高铁酸盐、DNA传感器的绿色分析化学方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为当今国际化学学科研究的前沿,绿色化学受到了广泛重视。绿色分析化学是绿色化学的重要组成部分,它是把绿色化学的原理应用在新的分析方法中,旨在减轻分析化学对环境的影响。今后绿色分析化学发展的主要方向将是建立无污染或少污染的分析化学方法,从而满足可持续发展的要求。本文着重介绍了高铁酸盐以及电化学DNA传感器的绿色分析化学方法研究,主要研究内容和结果如下:
     (1)基于高铁酸盐可以氧化鲁米诺发光这一特性,建立了一种新型、快速、环境友好的在线监测高铁酸盐溶液稳定性的方法——流动注射–化学发光分析法。研究了温度、溶液pH值、添加剂对高铁酸盐溶液稳定性的影响。实验结果表明低温和高碱度是保持高铁酸盐溶液稳定的关键因素。硅酸钠和碘化钾作为添加剂有助于提高高铁酸盐的产率和稳定性;氯化钠对高铁酸盐溶液有加速分解的作用。
     (2)实验建立了一种新型的快速处理阳极表面钝化膜的方法——草酸浸泡法用于提高高铁酸盐的产率。通过SEM和XPS分别对电极的表面的形貌和化学成分进行了分析。和阴极极化法相比,草酸浸泡法具有较高的阳极钝化膜去除效率,且去除后的电极表面呈现疏松的多孔结构,有利于提高高铁酸盐电化学合成产率。另外,实验采用流动注射-化学发光分析法研究了草酸浸泡处理后的铁阳极电解制备高铁酸盐溶液的稳定性和重现性。实验结果表明在低温下高铁酸盐溶液具有较好的稳定性,且6次重复电解所得的高铁酸盐溶液化学发光信号重现性较好,其相对标准偏差为2.41%。
     (3)实验在低浓度NaOH条件下成功合成了高铁酸盐溶液。在0±1oC下,高铁酸盐溶液能在较长时间内保持相对稳定。基于此,实验选取鲁米诺为研究对象,验证了低浓度NaOH条件下电解合成的高铁酸盐溶液用于流动注射-化学发光技术的可行性。在优化条件下,鲁米诺的线性范围为5.0×10~(-9) ~ 1.0×10~(-6) mol/L;检测限为(S/N = 3) 2.5×10~(-9) mol/L;对3.0×10-7 mol/L的鲁米诺进行6次平行测定的相对标准偏差(RSD)为2.57%。
     (4)研究了低浓度NaOH条件下电解制备高铁酸盐溶液直接用于流动注射-化学发光检测的新方法。基于无机离子、有机分子和生物分子对鲁米诺–高铁酸盐化学发光反应的增敏作用,该方法成功实现了对V(V)、Ca(II)、Mg(II)、间苯三酚和牛血红蛋白的分析测定。在优化实验条件下,V(V)、Ca(II)、Mg(II)、间苯三酚和牛血红蛋白的检测限(S/N = 3)分别为1.96×10~(-10) mol/L,1.25×10~(-9) mol/L,1.67×10~(-7) mol/L,1.00×10~(-8) mol/L,1.24×10~(-12) mol/L。对3.92×10~(-9) mol/L V(V),1.25×10~(-7) mol/L Ca(II),4.17×10~(-5) mol/L Mg(II),2.00×10~(-7) mol/L间苯三酚和3.10×10~(-9) mol/L牛血红蛋白进行6次测定的相对标准偏差分别为2.63%, 2.38%, 1.32%, 0.72 %和2.74%。
     (5)研究了低浓度NaOH条件下电解制备高铁酸盐溶液直接用于毛细管电泳-化学发光检测的新方法。实验选取8-羟基喹啉为检测对象,在优化条件下,其的线性范围为5.0×10~(-10) ~ 5.0×10~(-8) mol/L (R~2 = 0.997);检测限为(S/N = 3) 5.0×10~(-10) mol/L;对2.5×10~(-9) mol/L的8-羟基喹啉进行5次平行测定的相对标准偏差(RSD)为1.43%。
     (6)研制出了一种新型的磁性金电极,该电极具有诸多优良特性,比如具有良好的导电性,温和的磁场强度,耐用,操作简单,能快速将DNA标记的磁珠富集到电极表面。基于该电极的DNA电化学传感器成功用于DNA杂交的检测。首先,巯基修饰的探针DNA自组装到金磁纳米珠表面;目标DNA与捕获探针杂交,并选用亚甲基蓝为杂交指示剂;随后,捕获探针与目标DNA的双链复合物修饰的金磁纳米珠被富集到磁电极表面进行电化学检测。构造的传感器检测完全互补的目标DNA的线性范围在0.3 ~ 300 nM,检测限为0.1 nM。另外,该传感器还具有良好的选择性。
Green chemistry is a frontier area of chemistry, which has attracted abroad attention. Green analytical chemistry plays an important role in green chemistry. The goal of green analytical chemistry is to use analytical procedures that are safe to environmental. This may be achieved by developing new analytical methodologies that are more environmental friendly. The present study was therefore designed to research on the green analytical chemistry methods of ferrate(VI) and DNA biosensor. The detailed contents are described as follows.
