纳米粒子的制备及其在波长检测型表面等离子体子共振传感器中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米粒子具有宽的激发光谱、窄的发射光谱、可准确调谐的发射波长、较高的荧光漂白阈值以及良好的化学稳定性等独特的光学和电子学性质,适用于荧光标记,可以成为一类理想的生物荧光探针。本论文介绍了一种在微波辅助条件下,采用摩尔比为2.5: 1的L-半胱氨酸盐酸盐和谷胱甘肽作稳定剂,合成了量子产率为65%的CdTe纳米粒子的新方法;提出了以微乳液为溶胀体系来实现不同大小的CdTe纳米粒子同时导入来制备荧光编码的聚苯乙烯微球的方法,不仅实现了纳米粒子标记数量的基本可控而且基本上避免了CdTe纳米粒子的泄漏;在反相微乳液中通过正硅酸乙酯的水解来实现把多个纳米粒子包覆在同一二氧化硅微球中,得到了具有高效发光的SiO2纳米微球,简化了反应步骤、降低了成本,并用此方法合成了Fe3O4@SiO2核壳式磁性微球;用分散聚合工艺合成了粒径分布均匀、表面光滑且具有超顺磁性的聚苯乙烯磁性微球,克服了微球内部磁性物质分布不均匀及微球形貌不规则等缺陷,在微球表面修饰了羧基,利于与生物分子的连接。
     表面等离子体子共振(SPR)传感器具有实时监测反应动态过程、生物样品无需标记、灵敏度高、无背景干扰等特点,已在生命科学、环境科学等许多研究领域得到了广泛的应用。本论文简要介绍了自制的多波长同时检测型SPR传感器的光源、导光系统、传感元件、流通池、分光检测系统和数据处理系统。将半导体和磁性系列纳米微球与靶向DNA相连,实时监测了DNA探针的固定过程及DNA杂交反应的进行,并研究了荧光和磁性纳米微球对靶向DNA溶液浓度的影响。本研究对提高SPR传感器灵敏度有着重大的意义,揭示了纳米技术在生物传感器应用中新的发展方向。
Semiconductor nanoparticles, also known as quantum dots (QDs), provide extremely good fluorescent signal, and can be well used for fluorescent labeling. Also they are ideal bioconjugated fluorescent probes for bioanalysis, because of their unique optical and electronic properties, such as broad excitation spectrum, narrow emission spectrum, good tunability and photochemical stability, neglectable optical bleaching, etc. Hence, QDs have attracted considerable interest in biological and medical community. The basic knowledgement and characteristics of QDs,their synthesis and labeling approach,recent progress and prospect in potential application to immunoassay and rapid diagnostic analysis are reviewed in Part 1 Chapter 1, the basic properties, synthesis, applications such as bioseparation of magnetic nanoparticles are also reviewed.
     In Part 1, Chapter 2, a method for hydrothermal synthesis of CdTe QDs under microwave-assisted condition is developed. Using L-cysteine hydrochloride and glutathione as stabilizing agents, the molar ratio is 2.5:1. CdTe QDs with controllable photoluminescence wavelength from 510 nm to 670 nm were prepared in 150 min, the photoluminescence quantum yield was shown to be 65%. Compared with CdTe QDs prepared with thiohydracrylic acid as stabilizing agent, as-prepared CdTe QDs show much narrower photoluminescence FWHM (Full Width at Half Maximum), more symmetrical emission peak and higher photoluminescence quantum yield. The as-prepared CdTe QDs contain–NH2 and–COOH groups, which have good biological compatibility and have almost no toxicity. The C. elegans were taken as detecting object to study the biological toxic effect of CdTe QDs. A novel technique of synthesizing fluorescence-encoded microspheres by dispersing polymerization method is then reported. By the following one-step swelling procedure, the different CdTe QDs were carried into the inner of polystyrene microspheres quantificationally. This procedure has the following outstanding advantaged: it can be operated easily and reproducibly. Besides, as-synthesized photoluminescent microspheres have better photostability, the CdTe QDs can not be isolated or leaked out easily which are carried into the inner of microspheres. Finally, the multiple CdTe QDs were embedded into one silica microsphere by reverse microemulsion method. The as-synthysized silica microspheres have high luminous efficiency and small side effects on cells or living beings.
     In Part 1, Chapter 3, with oleic acid functionalized Fe3O4 nanoparticles as the magnetic carriers, styrene and crylic acid as the monomers, and divinylbenzene ( DVB ) as cross linker, the magnetic polystyrene microspheres were prepared by dispersion polymerization. A series of characterizations show that as-prepared magnetic polystyrene microspheres have narrower size distribution with smooth surface, fine morphology and structure. The factors that affect the size of microspheres were also discussed. The as-prepared microspheres have narrower size distribution with smooth surface, fine morphology and structure, pretty superparamagnetic behavior, the specific saturation magnetization of them reaches to 11.61 Am2/kg at room temperature, the method can overcome these shortcomings: nonhomogeneous distribution of the interior magnetic matericals, irregular morphology of microspheres. Fe3O4@SiO2 core-shell microspheres were synthesized by reverse microemulsion method.
