006, 25(9): 848-855.
    [80] Zhou X C and Zhou J Z. Improving the signal sensitivity and photostability of DNA hybridizations on microarrays by' using dye-doped core-shell silica nanoparticles [J]. Anal. Chem, 2004, 76, 5302-5312.
    [81] 丁小斌,孙宗华,万国祥.磁性高分子微球的制备和应用研究进展[J].化学通报,1997,1:1-6.
    [82] Zaitsev V S, Filimonov DS, Presnyakov I A, et al. Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions [J]. J Colloid. Interf. Sci, 1999, 212(1): 49-57.
    [83] 景晓燕,李茹民,王鹏等.磁微球及其在生化分离分析中的应用[J].分析化学,1999,27(12):1462-1467.
    [84] 崔亚丽,李铮,房喻等.磁性微粒在核酸研究中的应用[J].西北农业大学学报,2000,28(1):80-85.
    [85] Bruce I J, Taylor J, Todd M, et al. Synthesis, characterization and application of silica-magnetite nanocomposites [J]. J. Magn. Magn. Mater, 2004, 284: 145-160.
    [86] Zhu X L, Han K, and Li GX. Magnetic nanoparticles applied in electrochemical detection of controllable DNA hybridization [J]. Anal. Chem, 2006, 78: 2447-2449.
    [87] Zhang Z, Zhang L, Chen L, et al. Synthesis of novel porous magnetic silica microspheres as adsorbents for isolation of genomic DNA [J]. Biotechnol. Prog, 2006, 22(2): 514-518.
    [88] 李林,吴家睿,李伯良.蛋白质组学的产生及其意义[J].生命科学,1999, 11(2):49-50.
    [89] Fuglsang A, Nilsson D and Nyborg N C B. Using spectrophotometry to determine in vitro turnover rates of peptides in plasma [J]. J Biochem Biophys Methods, 2004, 58(2): 139-151.
    [90] Ziemek R, Brennauer A, Erich Schneider, et al. Fluorescence and luminescencebased methods for the determination of affinity and activity of neuropeptideY2 recept or ligands [J]. Eur. J. Pharmacol., 2006, 551(1-3): 10-18.
    [91] Qi H and Zhang C. Homogeneous electrogenerated chemiluminescence immuneoassay for the determination of digoxin [J]. Anal. Chim. Acta, 2004, 501 (1): 31-35.
    [92] Dong L, Li Y, Zhang Y. A flow injection sampling resonance light scattering system for total protein determination in human serum [J]. Spectrochim. Acta, Part A: Molecular and Biomolecular Spectroscopy, 2007, 66(4-5): 1317-1322.
    [93] 黄晓峰,张远强,张英起.荧光探针技术[M].北京:人民军医出版社,2004:404-408.
    [94] Sasaki E, Kojima H, Nishimatsu H, et al. Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs [J]. J. Am. Chem. Soc, 2005, 127(11): 3684-3685.
    [95] Sun C, Yang J, Li L, et al. Advances in the study of luminescence probes for proteins [J]. J. Chromatogr. B, 2004, 803, 173-190.
    [96] 孙伟,焦奎,张书圣.酶联免疫分析法研究进展[J].青岛化工学院学报,2001,22(3):209-214.
    [97] 王庭健,林凡,赵方庆等.藻胆蛋白及其在医学中的应[J]_植物生理学通讯,2006,42(2):303-307.
    [98] 常文保,王敏灿,张柏林等.稀土螯合物探针及其在时间分辨荧光免疫分析中的应用[J].大学化学,1997,12(1):1-6.
    [99] 蔡军,陈凤英,梁玉等.时间分辨荧光免疫分析测定血清甲胎蛋白[J].医药论坛杂志,2005,26(20):42-44.
    [100] 朱艳冰,李庆阁,王桂兰等.新型铕络合物用于HBsAg的时间分辨荧光免疫检测[J].标记免疫分析与临床,2002,9(3):157-160.
    [101] 付志英,李朝辉,何晓晓.水溶性量子点荧光探针用于胃癌细胞相关抗原CA242的检测[J].分析化学,34(12):1669-1673.