     (1) Based on the homogeneous chemiluminescence (CL) reaction of luminol oxidized by ferrate(VI), a novel, convenient, environmental friendly, on-line monitoring method was developed to investigate the stability of ferrate(VI) solution. The effects of temperature, pH, additives on the stability of ferrate(VI) solution were traced by flow injection–chemiluminescence (FI–CL) method. It was found that the lowe storage temperature and high pH were the key factors for the stability of ferrate(VI) solution. Na2SiO3 and KI could enhance the synthesis efficiency and the stability of ferrate(VI) solution; NaCl could catalyze the decomposition of ferrate(VI) solution.
     (2) A convenient anodic pretreatment was established based on the possibility of dissolution of passivation using oxalic acid. Then, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) examinations were used to examine the structure and composition of anode surface, respectively. The high removal efficiency of passivation and the formation of porous structure on anode surface could be observed. These led to significant enhancement of the ferrate(VI) synthesis efficiency. The characteristics of ferrate(VI) solution such as stability and reproducibility were studied by FI–CL method based on the CL reaction of ferrate(VI)–luminol. The CL signal was stable for a week. The relative standard deviation (RSD) was 2.41% for six runs of electrolysis.
     (3) It was found ferrate(VI) could be successfully electrogenerated in low-concentration NaOH solution for direct analytical application. The characteristic of ferrate(VI) solution is relatively stable at 0±1oC. Luminol chosen as samples was detected by FI–CL method. The detailed analysis and testing revealed that luminol showed a linear CL response in the concentration range of 5.0×10~(-9) ~ 1.0×10~(-6) mol/L (R~2 = 0.9964), with a detection limit (S/N = 3) of 2.5×10~(-9) mol/L. The RSD for 6 repeated measurements of 3.0×10~(-7) mol/L luminol was 2.57%.
     (4) The possibility of direct analytical applications of ferrate(VI) solution, which was freshly electrogenerated in low-concentration NaOH electrolyte, was studied by a FI–CL system. It was found that some inorganic ions, organic molecule and biomolecule could enhance the chemiluminescence emission caused by ferrate(VI)–luminol reaction. V(V), Ca(II), Mg(II), phloroglucinol, and bovine hemoglobin (Hb) chosen as samples were successfully detected by this developed method. The analytical characteristics of the system for the analytes determination including linear ranges, correlation coefficients, limits of detection combined with FI analysis were studied. The limits of detection for V(V), Ca(II), Mg(II), phloroglucinol and Hb were 1.96×10~(-10), 1.25×10~(-9), 1.67×10~(-7), 1.00×10~(-8), and 1.24×10~(-12) mol/L, respectively. The RSD for six repeated measurements of 3.92×10~(-9), 1.25×10~(-7), 4.17×10~(-5), 2.00×10~(-7) and 3.10×10~(-9) mol/L of V(V), Ca(II), Mg(II), phloroglucinol and Hb were 2.63, 2.38, 1.32, 0.72 and 2.74% , respectively.
     (5) A novel, eco-friendly, and stable homogeneous luminescent system for capillary zone electrophoresis (CE) detection was established, based on the CL flash caused by mixing ferrate(VI) with luminol solution. To test this CL system, 8-hydroxyquinoline (HQ) was chosen as a modal sample by CE detection. The detailed analysis and testing revealed that HQ showed a linear CL response in the concentration range of 5.0×10~(-10) ~ 5.0×10~(-8) mol/L (R~2 = 0.997), with a detection limit (S/N = 3) of 5.0×10~(-10) mol/L. For 2.5×10~(-9) mol/L HQ, when the repeated injections were performed with the same run of electrolyzed ferrate(VI), the RSD of peak height was 1.43% (n = 5).
     (6) A simple method was proposed to prepare magnetic gold electrodes for DNA hybridization detection. The magnetic gold electrodes displayed several excellent performances such as good electrical conductivity, moderate magnetic field intensity, easy to capture and enrich probe-magnetic beads onto the electrode surface, robust and simple to operate. A thiolated capture probe DNA was self-assembled on gold magnetic nanobeads (GMNBs) by gold-sufur affinity. The probe DNA-GMNBs selectively hybridized with the target DNA. Methylene blue (Mb) was then used as the electrochemical intercalator to indicate DNA hybridization. The target DNA/probe DNA/GMNBs were enriched onto the electrode surface for detection. The peak current of Mb linearly decreased with the concentration of the complementary target DNA over a range from 0.3 to 300 nM with a detection limit of 0.1 nM. Furthermore, the selectivity of this biosensor for DNA hybridization was successfully examined.
