华东地区中华蜜蜂和意大利蜜蜂遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以来自于南昌、黄山、桐庐、费县、宜兴、武夷山等6个华东地区的中华蜜蜂(中蜂)群体以及平湖浆蜂、苏王1号等两个意大利蜜蜂(意蜂)群体共523只(形态测定500只)工蜂为研究素材,利用23对从西方蜜蜂中筛选出的微卫星引物,分析其基因组DNA在23个微卫星位点上的遗传变异,同时测量10个主要形态性状,以期用微卫星DNA多态性与形态学相结合的方法来分析华东境内8个蜜蜂群体的遗传多样性。主要研究结果如下:
     1、对于测定的10个形态特征,群体间存在着极显著的差异(P <0.01)。两个意大利蜜蜂群体平湖浆蜂和苏王1号在前翅长、前翅宽、前翅面积、b值、第3背板长上均与其它6种中蜂差异显著(P <0.05),且第4背板及第3+4背板总长与除桐庐中蜂外的其他中蜂群体均差异显著(P <0.05)。蜜蜂翅长、翅宽、翅面积、吻长及其背板长等性状间均有显著相关。单独进行形态特征聚类与进行主成分分析后再聚类的结果差异不大,与环境因素结合后聚类表明,环境因子对蜜蜂形态特征的影响非常明显,因此应将生态因子作为蜜蜂群体区分的一个重要方面。
     2、利用所选的23个微卫星位点对6个中蜂群体以及平湖浆蜂、苏王1号进行多态性检测,均得到了特异性扩增结果,共检测到430个等位基因,平均每个位点的等位基因数为18.696个,单个位点的等位基因数从6 (BI366)到34 (AP043)不等。所有群体的期望杂合度为0.702至0.939,PIC值为0.653至0.936。平均期望杂合度为0.844±0.069,PIC值为0.828±0.080。23个微卫星位点均具有较高的多态性。单个位点偏离Hardy-Weinberg平衡的群体数从5-10不等。群体间分化系数为33.6% (P <0.001),所有位点都极显著地贡献于这一结果(P <0.001)。杂合子缺失水平很高为0.572 (P <0.001)。平湖浆蜂、苏王1号与6个中蜂群体间也存在着极显著的遗传分化,群体间的Reynolds'遗传距离从0.215(平湖浆蜂-苏王1号)到0.683(费县中蜂-武夷山中蜂)不等,而Nm值变异范围为从0.255(费县中蜂-武夷山中蜂)到1.041(平湖浆蜂-苏王1号)之间。中华蜜蜂与意大利蜜蜂均表现出较高的群体杂合度和丰富的遗传多样性。
     3、利用23对微卫星标记对8个群体的亲缘关系进行分析,NJ系统发生树显示,8个蜜蜂群体可以分为两大类,即中华蜜蜂、意大利蜜蜂各一大类,宜兴中蜂聚在所有中蜂的最外部。黄山中蜂与桐庐中蜂的基因流动值为0.821,在6个中蜂中基因流动值最大。平湖浆蜂和苏王1号与其它中华蜜蜂群体的总体遗传关系都比较远。皖南山区的黄山中蜂与江淮地区的宜兴中蜂遗传差异性较大。武夷山中蜂同其它5个群体的基因流动值很小,是一个相对隔绝的群体。
     4、利用微卫星DNA分析6个中华蜜蜂群体遗传距离与地理距离的关联性,6个中蜂群体的遗传距离和地理距离回归公式:FST/(1-FST) =–0.2804 + 0.8722ln (d),以及Mantel’s检验的结果(P = 0.104)并不能为遗传距离与地理距离之间的显著联系提供足够的证据。说明华东6个中蜂群体的地理分布可能不是影响其群体遗传结构的决定因素。
     5、苏王1号群体杂合度和遗传多样性高于平湖浆蜂,两者遗传距离较近,而且彼此之间有较大的基因流动。
23 microsatellite markers from Apis mellifera ligustica were used to analyzed the genetic diversity of Apis cerana cerana populations and Apis mellifera ligustica, the six populations of Apis cerana cerana were from Nanchan, Huangshan, Tonglu, Feixian, Yixing, Wuyi, respectively. The two populations of Apis mellifera ligustica were Pinghu royal jelly bee and Suwang No.1 bee. At the same time, the ten main indexes of external morphology such as the length, width and area of the anterior wing, the cubital vein indexes, the length of proboscis and the length of terga 3+4 were detected. Genetic variability within populations and genetic differentiation among poputions were estimated. The main results were summarized as follows.