    [102] Wang LY, Zhou Y Y, Wang L, et al. Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe [J]. Anal. Chim. Acta, 2002, 466: 87-92.
    [103] Chen H Q, Wang L, Wang L Y, et al . Preparation of novel cornposite nanoclusters and their application in the ultrasensitive detection of proteins [J]. Anal. Chim. Acta, 2004, 521: 9-15.
    [104] Santra S, Zhang P, Wang K, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers [J]. Anal. Chem, 2001, 73: 4988-4993.
    [105] 李朝辉,王柯敏,谭蔚泓等.硅壳包被的核壳型量子点荧光纳米颗粒的制备及其在细胞识别中的应用[J].科学通报,2005,50(13):1318-1322.
    [106] Yang W, Zhang C G, Qu H P, et al. Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays [J]. Anal.Chim.Acta, 2004, 503(2): 163-169.
    [107] Ye Z, Tan M, Wang G, et al. Preparation, characterization, and time-resolved fluorometric application of silica-coated terbium (Ⅲ) fluorescent nanoparticles [J]. Anal. Chem., 2004, 76:513-518.
    [108] Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature, 1990, 346: 818.
    [109] Tuerk C, Gold L. Systematic evoluion of ligands by exponential enrichment RNA ligands to bacteriophage T4 DNA polymerase [J]. Science, 1990, 249:505-510.
    [110] Liss M, Petersen B, Wolf H, et al. An aptamer-based quartz crystal protein biosensor [J]. Anal. Chem., 2002, 74: 4488-4495.
    [111] Ruckman J, Green L S, Beeson J, et al. 2'-fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor(VEGF165) [J]. J. Biol. Chem., 1998, 273(20):556-567.
    [112] Gold L J. Oligonucleotides as research, diagnostic, and therapeutic agents [J]. Biol. Chem., 1995, 270, 13581.
    [113] Szpechcinski A, Grzanka A. Aptamers in clinical diagnostics [J]. Postepy Biochem. 2006, 52(3): 260-70.
    [114] 汪俊,江雅新,方晓红等.核酸适体的研究及应用[J].物理,2003,32(11): 732-735.
    [115] 刘晓静,刘韧,顾长国等.核酸适体的研究进展[J].生理科学进展,2004,35(4):374-378.
    [116] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers [J]. Biosens. Bioelectron, 2005, 20(12): 2424-2434.
    [117] Proske D, Blank M, Buhmann R, et al. Aptamers—basic research, drug development, and clinical applications [J]. Appl. Microbiol. Biotechnol, 2005, 69(4): 367-374.
    [118] 郑凌.用作诊断抗体的寡核苷酸——适体[J].国外医学临床生物化学与检验学分册,2001,22(2):77-78.
    [119] Lee M, Walt D R. A fiber-optic microarray biosensor using aptamers as receptors [J]. Anal. Biochem. 2000, 282, 142-146.
    [120] McCauley T G, Hamaguchi N, and Stanton M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules [J]. Anal. Biochem, 2003, 319, 244-250.
    [121] Sparano B A. and Koide K. A strategy for the development of small molecule-based sensors that strongly fluoresce when bound to a specific RNA [J]. J. Am. Chem. Soc., 2005,127: 14954-14955.
    [122] Milan N. Stojanovic and Donald W. Landry. Aptamer-based colorimetric probe for cocaine [J]. J. Am. Chem. Soc., 2002, 124: 9678-9679.
    [123] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells [J]. Anal. Chem., 2006, 78(9):2918-2924.
    [124] 王成刚.核酸适体技术研究进展[J].生物医学工程学杂志,2006,23(2):463-466.
    [125] 黄全跃.直接凝血酶抑制剂在急性冠状动脉综合征中的应用[J].中国动脉硬化杂志,2003,11(2):175-177.
    [126] 张莹.凝血酶活性的检测及临床意义[J].微循环学杂志,2005,15(2):70-72.
    [127] Li J, Fang X and Tan W. Molecular Aptamer beacons for real-time protein recognition [J]. Biochem. Biophys. Res. Commun, 2002, 292(1): 31-40.