引文
[1] Anastas P T. Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem., 1999, 29(3): 167~175
    [2] Anastas P T, Warner J C. Green chemistry: theory and practice. Oxford University Press: New York, 1998
    [3] Hutchings G J. A golden future for green chemistry. Catal. Today, 2007, 122(8): 196~200
    [4] Mukesh D, Kruthivent A K. Catalysis and green chemistry. Green Chem. Eng., 2007, 30(2): 53~67
    [5] Anastas P T. Green chemistry and the role of analytical methodology development. Crit. Rev. Anal. Chem., 1999, 29(3): 167~175
    [6] Namiesnik J. Green analytical chemistry-some remarks. J. Sep. Sci., 2001, 24(2): 151~153
    [7] Abu-Samara A, Morris J S, Koirtyohann S R. Wet ashing of some biological samples in a microwave oven. Anal. Chem., 1975, 47(5): 1475~1477
    [8] Jin Q H, Liang F, Zhang H J, et al. Application of microwave techniques in analytical chemistry. Trend. Anal. Chem., 1999, 18(7): 479~484
    [9] Barriada-Pereira M, Gonzalez-Castro M J, Muniategui-Lorenzo S, et al. Comparison of pressurized liquid extraction and microwave assisted extraction for the determination of organochlorine pesticides in vegetables. Talanta, 2007, 71(3): 1345~1351
    [10] Lucchesi M E, Chemat F, Smadja J. Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J. Chromatogr. A, 2004, 1043(2): 323~327
    [11] Lopez-Avila V. Sample preparation for environmental analysis. Crit. Rev. Analytical Chem., 1999, 29(3): 195~230
    [12] Arthur C L, Pawliszyn J. Solid phase micro-extraction with thermal desorption using fused silica optical fibers. Anal. Chem., 1990, 62(19): 2145~2148
    [13] Pawliszyn J. New directions of sample preparation for analysis of organic compounds. Trend. Anal. Chem., 1995, 14(2): 113~122
    [14] Penalver A, Pocurull E, Borrull F, et al. Trends in solid-phase micro-extraction determing organic pollutants in environmental samples. Trend. Anal. Chem., 1999, 18(8): 557~568
    [15] Zhang Y Z, Pawliszyn J. Sampling volatile organic compounds using a modified solid phase mictoextraction device. J. High Res. Chrom., 1996, 19(3): 155~160
    [16] Young R, Lopez A V, Beckert W F. On-line determination of organochlorine pesticides in water by solid phase microextraction and gas chromatography with electron capture detection. J. High Res. Chrom., 1996, 19(3): 247~256
    [17] Gorecki T, Yu X M, Pawliszyn J. Theory of analyze extraction by selected porous polymer SPME fibers. Analyst, 1999, 124(5): 643~649
    [18] Wrobel K, Kannamkumarath S, Wrobel K, Caruso J A. Environmentally friendly sample treatment for speciation analysis by hyphenated techniques. Green Chem., 2003, 5(2): 250~259
    [19] Jakubowska N, Polkowska Z, Namiesnik J, et al. Applications of membrane extraction for biomedical and environmental liquid sample preparation. Crit. Rev. Anal. Chem., 2005, 35(3): 217~235
    [20] Mosetlha K, Torto N, Wibetoe G. Determination of Cu and Ni in plants by microdialysis sampling: comparison of dialyzable metal fractions with total content. Talanta, 71(2): 766-770
    [21] Miro M, Frensel W. Implantable flow-through capillary-type microdialyzers for continuous in situ monitoring of environmentally relevant parameters. Anal. Chem., 2004, 76(19): 5974~5981
    [22] Hauser B, Schellin M, Popp P. Membrane-assisted solvent extraction of triazines, organochlorine, and organophosphorus compounds in complex samples combined with large volume injection-gas chromatography/mass spectrometric detection. Anal. Chem., 2004, 76(20): 6029~6038
    [23] Watanabe H, Tanaka H. A nonionic surfactant as new solvent for liquid-liquid extraction of zinc (II) with 1-(2-pyridylazo)-2-napthol. Talanta, 1978, 25(10): 585~589
    [24] San-Andres M P, Marina M L, Vera S. Spectrophotometric determination of copper(II), nickel(II), and cobalt(II) as complexes with sodium diethyldithiocarbamate in the anionic micellar media of dodecylsulfate salts. Analyst, 1995, 120(2): 255~259
    [25]黄焱,秦炜,柳鹤,等.非等离子表面活性剂C12E10的浊点分相行为及其应用.化工学报, 2007, 58(5): 1253~1258
    [26] Bezerra M A, Arruda M A, Ferreira S C L. Cloud point extraction as a procedure of separation and preconcentration for metal determination using spectroanalytical techniques. Appl. Spectrochem. Rev., 2005, 40(4): 269~299
    [27]俞琛捷,马宏佳,周志华.超临界流体技术的应用研究进展.化学世界, 2007, 13(2): 118~120
    [28] Tajuddin R, Smith R M. On-line coupled extraction and separation using superheated water for the analysis of triazine herbicides in spiked compost samples. J. Chromatogr. A, 2005, 1084(1-2): 194~200