     1. There existed significant differences(P <0.05) among 10 characteristics of 8 populations in East-China. It had significant differences(P <0.05) betwwen Pinghu royal jelly bee and Suwang Suwang No.1 bee in length of bee right forewing, width of bee right forewing, area of the anterior wing, length of bee right forewing cubital vein b, bee length of tergum 3. The correlation between morphology features was significant (P <0.05) in length of bee right forewing, width of bee right forewing, area of the anterior wing, length of proboscis, length of tergum. Cluster by morphological characteristics and principal component analysis did not differ greatly. Clustered by morphological characteristics and ecological factors, which showed that ecological factors on the impact of bees morphological characteristics was very obvious. It suggested that the ecological factor was also an important side on the population classificiation.
     2. Twenty-three pairs of microsatellite primers were tested in six Apis cerana cerana populations and two Apis mellifera ligustica populations. 23 pairs of microsatellite primers can be successfully amplified. The results showed that 430 alleles were found in 23 microstaellite loci, the number of alleles per locus ranged from 6 (BI366) to 34 (AP043), mean number of effective alleles was 18.696. The gene heterozygosity (He) of all populations ranged from 0.702 to 0.939, and the average value was 0.844±0.069, respectively. The polymorphism information content (PIC) ranged from 0.653 to 0.936, and the average value was 0.828±0.080. All 23 microsatellite loci in this study showed high levels of polymorphism. The number of populations deviated from Hardy-Weinberg equilibrium per locus ranged from 5 to 10. In the all populatons, the genetic differentiation among populations, measured as FST value was 33.6% (P <0.001), and all loci were contributed to this differentiation significantly (P <0.001). Significant genetic differentiation was also observed between two subspecies of Apis cerana cerana and Apis mellifera ligustica. And the deficit of heterzygote was observed very high (0.572) (P <0.001). Reynolds’distance values varied between 0.215 ( Pinghu royal jelly bee and Suwang No.1 bee pair) and 0.683 ( Apis cerana cerana from Feixian and Wuyi pair), The Nm value was ranged from 0.255 ( Apis cerana cerana from Feixian and Wuyi pair) to1.041 ( Pinghu royal jelly bee and Suwang No.1 bee pair).
     3. The phylogenetic relationship among 8 bee populations were analyzed, and an un-rooted consensus tree was constructed using the Neighbour-Joining method. The tree topology revealed two main clusters. 6 Apis cerana cerana populaitions formed one cluster, and Apis cerana cerana from Yixing was found in the outside. Pinghu royal jelly bee and Suwang No.1 were formed the second cluster. The Nm value of 0.821 between Apis cerana cerana Huangshan and Tonglu was largerest in 6 Apis cerana cerana populaitions. The evolutional dendrogram of Pinghu royal jelly bee and Suwang No.1 was further than any Apis cerana cerana populaitions. It appeared rather farer phylogenetic relationship with Apis cerana cerana from Huangshan and Yixing. The Nm value of Apis cerana cerana from Wuyi and the other Apis cerana cerana populaitions was small, the Apis cerana cerana from Wuyi may be segregated.
     4. The geographical elements may own to the relationship for particular population pairs, however, the equation FST/(1-FST) =–0.2804 + 0.8722ln (d) and the results from Mantel’s test (P=0.104) did not provide enough support for a significant correlation between the genetic and the geographical pair wise distances. The results concluded that the geographical distributing may not be the determinant influence on the genetic structure of Apis cerana cerana populations.