    [128] Hamaguchi N, Ellington A and Stanton M. Aptamer beacons for the direct detection of proteins [J]. Anal. Biochem, 2001,294(2): 126-131.与181
    [129] 徒永华,程圭芳,林莉等.基于核酸适配体的新型荧光纳米生物传感器用于凝血酶的测定[J].高等学校化学学报,2006,27(12):2266-2270.
    [130] Zhao H, Shen J, Deininger P, et al. Abasic sites and survival in resected patients with non-small cell lung cancer [J]. Cancer Lett, 2007, 246: 47-53.
    [131] 高秀丽,景奉香,杨剑波.单核苷酸多态性检测分析技术[J].遗传,2005,27(1):110-122.
    [132] Petersena K, Vogelb U, Rockenbauerc E, et al. Short PNA molecular beacons for real-time PCR allelic discrimination of single nucleotide polymorphisms [J]. Mol. Cell. Probes, 2004, 18:117-122.
    [133] Gerion D, Chen F, Kannan B, et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays [J]. Anal. Chem, 2003, 75: 4766-4772.
    [134] Li Y, Wark A W, Lee H J. Single-nucleotide polymorphism genotyping by nano particle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions [J]. Anal. Chem, 2006, 78:3158-3164.
    [135] Nishizawa S, Sankaran N B, Seino T. Use of vitamin B2 for fluorescence detection of thymidine-related single-nucleotide polymorphisms [J]. Anal. Chim. Acta, 2006, 556: 133-139.
    [136] Christodoulides N, Tran M, Floriano P N. A microchip-based multianalyte assay system fort he assessmen to fcardiac risk [J]. Anal. Chem, 2002, 74(13): 3030-3036.
    [137] 何晓晓,王柯敏,谭蔚泓等.基于氨基化SiO_2纳米颗粒的新型基因载体[J]. 科学通报,2002,47(18):1365-1370.
    [138] Gill R, Willner I, Shweky I, et al. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage [J]. J. Phys. Chem. B 2005, 109: 23715-23719.
    [139] Russ Algar W, Krull U J. Towards multi-colour strategies for the detection of. oligo nucleotide hybridization using quantum dots as energy donors in fluorescence reso -nance energy transfer (FRET) [J]. Anal.Chim. Acta, 2007,581, 193-201.
    [140] Kim J H, Morikis D and Ozkan M. Adaptation of inorganic quantum dots for stable molecular beacons [J]. Sens. Actuators, B: Chemical, 2004, 102(2): 315-319.
    [141] Robelek R, Niu L, Schmid E L, et al. Multiplexed hybridization detection of quantum dot-conjugated DNA sequences using surface plasmon enhanced fluo rescence microscopy and spectrometry [J]. Anal. Chem, 2004, 76(20): 6160-6165.
    [142] 钟萍,俞英,陈波等.量子点的合成及在生物分析中的应用[J].化学试剂,2005,27(11):657-661.
    [143] 原茵,何晓晓,王柯敏.嵌合异硫氰酸罗丹明B核壳荧光纳米颗粒制备的新方法研究[J].高等学校化学学报,2005,26(3):446-448.
    [144] Wang L, Yang C, and Tan W. Dual-luminophore-doped silica nanoparticles for multiplexed signaling [J]. Nano Lett, 2005, 5(1): 37-43.
    [145] Zhao X, Bagwe R P, Tan W. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion [J]. Adv. Mater., 2004, 16(2):173-176.
    [146] Wang L and Tan W. Multicolor FRET silica nanoparticles by single wavelength excitation [J]. Nano Lett, 2006, 6(1): 84-88.
    [147] Zhao X, Tapec-Dytioco R, and Tan W. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles [J]. J. Am. Chem. Sot., 2003, 125(38): 11474-11475.
    [148] 徐辉,张国亮,张凤宝.免疫磁性微球的研究进展[J].化学工业与工程,2003,20(1):127-32.
    [149] Wang J,Xu D,Polsky R.Magnetically-induced solid-state electrochemical detection of DNA hybridization[J].J.Am.Chem.Soc.,2002,124,4208-4209.