     Since Liedberg developed the first surface plasmon resonance ( SPR ) sensor, the research and application of SPR technology have shown extensive growth and gradually become the research hot spot in the biosensor field in the world. The most important characteristics of SPR sensors are their versatility and capability for real time monitoring the association or dissociation of biomolecules on the surface of the sensor without the need for fluorescence or labeling of the biomolecules. These characteristics made the SPR technique an easy, convenient and reliable one for determining the concentration and molecular weight, monitoring change in structure, measuring kinetic constant and binding specificity of individual biomolecules. For above reasons, the SPR sensors grow as a new powerful technology in chemical and biological field. In Part 2, Chapter 1, the element theory, method and characteristic of SPR sensor are introduced. The categories and applications of wavelength modulation SPR sensors are discussed. The recent research progress of SPR sensor is also reviewed.
     In Part 2, Chapter 2, a homemade wavelength modulation surface plasmon resonance sensor is introduced briefly. The setup consisted of white LED, light transmit system, sensing element, flow cell, detection system and data processing system. The light emitted from the white LED is polarized to obtain polarized light, and two lenses are employed to make the light parallel. The parallel polychromatic light beam passes through an optical prism and excites surface plasmon at the interface between the gold film and solution. The output light from the prism is guided into a charge coupled device ( CCD ) detector by fiber. The sensor was shown to relatively simple to use, rapid to respond, and cost-effective.
     In Part 2, Chapter 3, the highly specific interaction of an avidin-biotin system was explored for immobilization of target DNA on the sensor memberane, CdTe@SiO2 core-shell microspheres coupled with target DNA, the wavelength modulation SPR instrument was developed for real-time determining the immobilizing process of biotinylated DNA and the performance of hybridization reaction. The target DNA coupling with CdTe@SiO2 core-shell microspheres was determined to be in the concentration range of 0.0262-14 nmol/L. In addition, the method of SPR sensor regeneration was investigated ( using a solution of 0.1 mol/L H3PO4, 0.1 mol/L NaOH, 0.1 mol/L HCl, 0.03 mol/L HNO3 or 0.3 mol/L citrate solution ). The citrate buffer ( 0.3 mol/L ) solution was chosen as regeneration solution.
     In Part 2, Chapter 4, the 3-mercaptopropionic acid (MPA) was immobilized onto the gold film, and the association degrees of the target DNA coupled with different materials coated with magnetic nanoparticles with biotinylated DNA probes were investigated. Compared with target DNA coupled with magnetic polystyrene microspheres, the silica-coated magnetic nanoparticles conjugating with target DNA was validated to have faster association rate and smaller RSD. Besides, methods of enhancing SPR sensitivity were investigated by using magnetic microspheres. The target DNA was determined solely in the concentration range of 14-100 nmol/L, while target DNA conjugating with magnetic microspheres was tested in the concentration range of 24.3-120 pmol/L. It was shown that the association constant of biotinylated DNA probe with the target DNA coupling with magnetic microspheres was 3.31×107 mol-1 L, a three orders of magnitide improvement as compared with that obtained without magnetic microspheres. The 0.01 mol/L NaOH was chosen as regeneration solution. The research has greatly significance of enhancing sensitivity of SPR sensor, it reveals new direction of nanotechnology in biosensor application.
引文
[1] Gorkov L. P., Eliashberg G. m., Eksp.Teor. Fiz., 1965, 48: 1407.
    [2] Kawbata A., J.Phys.Colloq., 1977, 38: 2.
    [3] Kubo R., Kawabata A., Kobayashi S., Annu Rev Mater Sci, 1984, 14: 49.
    [4] Kubo R., Electronic Properties of Metallic Fine Particles. I., J. Phys. Soc. Jpn., 1962, 17: 975.
    [5] Mirkin C. A., Letsinger R. L., Mucic R. C., Storhoff J. J., A DNA-based method 6-30 for rationally assembling nanoparticles into macroscopic materials, Nature, 1996, 382: 607.
    [6] http://www.Nano.gov
    [7]解思深.国际纳米科技发展动态,纳米科技发展调研报告汇编,科学技术部基础研究司,2002,15.
    [8]解思深.纳米生物和医药,纳米科技发展调研报告汇编,科学技术部基础研究司,2002,104.