     5.The genetic diversity of Suwang No.1 bee was higher than Pinghu royal jelly bee. The results indicated that the populations of Pinghu royal jelly bee and Suwang No.1 bee had a tendency towards intermixing.
引文
[1]陈盛禄.中国蜜蜂学[M].北京:中国农业出版社, 2001.
    [2]吴燕如.中国动物志(第一十卷)[M].北京:科学出版社, 2000.
    [3]姜玉锁.蜜蜂的分类学进展概况[J].养蜂科技, 2000, 6: 6-7.
    [4] Ruttner F. Biogeograpy and Taxonomy of Honeybees Springer-Verlag, Berlin., 1988,284.
    [5]闫德斌.我国养蜂生产中使用的主要蜂种及其经济性状[J].养蜂科技, 1999, 5: 24-25.
    [6]徐万林.中国蜜源植物[M].哈尔滨:黑龙江科学技术出版社, 1983.
    [7]龚一飞,张其康.蜜蜂分类与进化[J]. 2000.
    [8]杨冠煌.中华蜜蜂[M].北京:中国农业科技出版社, 2001.
    [9]谭垦,张炫,和绍禹,周丹银.中国东方蜜蜂的形态学及生物地理学研究[J].云南农业大学学报, 2005, 20(3): 410-414.
    [10]许少玉.中蜂工蜂形态测定方法[J].蜜蜂杂志, 1981, 4: 12-14.
    [11]袁西浩.中蜂形态特征测定的探索[J].中国养蜂, 1979, 4: 20-25.
    [12]刘先蜀.蜜蜂形态鉴定指标[J].中国养蜂, 1978, 4: 15-17.
    [13]林雪珍,陈盛禄,胡福良,邵海伟,叶卫胜.咽下腺小囊数及其在意蜂品种鉴别中的应用[J].浙江农业大学学报, 1994, 20(4): 379-382.
    [14]苏松坤,陈盛禄.意蜂王浆生产性能形态学遗传标记的研究[J].遗传, 2003, 25(6): 677-680.
    [15]邵瑞宜,陈巧,苏松坤.意大利蜜蜂(Apis mellifera Ligustica)的染色体组型分析研究初报[J].中国养蜂, 1996, 6(137): 3-6.
    [16]曾志将,谢宪兵,颜伟玉,郭冬生.中蜂与意蜂营养杂交对工蜂苹果酸脱氢酶Ⅱ的影响[J].上海交通大学学报(农业科学版), 2006, 24(1): 75-78.
    [17] Sylvester H A. Eectrophoretic identification of Africanized honeybees[J]. J Apic Res, 1982, 21: 93-97.
    [18] Sheppard T P, Berlocher S H. Enzyme polymorphism in Apis mellifera from Norway[J]. J Apic Res, 1984, 23: 64-69.
    [19] Felsentein J. Confidence limits on phylogenies: an approach using the bootstrap[J]. Evolution, 1985, 39(4): 783-791.
    [20] Robinson G E, Page R E. Genetic determination of guarding and undertaking in honeybee colonies[J]. Nature, 1988, 333(6171): 356-358.
    [21] Robinson G E, Page R E. Genetic determination of nectar foraging,pollen foraging,and nest - site scouting in honeybee colonies[J]. Behavioral Ecology and Sociobiology, 1989, 24: 317-323.
    [22]孙亮先,陈朝阳,袁建军,谢进金.四个意大利蜜蜂品系苹果酸脱氢酶Ⅱ基因的遗传差异分析[J].漳州师范学院学报(自然科学版), 2004, 17(1): 54-59.
    [23]欧阳燕,岳作军,吴黎明,金锋,谭萍萍,刘先蜀.应用生物化学技术进行中华蜜蜂分类的研究[J].云南大学学报(自然科学版), 1999, 21(3): 231-232.