    [150] 向艳,夏劲松.靶向药物治疗肿瘤的现状及关键技术[J].中国肿瘤,2002,11(5):289-292.
    [151] Bagwe R P, Yang C, Hilliard L R, et al. Optimization of dye-doped silica nano particles prepared using a reverse microemulsion method [J]. Langmuir, 2004, 20: 8336-8342.
    [152] 梁建功,宋春华,何治柯.pH荧光纳米传感器的研制及表征[J].分析化学研究简报,2005,33(8):1119-1121.
    [153] 苏婧,惠文利,王兰英等.功能化磁性微粒的合成及表面巯基的测定[J].西北大学学报,2006,36(1):59-62.
    [154] 漆红兰,磁性微粒的制备方法和研究进展[J].生命的化学,2002,22(6): 586-589.
    [155] 严向阳,刘端,崔亚丽.功能化磁性微粒的合成与表征[J].陕西师范大学学报,2005,33(2):69-73.
    [156] 娄敏毅,王德平,黄文日等.偶联剂修饰纳米磁性微球的制备及其表征[J].上海生物医学工程,2004,25(3):14-19.
    [157] 王继贵.临床生化检验(第二版)[M].长沙:湖南科技出版社,1996:487.
    [158] 陈鸿琪,蛋白质定量分析的进展[J].理化检验-化学分册,2000,36(7): 333-335.
    [159] Wei Q, Li Y Y, Li Y, et al. Rapid and highly sensitive determination of trace proteins using dibromomethyl carboxyazo-Pb(Ⅱ) complex as a spectroscopic reagent [J]. Clin Chim Acta, 2005, 362(1-2): 79-84.
    [160] Wu X, Zheng J H, Guo C Y, et al. Determination of albumins by its quenching effect on the fluorescence of Tb~(3+)-oxolinic acid complex in presence of sodium dodecyl sulphate [J]. J. Luminescence., 2007, 126(1):171-176.
    [161] Zhong H, Li N, Zhao F L. Determination of proteins with Alizarin RedS by Rayleigh light scattering technique [J]. Talanta, 2004, 62(1): 37-42.
    [162] Zarghi A, Foroutan S M, Shafaati A, et al. Quantification of carvedilol in human plasma by liquid chromatography using fluorescence detection: Application in pharmacokinetic studies [J]. J Pharm Biomed Anal, 2007, 44(1): 250-253.
    [163] Kulka S, Quintas G, Lendl B. On-line capillary electrophoresis FTIR detection for the separation and characterization of proteins [J]. Vib. Spectrosc, 2006, 42(1): 392-396.
    [164] Brody E N, Gold L. Aptamers as therapeutic and diagnostic agents [J]. Rev. Mol. Biotechnol., 2000, 74: 5-13.
    [165] Bunka D H J, Stockley P G. Aptamers come of age-at last [J]. Nat. Revs. Microbiol, 2006, 4, 588-596.
    [166] Juskowiak B. Analytical potential of the quadruplex DNA-based FRET probes [J]. Anal. Chim. Acta, 2006, 568: 171-180.
    [167] Guthrie J V W, Camille L A. Assays for cytokines using aptamers [J]. Methods, 2006, 38: 324 - 330.
    [168] Ozaki H, Nishihira A, Wakabayashi M,et al. Biomolecular sensor based on fluorescence-labeled aptamer [J]. Bioorg Med Chem Lett Letters 2006, 16(16): 4381-4384.
    [169] Nutiu R, Li Y F. Structure-switching signaling aptamers [J]. J. Am. Chem. Soc, 2003,125:4771-4778.
    [170] Tombelli S, Minunni M, Luzi E, et al. Aptamer-based biosensors for the detection of HIV-1 Tat protein [J]. Bioelectrochem, 2005, 67(2): 135-141.
    [171] Cai H, Lee T M H, Hsing I M. Label-free protein recognition using an aptamer -based impedance measurement assay [J]. Sens. Actuators.B, 2006,114: 433-437.
    [172] Dwarakanath S, Bruno J G, Shastry A, et al. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria [J]. Biochem Biophys Res Commun, 2004, 325: 739-743.