    [29] Rodil R, Popp R. Development of pressurized subcritical water extraction combined with stir bar sorptive extraction for the analysis of organochlorine pesticides and chlorobenzenes in soils. J. Chromatogr. A, 2006, 1124(1-2): 82~90
    [30] Hallett J P, Kitchens C L, Hernandez R, et al. Probing the Cybotactic Region in Gas-Expanded Liquids (GXLs). Acc. Chem. Res. 2006, 39(8): 531~538
    [31] Bellor A, Lichtenberg J J. The determination of volatile organic compounds in water at theμg/L level in water by gas chromatography. J. Amer. Water Works Ass., 1974, 66(12): 739~744
    [32]张莘民.吹扫-捕集发在挥发性有机污染物分析中的应用.环境污染治理技术与设备, 2002, 3(11): 31~37
    [33] Gervain J, Mehler J, Werker J F, et al. Near-infrared spectroscopy: a report from the mcdonnell infant methodology consortium. Dev. Cognitive Neurosci., 2011, 1(1): 22~46
    [34] Osborne B G. Applications of near infrared spectroscopy in quality screening of early-generation materials in cereal breeding programmes. J. Near Infrared Spec., 2006, 14(2): 93~101
    [35] Ruzicka J, Hansen E H. Flow injection analysis. Part I. A new concept of fast continuous flow analysis. Anal. Chim. Acta, 1975, 78(1): 145~157
    [36] Song Z, Hou S, Zhang N. J. A green analytical procedure for monitoring sub-nanogram amounts of chlorpyrifos on fruits using flow injection chemiluminescence with immobilized reagents. J. Agric. Food Chem., 2002, 50(16):4468~4474
    [37] Rocha F R P, Nobrega J A, Fatibello-Filho O. Flow analysis strategies to greener analytical chemistry. Green Chem., 2001, 3(5): 216~220
    [38] Hjerten S. High-performance electrophoresis: the electrophoretic counterpart of high-performance liquid chromatography. J Chromatogr., 1983, 271(1): 1~6
    [39] Huang X Y, Ren J C. Chemiluminescence detection for capillary electrophoresis and microchip capillary electrophoresis. Trends Anal. Chem., 2006, 25(2): 155~166
    [40] Garcia-Campana A M, Lara F J. Trends in the analytical applications of chemiluminescence in the liquid phase. Anal. Bioanal. Chem., 2007, 387(1): 155~166
    [41]陈义.毛细管电泳理论探索(第一版).北京:华文出版社, 2001: 2
    [42] Mao W. Headspace gas chromatography determination of residual organic solvents in bupropion bydrochloride. Chin. J. Pharm. Anal., 2007, 27(2): 292~293
    [43] Portari G V, Marchini J S, Jordao A A. Science, 2008, 39(1): 42~45
    [44]中华人民共和国卫生部卫生法制与监督司.生活饮用水卫生规范, 2001
    [45] GB/T 5009. 37-2003.食用植物油卫生标准的分析方法
    [46] GB/T 5009. 67-2003.食品包装用聚氯乙烯成型品的卫生标准的分析方法
    [47] Graber N, Ludi H, Widmer H M. The use of chemical sensors in industry. Sens. Actuator B, 1990, 1(1): 239~243
    [48] Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuator B, 1990, 1(1): 244~248
    [49]方肇伦.微流控分析芯片发展与展望.大学化学, 2001, 16(2): 1~6
    [50] Zhu Y F, Shi J J, Zhang Z Y, et al. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Anal. Chem., 2002, 74(1): 120~124
    [51] Na N, Zhang S C, Wang S, et al. A catalytic nanomaterial based optical chemo-sensor array. J. Am. Chem. Soc., 2006, 128(45): 14420~14421
    [52]张先恩.生物传感器.北京:化学工业出版社, 2005: 35~43
    [53] Thevenot D R, Toth K, Durst R A, et al. Electrochemical biosensors: recommended definitions and classification. Biosens. Bioelectron., 2001, 16(1-2): 121~131
    [54]藤岛昭,相泽益男,井上彻.电化学测定方法.北京:化学工业出版社, 1984: 65~70
    [55] Ettel V, Veprek-Siska J. Reaction of very pure substances decomposition of ferrates in alkaline solutions. Collect. Czech. Chem. Commum., 1969, 34(12): 2182~2188
    [56] Bouzek K, Schmidt M J, Wragg A A. Influence of anode material composition on the stability of electrochemically-prepared ferrate(VI) solution. J. Chem. Technol. Biotechnol., 1999, 74(12): 1188~1194
    [57] Licht S, Wang B H, Xu G, et al. Solid phase modifiers of the Fe(VI) cathode: effects on the super-iron battery. Electrochem. Commun., 1999, 1(11): 527~531
    [58]李国亭,贾汉东,杨新玲,等.高铁酸盐(VI)的直接分光光度法测定.分析科学学报, 2004, 20(4): 446~447
    [59] Audette R J, Quail J W. Potassium, rubidium, cesium, and barium ferrate preparation, infrared spectra, and magnetic susceptibilities. Inorg. Chem., 1972, 11(8): 1904~1908
    [60] Kopelev N S, Perfiliev Y D, Kiselev Y M. Moessbauer study of sadium ferrate(IV) and (VI). J. Radioanal. Nucl. Chem., 1992, 162(2): 235~251
    [61] Wood R H. The beat, free energy and entropy of the ferrate(VI) ion. J. Am. Chem. Soc., 1958, 80(9): 2038~2041
    [62] Koninck M D, Belanger D. The electrochemical generation of ferrate at pressed iron powder electrode: comparison with a foil electrode. Electrochim. Acta, 2003, 48(10): 1435~1442
    [63] Huang H, Sommerfeld D, Dunn B C, et al. Ferrate(VI) oxidation of aniline. J. Chem. Soc., Dalton Trans., 2001. 1301~1305