    [24]童富淡,汪俏梅,刘艳荷.西方蜜蜂四个亚种酯酶同工酶型和苹果酸脱氢酶Ⅱ同工酶基因型的遗传差异[J].动物学报, 2002, 48(6): 828-832.
    [25]李绍文,孟玉萍,张宗炳,李举怀,和绍禹,匡邦郁.蜜蜂属(Apis)六个种酯酶同工酶的研究[J].北京大学学报(自然科学版), 1986, 24(4): 53-57.
    [26]李绍文.蜜蜂酯酶同工酶的研究[J].昆虫学报, 1985.
    [27] Arias M C, Tingek S, Kelitu A, Sheppard W S. Apis nulunsis Tingek , Koeniger and Koeniger ,1996 and its genetic relationship with sympatric species inferred from DNA sequences[J]. Apidologie, 1996, 27: 415-422.
    [28] Greg J . Hunt, Robert E, page Jr. patterns of inheritance with RAPD molecular markers reveal noveal types , of polymorphism in the honey bee[J]. Theor. Appl . Genet 1992, 85: 15 -20.
    [29]苏松坤.意大利蜂王浆生产性能遗传标记研究进展[J].中国养蜂, 2000, 51(3): 8-9.
    [30]吴黎明,彭文君,吉挺,刘福秀.三个蜂种的RAPD标记比较分析[J].中国养蜂, 2005, 56(4): 9-10.
    [31] Greg J . Hunt, Robert E, Page Jr. Linkage map of the honey bee , Apis mellifera , based on RAPD markers[J]. Genetics and Molecular Biology, 1995, 139: 1371-1382.
    [32]薛运波,李兴安,葛凤晨,蒋滢,历延芳,李志勇,王志.长白山中华蜜蜂基因组DNA多态性的研究[J].中国农业科学, 2007, 40(2): 426-432.
    [33] Vaiman D, Pailhoux E, Payen E. Evolutionary conservation of a microsatellite in the Wilms Tumour (WT) gene: mapping in sheep and cattle[J]. Cytogenet Cell Genet, 1995, 70: 112-115.
    [34] Weigend S, Romanov M N. Current strategies for the assessment and evaluation of genetic diversity in chicken resources[J]. World Poult Sci J, 2001, 57(3): 275-288.
    [35] Arranze J J, Bayon R, San Primitivo F et al. Genetic variation of five microsatellite loci in four breeds of cattle[J]. Journal Agricultural Science, 1996, 27: 533-538.
    [36] Baker J S F. A global protocol for determining genetic distance among domestic livestock breeds[C]. Proceedings of the 5th world congress on genetics applied to livestock production, 1994.
    [37] Estoup A, M Solignac, M.Harry. Characterization of (GT)n and (CT)n microsatellites in two insect species.Apis mellifera and Bombus terrestris[J]. NuclAcids.Res.Oxford;IRL Press, 1993, 21(6): 1427-1431.
    [38] Michel Solignac, Dominique Vautrin, Anne Loiseau et al. Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome[J]. Molecular Ecology Notes, 2003, 3: 307-311.
    [39] S. H?rtel, P. Neumann, F.S. Raassen. Hepburn.Social parasitism by Cape honeybee workers in colonies of their own subspecies (Apis mellifera capensis Esch.)[J]. Insect. Soc, 2006, 53: 183-193.
    [40] Sittipraneed S, Laoaroons, Klinbungss. Genetic differentiation of the honey bee(Apis cerana) in Thailand:evidence from microsatellite polym orphism[J]. J.A pic.R es, 2001, 40(1): 9-16.
    [41] Segura Jal. Highlypolym orphicDNA markers in an Africanized honey bee population in Costa Rica [J]. Genetics M ol.Bio, 2000, 23(2): 317-322.