    [9]翟华嶂,李建保,黄勇,材料工程,2001,11:43.
    [10]“Nanotechnology: Encounters of Atoms, Bits and Genomes”, Nomura Research Institute, December, 2001.
    [11]“Japan Economic Currents-A Future Society Created by Nanotechnology”, Keizai Koho Center, May, 2002.
    [12]张立德,牟季美.纳米材料和纳米结构,科学出版社, 2001.
    [13] Xie,Y.; Qian,Y.T.; Wang,W.Z.; et al., Science, 1996, 272: 1926.
    [14]曹茂盛,纳米材料导论,2001年08月第1版.
    [15] Heer W. A., Rev. of Modern Phys. 1993, 65, 611.
    [16]师少军,李忠芳,曾繁典,中国临床药理学杂志,2004,20:396.
    [17]林章碧,张皓,陈奇丹等,高等学校化学学报,2003,24:609.
    [18]冯爱玲,吴道澄,吴红,杨青艳,第四军医大学学报,2005,26:325.
    [19]张立德,牟季美.纳米材料学,辽宁科技出版社, 1994.
    [20] Iijima, S. Nature 1991, 354: 56.
    [21] Xin L., Zhang X., Acta Polymerica Sinica, 2005, 3: 437.
    [22] Chiang C., Reddy M., Chu P., Solid State Ionics, 2004, 175: 631.
    [23] Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525.
    [24] Alivisatos, A. P. Science 1996, 271, 933.
    [25] Brus, L. E. J. Phys. Chem. 1986, 90, 2555.
    [26] Henglein, A. Ber. Bunsenges. Phys. Chem. 1995, 99, 903.
    [27] Halperin, W. P. Rev. of Modern Phys. 1986, 58, 532.
    [28] Ball, P.; Garwin, L. Nature 1992, 355, 761.
    [29]苏品书.超微粒子材料技术,复汉出版社,1989.
    [30]张立德,牟季美.物理, 1992, 21:167.
    [31] Murray C. B., Kagan C. R., Bawendi M. G., Annu. Rev. Mater. Sci., 2000, 30: 545.
    [32] Hsieh S., Wang F., Lin C., et al, Biomaterials, 2006, 27: 1656.
    [33] Gill R., Willner I., Shweky I., Banin U., J. Phys. Chem. B, 2005, 109: 23715.
    [34] Wang Q. B., Iancu N., Seo D. K., Chem. Mater., 2005, 17: 4762.
    [35] Hirschey M. S., Galen D., Butler A., 2005, 229: U1046.
    [36] Muller J., Lupton J. M., Rogach A. L., Feldmann J., Talapin D. V., Weller H., Physical Review B, 2005, 72: Art. No. 205339.
    [37] Singha A., Satpati B., Satyam P. V., Roy A., Journal Of Physics-condensed Matter, 2005, 17: 5697.
    [38] Lindroos S., Puiso J., Tamulevicius S., Leskela M., Functional Nanomaterials For Optoelectronics And Other Applications, 2004, 99-100: 243.
    [39] Chakraborty I., Mitra D., Moulik S.P., J Nanopart Res, 2005, 7: 227.
    [40] Hota G., Jain S., Khilar K. C., Colloid Surface A , 2004, 232: 119.
    [41] Zheng R. L., Zhang C. L., Chen Z. Q., Acta Phys. Sin-ch Ed., 2005, 54: 886.
    [42] Schill A. W., El-Sayed M. A., J. Phys. Chem B, 2004, 108: 13619.
    [43] Qian H. F., Li L., Ren J. C., Mater. Res. Bull., 2005, 40: 1726.
    [44] Bailey R. E. and Nie S., J. Am. Chem. Soc., 2003, 125: 7100.
    [45] Weller H., Angew. Chem. Int. Ed., 1993, 32: 41.
    [46]宋国利,杨幼桐,孙凯霞等,黑龙江大学自然科学学报,2002,19:80.
    [47] Vossmeyer T., Katsikas L., Giersig M., Popovie I. G., Diesner K.., Chemseddine A., Eychmüller A., Weller H. J., Phys. Chem., 1994, 98: 7665.
    [48] Brus L. E. J., Chem. Phys., 1984, 80: 4403.
    [49] Kayanuma Y., Phys. Rev. B, 1988, 38: 9797.
    [50] Ball P., Garwin L., Nature, 1992, 355: 761.
    [51] Chan W. C. W., Maxwell D. J., Gao X. H., Bailey R. E., Han M. Y., Nie S. M., Curr. Opin. Biotechnol., 2002, 13: 40.
    [52] Chan W. C., Nie S., Science, 1998, 281: 2016.
    [53] Bruchez M., Moronne M., Gin P., et al., Science, 1998, 281: 2013.