    [173] Chu T C, Shieh F, Lavery L A, et al. Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates [J]. Biosens Bioelectron, 2006, 21(10): 1859-1866.
    [174] Ozaki H, Nishihira A, Wakabayashi M, et al. Biomolecular sensor based on fluorescence-labeled aptamer [J]. Bioorg Med Chem Lett, 2006,16: 4381-4384.
    [175] Juskowiak B. Analytical potential of the quadruplex DNA-based FRET probes [J]. Anal. Chim. Acta, 2006, 568: 171-180.
    [176] Nutiu R, Li Y F. Aptamers with fuorescence-signaling properties [J]. Methods, 2005,37: 16-25.
    [177] Yamana K, Ohtani Y, Nakano H, et al. Bis-pyrene labeled DNA aptamer as an intelligent fluorescent biosensor [J]. Bioorg Med Chem Lett, 2003, 13(20): 3429 - 3431.
    [178] Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins [J]. Anal. Biochem, 2001, 294: 126-131.
    [179] Levy M, Cater S F and Ellington A D. Quantum-dot aptamer beacons for the detection of proteins [J]. Chem BioChem, 2005, 6: 2163-2166.
    [180] Wang X L, Li F, Su Y H, et al. Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay [J]. Anal. Chem., 2004, 76(19): 5605-5610.
    [181] Li B L, Wei H, Dong S J. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch [J]. Chem. Commun, 2007, 73-75.
    [182] Jiang Y X, Fang X H, Bai C L. Signaling aptamer/protein binding by a molecular light switch complex [J]. Anal. Chem, 2004,76(17): 5230-5235.
    [183] Yoshimoto K, Nishizawa S, Teramae N. Use of abasic site-containing DNA strands for nucleobase recognition in water [J]. J. Am. Chem. Soc, 2003, 125: 8982-8983.
    [184] Yoshimoto K, Xu C Y, Nishizawa S, et al. Fluorescence detection of guanine-adenine transition by a hydrogen bond forming small compound [J]. Chem. Commun, 2003,2960-2961.
    [185] Yoshimoto K, Teramae N. Abasic-site-containing oligode oxynucleotides as aptamers for riboflavin [J]. Angew. Chem. Int. Ed. 2006,45: 1563-1568.
    [186] Zhao C, Dai Q, Seino T. et al. Strong and selective binding of amiloride to thymine base opposite AP sites in DNA duplexes: simultaneous binding to DNA phosphate backbone [J]. Chem.Commun, 2006, 1185-1187.
    [187] Lee M, Walt D R. A fiber-optic microarray biosensor using aptamers as receptors [J]. Anal. Biochem, 2000, 282(1): 142-146.
    [188] Ho H A, Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes [J]. J. Am. Chem. Soc, 2004,126: 1384-1387.
    [189] Hianik T, Ostatna V, Sonlajtnerova M, et al. Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin [J]. Bioelectrochem, 2007,70(1): 127-133.
    [190] Seio K, Sasami T, Ohkubo A, et al. Highly selective recognition of cytosine over uracil and adenine by a guanine analogue, 2-N-Acetyl-3-deazagu-anine, in 2'-O-methyl-RNA/RNA and DNA duplexes [J]. J. Am. Chem. Soc, 2007, 129: 1026-1027.
    [191] Inouye M, Takase M. Specific binding and separation of dinucleotides by ferrocene-modified artificial receptors [J]. Angew. Chem., Int. Ed. 2001, 40: 1746-1748.
    [192] Rotrllo V M, Vianik E A, Deslongchamps G, et al. Molecular recognition in water: new receptors for adenine derivatives [J]. J. Am. Chem. Soc., 1993, 115(2): 797-798.
    [193] 汪治清,佟玉品,杨新科.Aptamer核酸药物的研究进展[J].中华实验和临床病毒学杂志,2002,16(3):295-298.
    [194] Spiridonova V A, Rog E V, Dugina T N, et al. Aptamer DNA-a new type of thrombin inhibitor [J]. Bioorg Khim, 2003, 29(5):495-498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700