    [42] ChenS heng-Lu, LIJian-Ke, ZHONG Bo-Xiong. Microsatellite Analysis of Royal Jelly Producing Traitsof It a lia nH oneybee(Apism elliferaL iguatica[J]. Acta Genetica Sinica, 2005, 32(10): 1037-1044.
    [43] Per Kryger, Ute Kryger, Moritz. Robin F. A. Genotypical Variability for the Tasks of Water Collecting and Scenting in a Honey Bee Colony[J]. Ethology, 2000, 106(9): 769 -779.
    [44] F.Bernhard Krausa, Nikolaus Koenigerb, Salim Tingekc et.al. Using drones for estimating colony number by microsatellite DNA analyses of haploid males in Apis[J]. Apidologie, 2005, 36: 223-229.
    [45] P. De La Rúa, J. Galián, J. Serrano et al. Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands[J]. Molecular Ecology Notes, 2001, 10: 1733-1742.
    [46] C.M. Payne, T.M. Laverty, M.A. Lachance. The frequency of multiple paternity in bumble bee (Bombus) colonies based on microsatellite DNA at the B10 locus[J]. Insect. Soc, 2003, 50: 375-378.
    [47] Maxine Beveridge, SIMMONS. LEIGH W. Microsatellite loci for Dawson's burrowing bee (Amegilla dawsoni) and their cross-utility in other Amegilla species[J]. Molecular Ecology Notes, 2004, 4: 379 - 381.
    [48] J.-C. Lenoir, D. Laloi, F.-X. Dechaume-Moncharmont. Intra-colonial variation of the sting extension response in the honey bee Apis mellifera[J]. Insect. Soc, 2006, 53: 80-85.
    [49] N. Azuma, J. Takahashi, M. kidokopro. Isolation and characterization of microsatellite loci in the bee Ceratina flavipes[J]. Molecular Ecology Notes, 2005, 5: 433-435.
    [50]郭新军.秦岭地区蜜蜂科昆虫生物地理学研究: [学位论文][D].陕西:陕西师范大学, 2005.
    [51] Annette B, Jensen, Kellie A. Palmer, Jacobus J. Boomsma Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee , Apis mellifera mellifera,in northwest Europe[J]. Molecular Ecology Notes, 2005, 14: 93-106.
    [52] Franck P, Coussy H, Conte Y Le. Microsatellite analysis of sperm admixture in honeybee[J]. Insect Molecular Biology, 1999, 8(3): 419-421.
    [53] B. Darvill, J. S. Ellis, G. C. Lye. Population structure and inbreeding in a rare and declining bumblebee Bombus muscorum (Hymenoptera: Apidae )[J]. Molecular Ecology Notes, 2006, 15(3): 601-611.
    [54] Karsten Neumann, Karsten Seidelmann. Microsatellites for the inference of population structures in the Red Mason bee Osmia rufa (Hymenoptera, Megachilidae)[J].Apidologie, 2006, 37: 75-83.
    [55] Annette B.Jensen, Kellie A. Palmer, Nicolas Chaline et.al. Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis[J]. Conservation Genetics, 2005, 6: 527-537.
    [56]李建科.意大利蜜蜂产浆量性状的微卫星DNA和数量遗传研究: [学位论文][D].浙江:浙江大学, 2003.
    [57] Michel Solignaca, Dominique Vautrina, Emmanuelle Baudrya et al. A Microsatellite-Based Linkage Map of the Honeybee[J]. Apis mellifera LGenetics, 2004, 167: 253-262.
    [58]吴常信.畜禽主要经济性状(肉、蛋、奶)的遗传改进与育种新技术[J].中国农学通报, 1997, 3(1): 66-74.
    [59]刘艳荷,陈盛禄,钟伯雄.西方蜜蜂王浆产量与品质性状的配合力和杂种优势分析[J].遗传学报, 2001, 28(10): 926-932.
    [60] Smith D R, Brown W M. Polymorphism in mitochondrial DNA of European and Africanized honeybee(Apis mellifera)[J]. Experientia, 1988, 44: 257-260.