    [54] Xu C., Zhang Z., Ye Q., Materials Letters, 2004, 58: 1671.
    [55] Kim H., Achermann M., Balet L. P., Hollingsworth J. A., Klimov V. I., J. Am. Chem. Soc., 2005, 127: 544.
    [56] Spanhel L., Haase M., Weller H., et al., J. Am. Chem. Soc., 1987, 109: 5649.
    [57] Kortan A. R., Hull R., Opila R. L., et al., J. Am. Chem. Soc., 1990, 112: 1327.
    [58] Hines M.A., Guyot-Sionnest P., J. Phys. Chem., 1996, 100: 468.
    [59] Shandryuk G. A., Rebrov A. V., Vasiliev R. B., Dorofeev S. G., Merekalov A. S., Gas'kov A. M., Talroze R. V., Polymer Science Series B, 2005, 47: 266.
    [60] Bawendi M. G., Steigerwald M. L., Brus L. E., Annu. Rev. Phys. Chem., 1990, 41: 477.
    [61] Peng Z. A., Peng X. G., J. Am. Chem. Soc., 2001, 123: 183.
    [62] Darbandi M., Thomann R., Nann T., Chemistry of Materials, 2005, 17: 5720.
    [63] Alivisatos A. P., Semiconductor Clusters, Science, 1996, 271:933.
    [64] Gao X. H., Nie S. M., J. Phys. Chem. B 2003, 107: 11575.
    [65] Wang Y., Li A. J., Chen H. Y., Peng X. G., J. Am. Chem. Soc., 2002, 124: 2293.
    [66] Guo W. Z., Li J. J., Wang Y. A., Peng X. G., Chem. Mater., 2003, 15: 3125.
    [67] Wolfgang J. Parak, Daniele Gerion, Daniela Zanchet, A. Paul Alivisatos, Chem. Mater. 2002, 14, 2113.
    [68] Daniele G., Fabien P., Williams S. C., Parak W. J., Daniela Z., Shimon W., AlivisatosA. P., J. Phys. Chem. B 2001, 105: 8861.
    [69] Chu M. Q., Liu G. J., Materials Letters, 2006, 60: 11.
    [70] Han M., Gao X., Su J. Z., Nie S., Nat Biotchnol, 2001, 19: 631.
    [71] Sutherland A. J., Science 2002, 6: 365.
    [72] Zhang G., Yu Y., Zhang H., Han Y., Di Y., Zou Y. C., Xiao F. S., Yang B., Chemical Journal Of Chinese Universities-Chinese, 2003, 24: 662.
    [73] Zhang H., Wang L. P., Xiong H. M., Hu L. H., Yang B., Li W., Advanced Materials, 2003, 15: 1712.
    [74] Rajh T., Micic O. L., Nozik A., J. Phys. Chem., 1993, 97: 11999.
    [75] Lee G. S. H., Craig D. C., Ma I., et al., J. Am. Chem. Soc., 1988, 110: 4863.
    [76] Herron N., Calabrese J. C., Farneth W. E. et al., Science, 1993, 259: 1426.
    [77] Rogach A. L., Kornowski A., Gao M. Y., et al., J. Phys. Chem., B 1999, 103: 3065.
    [78] Gao M. Y., kirstein S., M?hwald H., J. Phys. Chem., B 1998, 102: 8360.
    [79] Klayman D. L.,Griffin T. S., . J. Am. Chem. Soc.,1973,95: 197.
    [80] Mendelson, M. I. J. Am. Ceram. Soc. 1969, 52, 443.
    [81]牟季美,张立德,赵铁男等.物理学报1994, 43, 1000.
    [82] Allen, T. Particle Size Measurement. 3rd Edition, Chapman and Hall, London and New York, 1981.
    [83]黄惠忠等编,纳米材料分析,化学工业出版社,2003.
    [84] Demasa J. N., Crosby G. A., Journal of Physical Chemistry, 1971, 75: 991.
    [85]何宇亮,刘湘娜,王志超.中国科学A 1992, 9, 995.
    [86]高鸿,分析化学前沿,科学出版社, 1991.
    [87] Chaudhary S., Ozkan, M., Chan W. C. W., Appl. Phys. Lett. 2004, 84: 2925.
    [88] Eisler H. J., Sundar V. C., Bawendi M. G., Walsh M., Smith H. I., Klimov V., Appl. Phys. Lett. 2002, 80: 4614.
    [89] Peng X. G., Xiao M., Nano Lett. 2003, 3: 819.
    [90] Greenham N. C., Peng X. G., Alivisatos A. P., Phys. Rev. B. 1996, 54: 17628.
    [91] Yoneyama H., Haga S., Yamanaka S., J. Phys. Chem., 1989, 93: 4833.