    [64] Sharma V K. Potassium ferrate(VI): an environmentally friendly oxidant. Adv. Environ. Res., 2002, 6(2): 143~156
    [65] Murshed M, Rockstraw D A, Hanson A T, et al. Rapid oxidation of sulfide mine tailings by reaction with potassium ferrate. Environ. Pollut., 2003, 125 (2): 245~253
    [66] Yang W H, Wang J M, Zhang Z B, et al. Studies on the electrode characteristics of K2FeO4 electrode. Chinese Chem. Lett., 2002, 13(8): 761~764
    [67] Stuart B, Wang S, Gosh J L, et al. Insoluble Fe(VI) compounds: effects on thesuper-iron battery. Electrochem. Commun., 1999, 1(11): 522~526
    [68] Licht S, Wang B H, Ghosh S, et al. Enhanced Fe(VI) cathode conductance and charge transfer: effects on the superiron battery. Electrochem. Commun., 2000, 2(7): 535~540
    [69] Jia Q J, Lloyd B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res., 2001, 36(2): 134~156
    [70] Graham N, Jiang C C, Li X Z, et al. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere, 2004, 56(10): 949~956
    [71] Lee Y, Um I H, Yoon J. Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ. Sci. Technol., 2003, 37(24): 5750~5756
    [72] Sharma V K. Potassium ferrate(VI): an environmentally friendly oxidant. Water Res., 2002, 36(6): 1397~1408
    [73] Ma J, Liu W. Effectiveness and mechanism of potassium ferrate(VI) preoxidation for algae removal coagulation. Water Research, 2002, 36(4): 871~878
    [74] Ernst T, Wawrzenczyk M, Cyfert M, et al. Effect of pH on the kinetics of ferrate(VI) decomposition. Bull. Acad. Poc. Sci. Ser. Sci. Chim., 1979, 27(10): 773~778
    [75] Schreyer J M, Thompson G W, Ockerman L T. Oxidation of chromium(III) with potassium ferrate(VI). Anal. Chem., 1950, 22(11): 1426~1427
    [76] Lee Y H, Cho M, Kim J Y, et al. Chemistry of ferrate (Fe(VI)) in aqueous solution and its applications as a green chemical. J. Ind. Eng. Chem., 1918, 10(1): 161~171
    [77] Stupin D Y, Gusev Y K, Lachkova D V. Generation of an oscillating chemical reaction in a heterogeneous system by the oxidation of an alkaline solution of luminol with sodium(VI) ferrate in the presence of copper ions. Russ. Chem. B+, 2001, 50(1): 159~160
    [78] Bouzek K, Rousar I. Ferrate(VI) production by anodic iron dissolution part III: Current efficiency during anodic dissolution of pure iron to ferrate(VI) in concentrated alkali hydroxide solutions. J. Appl. Electrochem., 1997, 27(6): 679~684
    [79] Robert H W. The heat, free energy and entropy of the ferrate(VI) ion. J. Am. Chem.Soc., 1958, 80(9): 2038~2041
    [80]曲久辉.高铁酸盐的多功能水处理效果及其应用展望.中国给水排水, 1997, 13(3): 21~24
    [81] Thompsom J A. Process for producing alkali metal ferrates. US 4385045, 1983/1981
    [82] Thompsom J A. Process for producing alkali metal ferrates utilizing hematite and magnetite. US 4545947, 1985/1984
    [83] Lionel D, Pierre L. A novel oxidizing reagent based on potassium ferrate(VI). J. Org. Chem., 1996, 61(18): 6360~6370
    [84] Deininger J P. Process for preparaing potassium ferrate (K2FeO4). US 4405573, 1983/1981
    [85] Deininger J P. Process for producing ferrate employing beta-ferric oxide. US 5202108, 1993/1990
    [86] Deininger J P. Process for producing ferrate employing beta-ferric oxide. US 5217584, 1993/1990
    [87] Kochanny G L, Timnick A. Ferrate(VI) formation by hydrogen peroxide in presence of ethylenediaminetetraacetate. J. Am. Chem. Soc., 1961, 83(12): 2777~2778
    [88] Michael D. Method for synthesizing ferrate and ferrate produced thereby. US 5746994, 1998/1996
    [89] Evrard O J. Alkali or alkaline earth metal ferrates, their preparation and their industrial applications. US 5284642, 1994/1992
    [90] Bouzek K, Rousar I. Current efficiency during anodic dissolution of iron to ferrate(VI) in concentrated alkali hydroxide solutions. J. Appl. Electrochem., 1993, 23(12): 1317~1322
    [91] Denvir A, Pletcher D. Electrochemical generation of ferrate, Part I: Dissolution of an iron wool bed anode. J. Appl. Electrochem., 1996, 26(8): 815~822
    [92] Denvir A, Pletcher D. Electrochemical generation of ferrate, Part II: Influence of anode composition. J. Appl. Electrochem., 1996, 26(8): 823~827
    [93] Bouzek K, Rousar I, Bergman H, et al. The cyclic voltammetric study of ferrate(VI) production. J. Ectroanal. Chem., 1997, 425(1-2): 125~137
    [94] Venkatadri A S, Bauer H H, Wagner W F. Potentiostatic anodic synthesis of ferrate(VI). J. Electrochem. Soc., 1974, 121(2): 249~250
    [95] Bouzek K, Rousar I. Current efficiency during anodic dissolution of gray cast iron to ferrate(VI) in concentrated alkali hydroxide solutions. J. Appl. Electrochem., 1996, 26(9): 919~923