    [61] Cornuet J M, Garnery L. Mitochondrial DNA variability in honeybees and its phylogeographic implications[J]. Apidoloqie, 1991, 22(6): 627-628.
    [62] Crozier R H, Crozier Y C. The cytochrome b and ATPase genes of honeybee mitochondrial DNA[J]. Molecular Biology and Evolution, 1992, 9(3): 474-482.
    [63] Poshi DA. Bees and Beekeeping in Asia.Fariming[J]. Jpn, 1999, 33(3): 10-14.
    [64]杨冠煌,孙东江,肖京城,孙庆海,林桂莲.中华蜜蜂群体内温度、湿度及CO2浓度的变化及调节研究[J].中国农业科学, 1999, 32(3): 96-101.
    [65]龚一飞.论中蜂[J].中国养蜂, 1978, 1: 10-13.
    [66]余林生,韩胜明.栖息环境和种间竞争对中华蜜蜂群体分布的影响[J].应用生态学报, 2003, 14(4): 553-556.
    [67]王瑞武,董捷,赵炜.蜜蜂线粒体ATPase6和ATPase8基因的克降与序列分析[J].中国养蜂, 1999, 50 (3): 6-7.
    [68]王加聪.蜜蜂良种是提高蜂产品产量和质量的关键[J].蜜蜂杂志, 2006, 1: 26-27.
    [69]孙亮先,吉挺,周斌.以随机扩增多态性DNA(RAPD)技术筛选意大利蜜蜂重要农艺性状遗传标记[J].中国养蜂, 2003, 54(6): 6-8.
    [70]季福标,张大隆.“苏王1号”种蜂王的选育与推广[J].中国养蜂, 2003, 54(5): 26.
    [71]孙亮先,胥保华.四个意大利蜜蜂品系RAPD遗传标记的分析[J].山东农业大学学报(自然科学版), 2004, 35(3): 335-338.
    [72]吴黎明,彭文君.利用翅膀特征进行蜜蜂品种分类的方法[J].中国养蜂, 2004, 55(3): 41.
    [73]李志勇,王志.关于蜜蜂形态鉴定技术的探讨[J].中国养蜂, 2004, 55(4).
    [74]刘先蜀.蜜蜂形态鉴定指标[J].中国蜂业, 1978, 4: 15-17.
    [75]匡邦郁,李有泉,王海蓉,唐玉平,刘勤,宋跃,黄国祥.云南中蜂的种下分类讨论[J].蜜蜂杂志, 1983, 2(10): 20-21.
    [76]谭垦,葛凤晨,赵蓉,和绍禹.长白山东方蜜蜂的形态特征研究[J].蜜蜂杂志, 2004, 6: 8-9.
    [77] Ruttner F. Biogengraphy and taxonomy of honeybee[J]. Heidelberg (berlin):Springer-Verlag 1988: 282.
    [78]邵瑞宜.蜜蜂育种学[M], ed.中国农业出版社.北京, 1998.
    [79]王桂芝.中国华北地区东方蜜蜂多样性及其分类研究: [学位论文][D].山东:山东农业大学, 2007.
    [80]谭垦,张炫,和绍禹,周丹银.云南东方蜜蜂的形态特征数值分类研究[J].中国养蜂, 2003, 54(3): 4-6.
    [81] TAN K, FUCHS S, RUIGUANG Z. Morphometrical characterization of Apis cerana in Yunnan Province of China[J]. Apidologie, 2003, 34(6): 553-562.
    [82]黄智勇.蜜蜂全基因组出笼前后[J].昆虫知识, 2007, 44(1): 5-9.
    [83] Powell W., Morgante M. , Andre C., Hanafey M., Vogel J. et al. The utility of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis[J]. Mol.Breed, 1996, 2: 225-238.
    [84]李斌,夏庆友,鲁成,周泽扬.蜜蜂EST中的微卫星分析[J].遗传学报, 2004, 31(10): 1089-1094.