    [92] Duan X. F., Niu C. M., Sahi V., Chen J., Parce J. W., Empedocles S., Goldman J. L., Nature, 2003, 425: 274.
    [93] Jaiswal J. K., Simon S. M., Trends cell biol, 2004, 14(9): 497.
    [94] Xu H, Sha M Y, Wong E Y, et al. Nucleic Acids Res, 2003, 31(8): e43.
    [95] Ho Y P, Kung M C, Yang S, et al. Nano Lett, 2005, 5 (9): 1693.
    [96] Bakalova R, Ohba H, Zhelev Z, et al. Nat Biotechnol, 2004, 22(11): 1360.
    [97] Samia A C, Chen X, Burda C. J Am Chem Soc, 2003, 125 (51): 15736.
    [98] Bakalova R, Ohba H, Zhelev Z, et al. Nano Letters, 2004, 4 (9): 1567.
    [99] Tsay J M, Michalet X., Chem Biol, 2005, 12 (11): 1159.
    [100] Michalet X, Pinaud F F, Bentolila L A, et al. Science, 2005, 307 (5709): 538.
    [101] Schroedter A.,Weller H.,Eritja R., et al. .Nano. Lett.,2002, 2: 1363.
    [102] Hoppe K.,Geidel E.,Weller H. et al .Phys. Chem. Chem. Phys.,2002, 4: 1704.
    [103] Mattoussi H.,Mauro J. M.,Goldman E. R., et al., .J. Am. Chem. Soc., 2000,122: 12142.
    [104] Goldman E. R., Anderson G. P., Tran P. T., Mattoussi H., Charles P. T., Mauro J. M., Anal. Chem. 2002, 74: 841.
    [105] Jaiswal J. K., Mattoussi H., Mauro J. M., Simon S. M., Nat. Biotechnol. 2003, 21: 47.
    [106] Willard, D. M.; Carillo, L. L.; Jung, J.; Orden, A. V. Nano Lett. 2001, 1: 469.
    [107] ?kerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E.Proc. Natl. Acad. Sci. USA 2002, 99: 12617.
    [108] Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121: 8122.
    [109] Mason J. N., Farmer H., Tomlinson I. D., Schwartz J. W., Savchenko V., DeFelice L. J., Rosenthal S. J., Blakely R. D., Journal of Neuroscience Methods, 2005, 143: 3.
    [110] SU X., LI Y., Anal. Chem., 2004, 76: 4806.
    [111] Wu X. Y., Liu H. J., Haley K. N., et al., Nat Biotechnology [J], 2003,21: 41.
    [112] Jaiswal J. K., Mattoussi H., Mauro J. M., et al., Nat Biotechnology [J], 2003, 21: 47.
    [113] Dubertret B., Skourides P., Norris D. J., et al., Science [J], 2002, 298: 1759.
    [114] Larson D. R., Zipfel W. R., Williams R. M., et al., Science [J], 2003, 300: 1434.
    [115] Jovin T. M., Nat Biotechnology [J], 2003, 21: 32.
    [116] Tokumasu F., Dvorak J. J. Microsc. [J], 2003, 211: 256.
    [117] Medintz I L, Uyeda H T, Goldman E R, et al. Nat Mater [J], 2005, 4(6): 435.
    [118] Bruchez M P. Curr Opin Chem Biol [J], 2005, 9( 5 ): 533.
    [119] Lewin M., Carlesso N., Tung C., et al., Nat. Biotechnol. [J], 2000, 18: 410.
    [120] Gao X. H., Cui Y. Y., Levenson R. M., Chung L. W. K., Nie S. M., Nature Biotechnology [J], 2004, 22: 969.
    [121] Jiang W., Papa E., Fischer H., et al. Trends Biotechnol [J], 2004, 22(12): 607.
    [122] Jaiswal J. K., Mattoussi H., Mauro J. M., et al. Nat Biotechnol [J] , 2003, 21(1): 47.
    [123] Mattheakis L. C., Dias J. M., Choi Y. J., et al. Anal Biochem [J], 2004, 327(2): 200.
    [124] Sukhanova A., Devy J., Venteo L., et al. Anal Biochem [J] , 2004, 324(1): 60.
    [125] Stsiapura V., Sukhanova A., Artemyev M., et al. Anal Biochem [J], 2004,334(2): 257.
    [126] Kim S., Lim Y. T., Soltesz E. G., et al. Nat Biotechnol [J], 2004, 22(1): 93.
    [127] Voura E. B., Jaiswal J. K., Mattoussi H., et al. Nat Med [J], 2004, 10(9): 993.
    [128] Li Y., Tang Z. Y., Ye S. L., et al. World J Gastroenterol [J] , 2001, 7I(5):630.