    [96] Bouzek K, Rousar I. Current efficiency during anodic dissolution of pure iron to ferrate(VI) in concentrated alkali hydroxide solutions. J. Appl. Electrochem., 1997, 27(6): 679~684
    [97] Bouzek K, Rousar I. Electrochemical production of ferrate(VI) using alternating current superimposed on the direct current: gray and white cast iron electrodes. Electrochim. Acta, 1998, 44(4): 547~557
    [98] Licht S, Tel-Vered R, Halperin L. Direct electrochemical preparation of solid Fe(VI) ferrate, and super-iron battery compounds. Electrochem. Commun., 2002, 4(11): 933~937
    [99] Stah G. Opuuscutum chymico-physico medicum. Nuremberg: Halae-Magdeburgiae, 1715: 742~742
    [100] Fremy E C R. Preparation of potassium ferrate(VI) in alkaline solutions. Acad. Sci. Paris, 1841, 12(1): 23~27
    [101] Liu Y C, Xie J L. Electrochemical preparation of sodium ferrate(VI) using silicon ion as anode in non-diaphragm electrobath. J. Sichuan Univ. (Natural Science Edition), 2004, 41(2): 373~378
    [102] Francois L. Direct electrochemical preparation of solid potassium ferrate. Electrochem. Commun., 2002, 4(9): 764~766
    [103] Shiota Y, Kihara N, Kamachi T. A theoretical study of reactivity and regioselectivity in the hydroxylation of adamantine by ferrate(VI). J. Org. Chem., 2003, 68(10): 3958~3965
    [104] Jiang J Q, Lloyd B, Grigore L. Preparation and evaluation of potassium ferrate as an oxidant and coagulant for potable water treatment. Environm. Engineer. Sci., 2001, 18(5): 323~328
    [105] Nigel G, Jiang C C, Li X Z, et al. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere, 2004, 56(10): 949~956
    [106] Fan M, Brown R C, Huang C P. Preliminary studies of the oxidation of arsenic(III)by potassium ferrate. J. Environm. Pollu., 2002, 18(1): 91~96
    [107]姜礼燔,朱大白.高铁酸盐复合剂在水质净化和鱼病防治上的应用.水产科技情报, 2003, 30(5): 228~230
    [108] Patterson J A, Reding J W, Thompson J A, et al. Composition for arresting the flow of blood and menthod. US6187347, 2001
    [109] Walz K A, Suyama A N, Suyama W E, et al. Characterization and performance of high power iron(VI) ferrate batteries. J. Power Sources, 2004, 134(2): 318~323
    [110] Stupin D Y, Gusev Y K, Lachkova D V. Russ. Features of chemiluminescence arising in oxidation of luminol with ferrate(VI) ions in alkaline solutions. J. Gen. Chem., 2001, 71(5): 659~663
    [111]林金明.化学发光基础理论与应用.北京:化学工业出版社, 2004: 3~6
    [112]严凤霞,王筱敏.现代光学仪器分析选论.上海:华东师范大学出版社, 1992: 5~12
    [113] Lopez-Paz J L, Catala-Icardo M, Anton-Garrido B. Determination of diquat by flow injection-chemiluminescence. Anal. Bioanal. Chem., 2009, 394(4): 1073~1079
    [114] Yu X J, Bao J F. Determination of norfloxacin using gold nanoparticles catalyzed cerium(IV)–sodium sulfite chemiluminescence. J. Lumin., 2009, 129(9): 973~978
    [115] Zhang H Z, Nie F, Lu J R. Flow injection chemiluminescence method for the determination of pentoxyverine citrate based on NCS-dichlorofluorescein post-chemiluminescence reaction. Spectrochim. Acta A, 2009, 72(4): 858~862 Li D D, Du J X, Lu J R. Chemiluminescence determination of atenolol in biological fluids by a europium-sensitized permanganate-sulfite system. Microchim. Acta, 2008, 161(1-2): 169~173
    [116] Kumar S S, Chouhan R S, Thakur M S. Enhancement of chemiluminescence for vitamin B12 analysis. Anal. Biochem., 2009, 388(2): 312~316
    [117] Wang X L, Li A Y, Zhao H C, et al. A lanthanide sensitized chemiluminescence method of flow-injection for the determination of ulifloxacin and prulifloxacin. J. Anal. Chem., 2009, 64(1): 75~81
    [118] Yang X F, Yao H C, Zhai J B, et al. Chemiluminescence determination of sodium new houttuyfonate in pharmaceutical preparations based on tween 80—rhodamineB system. J. Fluoresc., 2007, 17(1): 15~21
    [119] Fang Y J, Yan S L, Ning B A, et al. Flow injection chemiluminescence sensor using molecularly imprinted polymers as recognition element for determination of maleic hydrazide. Biosens. Bioelectron., 2009, 24(8): 2323~2327
    [120] Shao X D, Xie X F, Song Z G. In vitro monitoring of clindamycin in human urine using flow injection chemiluminescence. Microchim. Acta, 2007, 157(3-4): 159~164
    [121] Payan M R, Lopez M A B, Torres R F, et al. Hollow fiber-based liquid-phase microextraction (HF-LPME) of ibuprofen followed by FIA-chemiluminescence determination using the acidic permanganate–sulfite system. Talanta, 2009, 79(3): 911~915