    [85]魏朝明,孔光耀,廉振民,刘慧,范永文,张慧.昆虫知识[J].蜜蜂全基因组中微卫星的丰度及其分布, 2007, 44(4): 501-504.
    [86]曾志将,饶波,谢宪兵,颜伟玉.蜜蜂性别决定与性比调控机理研究[J].昆虫知识, 2003, 40(3): 208-211.
    [87]吉挺,陈晶,殷玲,包文斌,陈国宏.江苏省野生及家养中华蜜蜂微卫星DNA遗传多样性分析[J].中国畜牧兽医, 2007, 34(12): 39-41.
    [88]吉挺,陈晶,包文斌,殷玲,陈国宏.江苏省意大利蜂与中华蜜蜂微卫星DNA遗传多样性分析[J].安徽农业科学, 2007, 35(32): 10232-10233,10235.
    [89]吉挺,陈晶,孟春玲,包文斌,陈国宏.平湖浆蜂与苏王1号遗传多样性的微卫星DNA分析[J].中国畜牧兽医, 2007, 34(11): 32-34.
    [90] Botstein D, White R L, Skolnick M et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. Am J Hum Genet, 1980, 32: 314-331.
    [91] Nei M. Analysis of gene diversity in subdivided populations[J]. Proc. Natl. Acad. Sci. USA, 1973, 70: 3321-3323.
    [92] Nei M. Genetic distance between populations[J]. Amer Natur, 1972, 106: 283-292.
    [93]龚一飞.养蜂学[M], ed.福建科技出版社.福州, 1980.
    [94] Rousset F. Genetic differentiation and gene flow from F- statistics under isolation by distance[J]. Genetics and Molecular Biology, 1997, 145: 1219-1228.
    [95] Park S D E. Trypanotolerance in West African Cattle and the Population Genetic Effects of Selection: [学位论文][D]. University of Dublin, 2001.
    [96] Goudet J. FSTAT version 2.9.3.2. Switzerland: Department of Ecology & Evolution: [学位论文][D]. LAUSANNE: University of Lausanne, 2002.
    [97] Raymond M, Rousset F. Population genetics software for exact test and ecumenicism[J]. Journal of Heredity, 1995, 86: 248-249.
    [98] Felsentein J. PHYLIP (Phylogeny inference package) version 3.57c. USA: Department of Genetics University of Washington, Seattle, 1995.
    [99] Saitou N and Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4: 406-425.
    [100]闫路娜,张德兴.种群微卫星DNA分析中样本量对各种遗传多样性度量指标的影响[J].动物学报, 2004, 50(2): 279-290.
    [101] Vanhala T, Tuiskula-Haavisto M, Elo K et al. Evaluation of genetic distances between eight chicken lines using microsatellite markers[J]. Poultry Science, 1998, 77: 783-790.
    [102] Maudet C, Miller C, Bassano B et al. Microsatellite DNA and recent statistical methods in wild conservation management: application in Alpine ibex Capra ibex (ibex)[J]. Molecular Ecology Notes, 2002, 11: 421-436.
    [103] Jurg Ott. Analysis of Human Genetic Linkage [M], ed. Revised edition. Baltimore: Johns Hopkins University Press, 2001.
    [104] Baker J S F. A global protocol for determining genetic distance among domestic livestock breeds[J]. In: Proceedings of the 5th world congress on genetics applied to livestock production, 1994, 21: 501-508.
    [105] Bishop J O. Chromosomal insertion of foreign DNA [J]. Reprod Nutr Dev, 1996, 36: 607-618.
    [106]陈春燕,陈大福.不同蜂种间的A113微卫星位点的差异分析.中国养蜂学会生物学专业委员会2007年会, 2007.
    [107]姜玉锁.中国境内不同地理型东方蜜蜂遗传变异及其分化研究: [学位论文][D].山西:山西农业大学, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700