    [129] Lidke D. S., Nagy P., Heintzmann R., et al. Nat Biotechnol [J], 2004, 22(2): 198.
    [130]张春阳,马辉,丁尧等,高等学校化学学报[J],2001,22: 34.
    [131] Mameova N. N., Kotov N. A., Rogach A. L., et al., Nano.Lett.[J], 2001, 1: 281.
    [132] Wang S., Mamedova N., Kotov N. V., et al., .Nano. Lett [J], 2002, 2: 817.
    [133] Wang L. Y., Kan X. W., Zhang M. C., et al., Analyst [J] , 2002, 127: 1531.
    [134]林章碧,苏星光,张家骅,金钦汉.分析化学[J],2002,30:237.
    [135]李军,袁航,赵奎等,高等学校化学学报[J],2003,24:1293.
    [136] Bakalova R., Ohba H., Zhelev Z., et al. Nano Letters [J], 2004, 4 (9) : 1567.
    [137] Bahar T., Serdar S., Immobilization of glucoamylase on magnetic polystyrene particles [J].Journal of Applied Polymer Science, 1999, 72: 69.
    [138]刘祖黎,杨雄波.聚苯乙烯/甲基丙烯酸磁性微球的制备与表征[J].化中科技大学学报(自然科学版),2006,34(6):46.
    [139] Chen Z. J., Peng K., Mi Y., Preparation and properties of magnetic polystyrene microspheres[J]. Journal of Applied Polymer Science, 2007, 103: 3660.
    [140]杨旭,李欣,潘复生等.表面含羧基的磁性高分子微球的制备和表征[J].化学世界,2006,5:276.
    [141]邱广明,高晓松,杨春雁,等.Fe3O4/P(St-AA)核-壳复合微球的制备和表征[J].应用化学,1996,13(1):6.
    [142]邱广明.微米级Fe3O4/P(St-Ac)磁性微球的合成[J].应用化学,1996,16(6):46.
    [143]孙宗华,李孝红.磁性高分子微球的合成研究-带醛基磁性高分子微球的合成及表征[J].离子交换与吸附, 1996,12(6):486.
    [144] Ugelstad J., Berge A., Schmid R., Preparation and application of new monosized polymer particles[J].Progress in Polymer Science, 1992, 17(1): 87.
    [145] Ugelstad J., Stenstad P., Monodisperse magnetic polymer particles in new biochemical and biomedical application[J]. Blood Purification, 1993, 11(6): 349.
    [146] Chung T. H., Pan H. C., Lee W. C., Preparation and application of magnetic poly(styrene-glycidyl methacrylate) microspheres[J]. Journal of Magnetism and Magnetic Materials, 2007, 311: 36.
    [147]蔡梦军,朱以华,杨晓玲.磁性Fe3O4明胶复合纳米粒子的制备与表征[J] .华东理工大学学报(自然科学版),2006,32(3):290.
    [148] Xu H., Cui L., Tong N., Development of high magnetization Fe3O4/ polystyrene/ silica nanospheres via combined miniemulsion/emulsion polymerization [J]. J. AM. CHEM. SOC., 2006, 128: 15582.
    [149] Wang Y M, Feng L X, Pan C Y. Characterization and magnetic properties of P(St-co-4VP) metal microspheres,Journal of Applied Polymer Science, 1998, 70(12): 2307.
    [150]崔升,沈晓冬,林本兰,等.纳米磁性阿霉素人血白蛋白微球的制备与表征[J].中国生物医学工程学报,2006,25(1):114.
    [151]崔升,沈晓冬,林本兰.水基稳定分散的靶向药物用纳米Fe3O4的制备[J].精细化工,2006,23(9):859.
    [152] Deng Y., Wang C., Shen X., Preparation, characterization and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells [J]. Chem. Eur. J., 2005, 11: 6006.
    [153]江万权,朱春玲,陈祖耀,等.微米级高聚物包埋型金属铁复合粒子的球磨法制备及其磁流变效应[J].化学物理学报,2001,14(5):543.
    [154] Jordan A., Scholz R., Maier-Hauff K., Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia [J].Magn.Magn. Mater., 2001, 225: 118.
    [155] Dailey J.P., Phillips J.P., Li C., Synthesis of silicone magnetic fluid for use in eye surgery [J].Magn. Magn. Mater., 1999, 194: 140.
    [156] Kim D.K., Voit W., Zapka W.. Biomedical application of ferrofluids containing magnetite nanoparticles, Synthesis, Functional Properties and Applications of Nanostructures [J].Mater. Res. Soc. Symp. Proc. 2001, 676: 118.