    [122] Sun H W, Chen P Y, Wang F, et al. Investigation on enhanced chemiluminescence reaction systems with bis(hydrogenperiodato) argentate(III) complex anion for fluoroquinolones synthetic antibiotics. Talanta, 2009, 79(2): 134~140
    [123]吉爱军,杨迎春,何立平.流动注射-化学发光法直接测定土壤中的锑(III).化学分析计量, 2008, 17(1): 41~43
    [124]冯媛媛,杨迎春,吉爱军,等.钙黄绿素-H2O2抑制化学发光法测定土壤中的Cd(II).分析试验室, 2009, 28(7): 58~60
    [125] Liu J B, Qiao B, Zhang N, et al. Direct detection of ultra-trace vanadium (V) in natural waters by flow-injection chemiluminescence with controlled-reagent- release technology. J. Geochem. Explor., 2009, 103(1): 45~49
    [126]方卢秋. NBS氧化流动注射化学发光法在土壤腐殖酸含量测定中的应用.中国环境检测, 2007, 23(2): 26~28
    [127] Feng Q Z, Zhao L X, Yan W, et al. Molecularly imprinted solid-phase extraction and flow-injection chemiluminescence for trace analysis of 2, 4-dichlorophenol in water samples. Anal. Bioanal. Chem., 2008, 391(3): 1073~1079
    [128]刘希东,郭惠.流动注射化学发光法测定自来水中二氧化氯.分析测试学报, 2006, 25(2): 81~83
    [129] Yao H, Wu B, Qu H B, et al. A high throughput chemiluminescence method for determination of chemical oxygen demand in waters. Anal. Chim. Acta, 2009, 633(1): 76~80
    [130]余宇燕,沙玫,张淑玲,等.流动注射化学发光法测定茶饮料中的茶多酚.分析试验室, 2006, 25(4): 101~104
    [131] Wang Z M, Chen D H, Gao X, et al. Subpicogram determination of melamine in milk products using a luminol?myoglobin chemiluminescence system. J. Agric. Food Chem., 2009, 57(9): 3464~3469
    [132]李正平,韩军,吕学冲,等. Luminol-H2O2化学发光体系检测铁蛋白.河北大学学报(自然科学版), 2009, 29(3): 274~277
    [133]刘佩娟,杜建修.胶束敏化化学发光法测定赤藓红.分析试验室, 2009, 29(7): 9~12
    [134] Shao X D, Li X, Liu B, et al. Determination of cefetamet pivoxil in human urine and serum using flow injection chemiluminescence procedure. J. Anal. Chem., 2009, 64(1): 71~74
    [135] Lee S H, Jeon C W, Wabaidur S M. Flow-Injection chemiluminescence determination of aspartic acid in tea leaves using tris (2, 2′-bipyridyl) ruthenium (II)–Ce(IV) system. J. Fluoresc., 2008, 18(3-4): 655~660
    [136] Ding C F, Zhong H, Zhang S H. Ultrasensitive flow injection chemiluminescence detection of DNA hybridization using nanoCuS tags. Biosens. Bioelectron., 2008, 23(8): 1314~1318
    [137] Dedkova V P, Shvoeva O P, Sawin S B. Determination of vanadium(V) and chromium(VI) in a single sample on a fibrous ion exchanger disk. J. Anal. Chem., 2009, 64(4): 350~353
    [138] Du J, Liu W, Lu J. Chemiluminescence behaviour of alkaline earth metal ions in the potassium permanganate–fluorescein reaction. Luminescence, 2003, 18(6): 341~345
    [139] Du J X, Li Y H, Lu J R. Flow injection chemiluminescence determination of polyhydroxy phenols using luminol–ferricyanide/ferrocyanide system. Talanta, 2001, 55(6): 1055~1058
    [140] Huang C, Zhang K, Ci Y. Sensitization of surfactants on the chemiluminescence reaction of fluorescein isothiocyanate labeled proteins. J. Biochem. Biophys. Methods, 2007, 70(3): 341~237
    [141] Hu Y G, Li X X, Pang Z T. Indirect chemiluminescence detection for capillary zoneelectrophoresis of monoamines and catechol using luminol-K2[Fe(CN)6] system. J. Chromatogr. A, 2005, 1091(1-2): 194~198
    [142] Wang J. Towards genoelectronics: electrochemical biosensing of DNA hybridization. Chem-Eur. J., 1999, 5(6): 1681~1685
    [143] Mikklesen S R. Electrochecmical biosensors for DNA sequence detection. Electroanal., 1996, 8(1): 15~19
    [144] Palecek E, Fojta M. DNA hybridization and damage. Anal. Chem., 2001, 73(3): 75~83
    [145] Mcshea A, Marlatt M W, Lee H G, et al. The application of microarray technology to neuropathology: cutting edge tool with clinical diagnostics potential or too much information? J. Neuropath. Exp. Neur., 2006, 65(11): 1031~1039
    [146] Guo M D, Li Y Q, Guo H X, et al. Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry, 2007, 70(2): 245~249
    [147] Palecek E, Fojta M. Peer reviewed: detecting DNA hybridization and damage. Anal. Chem., 2001, 73(1): 74A~83A
    [148] Wang J, Zhang X J, Parrado C, et al. Controlled release of DNA from carbon-paste microelectrodes. Electrochem. Commun., 1999, 1(6): 197~202
    [149] Pang D W, Zhang M, Wang Z L, et al. Modification of glassy carbon and gold electrodes with DNA. J. Electroanal. Chem., 1996, 403(1-2): 183~188
    [150] Wang J, Palecek E, Nielsen P E, et al. Peptide nucleic acid probes for sequence-specific DNA biosensors. J. Am. Chem. Soc., 1996, 118(33): 7667~7670
    [151] Brett C M A, Brett A M O, Serrano S H P. On the adsorption and electrochemical oxidation of DNA at glassy carbon electrodes. J. Electroanal. Chem., 1994, 366(1-2): 225~231
    [152] Huang E, Zhou F, Deng L. Studies of surface coverage and drientation of DNA molecules immobilized onto preformed alkanethiol self-assembled monolayers. Langmuir, 2000, 16(7): 3272~3280