    [157] Zhang Y., Kohler N., Zhang M.Q., Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake[J]. Biomaterials, 2002, 23: 1553.
    [158] Kim D. K., Mikhaylova M., Jeong Y. K., Starch-coated superparamagnetic nanoparticles as MR contrast agents[J]. Chem. Mater., 2003, 15: 4343.
    [159] Brockmeyer C., Zubek E. M., Lingnau A., Immunomagnetic removal of tumor cells using monoclonal antibodies against B-cell epitopes or tumor associated breast cancer antigens[J]. European Journal of Cancer, 1995, 31: 32.
    [160] Akgol S., Kacar Y., Denizli A., Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres[J]. Food Chemistry, 2001, 74: 281.
    [161]邱广亮,邱广明,李咏兰等,磁性淀粉微球固定化乙酰乳酸脱羧酶及应用[J].广州化工,2000,28(4):24.
    [162]邱广亮,李咏兰,纳米级磁性微球的制备及固定化纤维酶的研究[J].药物生物技术,2001,8(4):197.
    [163] Han L., Wang W., Chen L., The preparation and catalytically active characterization of papain immobilized on magnetic composite microspheres[J].Emzyme and Microbial Technology, 2004, 35:15.
    [164]谢柳,肖潇,邓乐.环氧基高分子磁性复合微球固定化木瓜蛋白酶的研究[J].生命科学研究,2006,10(3):66.
    [1] Chan W. C., Nie S., Science, 1998, 281: 2016.
    [2] Dubertret B., Skourides P., Norris D. J., et al, Science, 2002, 298: 29.
    [3] Klarreich E., Nature, 2001, 413:450.
    [4] Goldman E. R., Clapp A. R., Anderson G. P., Anal. Chem., 2004, 76:684.
    [5] Smita P., Marie C., Gabriel A., Nano Lett., 2007, 7: 1839.
    [6] Kuo Y., Wang Q., Chada R., et al., J. Phys. Chem. C, 2008, 112: 4818.
    [7] Gaponik N., Talapin D. V., Rogach A. L., et al., J. Phys. Chem. B, 2002, 106: 7177.
    [8] Mattousssi H., Mauro J. M., Goldman E. R., Anderson G. P., Sundar V. C., Mikulec F. V., Bawendi M.G., J.Am.Chem.Soc., 2000,122:12142.
    [9] Rogach A. L., Kornowski A., Gao M., Eychmuller A., Weller H., J. Phys. Chem. B, 1999, 103: 3065.
    [10] Wuister S. F., Houselt A., DonegáC. M., Vanmaekelbergh D., Meijerink A., Angew. Chem. Int. Ed., 2004, 43: 3029.
    [11] Talapin D. V., Haubold S., Rogach A. L., Kornowski A., Haase M., Weller H., J. Phys. Chem. B, 2001, 105: 2260.
    [12] Bowen Katari J. E., Colvin V. L., Alivisatos A. P., J. Phys. Chem., 1994, 98: 4109.
    [13] Talapin D. V., Rogach A. L., Mekis I., Haubold S., Kornowski A., Hasse M., Weller H., Colloids Sur. A, 2002, 202: 145.
    [14] Mello DonegáC., Hickey S. G., Wuister S. F., Vanmaekelbergh D., Meijerink A., J. Phys. Chem. B, 2003, 107: 489.
    [15] Borchert H., Talapin D. V., Gaponik N., McGinley C., Adam S., Lobo A., Moller T., Weller H., J. Phys. Chem. B, 2003, 107: 9662.
    [16] Guo J., Yang W., Wang C., J. Phys. Chem. B., 2005, 109(37): 17467.
    [17]林瑞庆,陈红玲,生命科学的重大发现-2002年诺贝尔生理学/医学奖与秀丽新杆线虫介绍.热带医学杂志, 2003, 2: 125.
    [18] Fortin M., Hugo P., Cytometry, 1999, 36: 27.
    [19] Wang L., Cole K. D., Gaigalas A. K., et al, Bioconjugate Chem, 2005, 16: 194.
    [20] Jones B. G., Dickinson P. A., Gumbleton M., et al, International Journal of Pharmaceutics [J], 2002, 236: 65.
    [21] Michelle A. V., Stephen R., Michael G. C., et al, Microvascular Research [J], 2001, 61: 111.
    [22] Hubl W., Iturraspe J., Martinez G. A., et al, Cytometry, 1998, 34: 121.
    [23] Matt T., Bronwyn J. B., Adv Mater, 2001, 13(12-13): 975.
    [24] Kathryn L. K., Marie A. I., Experimental Hematology, 2002, 30: 1227.
    [25] Vignali D. A., Journal of Immunological Methods, 2000, 243: 243.