    [153] Teh H F, Gong H, Dong X D, et al. Electrochemical biosensing of DNA with capture probe covalently immobilized onto glassy carbon surface. Anal. Chim. Acta, 2005, 551(1-2): 23~29
    [154] Ligaj M, Jasnowska J, Musial W G, et al. Covalent attachment of single-strandedDNA to carbon paste electrode modified by activated carboxyl groups. Electrochim. Acta, 2006, 51(24): 5193~5198
    [155] Tang H, Chen J, Cui K, et al. Immobilization and electro-oxidation of calf thymus deoxyribonucleic acid at alkylamine modified carbon nanotube electrode and its interaction with promethazine hydrochloride. J. Electroanal. Chem., 2006, 587: 269~275
    [156] Watts H J, Yeung D, Parkes H. Real-time detection and quantification of DNA hybridization by an optical biosensor. Anal. Chem., 1995, 67(23): 4283~4289
    [157] Caruso F, Rodda E, Furlong D N, et al. Quartz crystal microbalance study of DNA immobilization and hybridizationg for nucleic acid sensor development. Anal. Chem., 1997, 69(11): 2043~2049
    [158] Marrazza G, Chianella L, Mascini M. Disposable DNA electrochemical sensor for hybridization detection. Biosens. Bioelectron., 1999, 14(1): 43~51
    [159] Xiao C, Yang M, Sui S. DNA-containing organized molecular structure based on controlled assembly on supported monolayers. Thin Solid Films, 1998, 327: 647~651
    [160] Cosnier S, Gallend B, Gondran C, et al. Electrogeneration of biotinylated functionalized poolypyrroles for the simple immobilization of enzymes. Electroanal., 1998, 10(12): 808~813
    [161] Mehdinia A, Kazemi S H, Bathaie S Z, et al. Electrochemical DNA nano-biosensor for the study of spermidine-DNA interaction. J Pharmaceut. Biomed., 2009, 49(3): 587~593
    [162] Bonk S M, Lisdat F. Layer-by-layer assembly of electro-active gold nanoparticle/cytochrome c multilayers. Biosens. Bioelectron., 25(4): 739~744
    [163] Wang X L, Yang T, Jiao K. Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe2O3 core-shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo. Biosens. Bioelectron., 25(4): 668~673
    [164] Hashimoto K, Ito K, Ishimori Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal. Chem., 1994, 66(21): 3830~3833
    [165] Wang J, Bard A L. Monitoring DNA immobilization and hybridization on surfacesby atomic force microscopy force measurements. Anal. Chem., 2001, 73(10): 2207~2212
    [166] Gajovic-Eichelmann N, Ehrentreich-Forster E, Brer F F. Directed immobilization of nucleic acids at ultramicroelectrodes using a novel electro-deposited polymer. Biosens. Bioelectron., 2003, 19(5): 417~422
    [167] Lin L, Li J R, Jiang L. Fixation of single-stranded DNA nucleotide by self assembly technology. Colloid Interfac. A, 2000, 175(1-2): 11~15
    [168] Zhu N N, Zhang A P, Wang Q J, et al. Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Anal. Chim. Acta, 2004, 510(2): 163~168
    [169] Du P, Li H X, Cao W. Construction of DNA sandwich electrochemical biosensor with nanoPbS and nanoAu tags on magnetic microbeads. Biosens. Bioelectron., 2009, 24(11): 3223~3228
    [170] Zhang Y Z, Wang J, Xu M L. A sensitive DNA biosensor fabricated with gold nanoparticles/poly (p-aminobenzoic acid)/carbon nanotubes modified electrode. Colloid. Surface. B, 2010, 75(1): 179~185
    [171] Zhou N D, Wang J, Chen T, et al. Enlargement of gold nanoparticles on the surface of a self-assembled monolayer modified electrode: a mode in biosensor design. Anal. Chem., 2006, 78(14): 5227~5230
    [172] Wang J., Xu D K, Plosky R. Magnetically-induced solid-state electrochemical detection of DNA hybridization. J. Am. Chem. Soc., 2002, 124(16): 4208~4209
    [173] Pumera M, Castaeda M T, Isabel M, et al. Magnetically trigged direct electrochemical detection of DNA hybridization using Au quantum dot as electrical tracer. Langmuir, 2005, 21(21): 9625~9629
    [174] Zhu N N, Zhang A P, Wang Q J, et al. Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Anal. Chim. Acta, 2004, 510(2): 163~168
    [175] Liu S F, Li Y F, Li J R, et al. Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosens. Bioelectron., 2005, 21(5): 789~795
    [176] Hejazi M S, Pournaghi-Azar M H, Ahour F. Electrochemical detection of short sequences of hepatitis C 3a virus using a peptide nucleic acid-assembled goldelectrode. Anal. Biochem., 2010, 399(1): 118~124
    [177] Jin, Y., Yao, X., Liu, Q., et al. Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosens. Bioelectron., 2007, 22(6): 1126~1130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700