    [26] Murray C. B., Norris D. J., Bawendi M. G., J Am Chem Soc, 1993, 115: 8706.
    [27] Guo W., Li J. J., Wang Y. A., Peng X.G., Chem Mater, 2003, 15: 3125.
    [28] Gao M., Kirstein S., Molhwald H., et al, Phys Chem B, 1998, 102: 8360.
    [29] Pathak S., Choi S. K., Amheim N. T. et al, J Am Chem Soc, 2001, 123: 4103.
    [30] Baumle M., Stamou D., Segura J. M., et al, Langmuir, 2004, 20: 3828.
    [31] Medintz I L, Trammell S A, Mattoussi H, et al, J Am Chem Soc, 2004,126: 30.
    [32] Goldman E. R., Clapp A. R., Anderson G. P., et al, Anal Chem, 2004, 76: 684.
    [33] Jaiswal J K, Mattoussi H, Mauro J M, et al, Nat Biotechnol, 2003, 21: 47.
    [34] Wang Q., Iancu N., Seo D. K., Chem Mater, 2005, 17: 4762.
    [35] Yang Y., Wen Z., Dong Y., et al, Small, 2006, 2: 898.
    [36] Gong Y., Gao M., Wang D., et al, Chem Mater, 2005, 17 (10): 2648.
    [37] Gao X., Nie S., Anal Chem, 2004, 76: 2406.
    [38] Paine A. J., Luymes W., McNulty J., Macromolecules, 1990, 23: 3104.
    [39] Bamnolker H., Margel S., J Polym Sci Part A, 1996, 34: 1857.
    [40] Jiang B., Zhang H., Chinese Journal of Colloid and polymer, 2000, 18: 31.
    [41] Sill K., Chem Mater, 2004, 16: 1240.
    [42] Scheroedter A., Weller H., Eritja R., Ford W. E., Wessels J. M., Nano Lett., 2002, 2:1363.
    [43] Santra S., Zhang P., Wang K., Tapec R., Tan W., Anal. Chem. 2001, 73: 4988.
    [44] Rogach A. L., Nagesha D., Ostrander J. W., Giersig M., Kotov N. A., Chem. Mater., 2000, 12: 2676.
    [45] Chan Y., Zimmer J. P., Stroh M., Steckel J. S., Jain R. K., Bawendi M. G., Adv. Mater., 2004, 16: 2092.
    [46] Mokari T., Sertchook H., Aharoni A., Ebenstein Y., Avnir D., Banin U., Chem. Mater., 2005, 17: 258.
    [47] Selvan S. T., Li C., Ando M., Murase N., Chem. Lett., 2004, 33: 434.
    [48] Correa-Duarte M. A., Giersig M., Liz-Marzān L. M., Chem. Phys. Lett., 1998, 286: 497.
    [49] Yang Y. H., Gao M. Y., Adv. Mater., 2005, 17: 2354.
    [1] Haik Y., Chen C. J., J Magn Magn Mater, 1999, 194 (123): 254.
    [2] Abudiab T., Beitle R. R., J Chromatogr. A, 1998, 795: 211.
    [3] Chen J. P., Su D. R., Biotechnol Prog, 2001, 17(2): 369.
    [4] Asmatulu R., Zalich M. A., Claus R.O.,et al., J Magn Magn Mater, 2005, 292: 108.
    [5] Hurak D., J Polym Sci Part A Polym Chem, 2001, 39 (21): 3707.
    [6] Liu Z. L., Liu Y. J., Yao K. L., J Mater Synth Proces, 2002, 10 (2): 83.
    [7] Liu Z. L., Wang H. B., Lu Q. H., J Magnetism and Magnetic Materials, 2004, 283 (223): 258.
    [8] Liu Z. L., Ding Z. H., Yao K. L., J Magnetism and Magnetic Materials, 2003, 265(1): 98.
    [9] Horák D., Bohácek J., J. Polym. Sci. Part A: Poly. Chem., 2000, 38: 1161.
    [10] Ramírez L. P., Landfester K., Maromol. Chem. Phys., 2003, 204(1): 22.
    [11] Gómez-Lopera S. A., Plaza R. C., Delgado A. V., Colloid Interface Sci., 2001, 240 (1): 40.
    [12]李海波,刘梅等Fe/Al2O3纳米复合材料的结构和磁性[J].吉林大学学报(工学版),2007, 4: 13.
    [13]王莉,韩兆让等SiO2/PSt纳米复合微球的制备[J].吉林大学学报(理学版),2006,5: 26.
    [14] Yang C. L., Guan Y. P., Xing J. M., et al., American Institute of Chemical Engineers AIChE J, 2005, 51: 2011.
    [15] Ugelstad J., Ellingsen T., Berge A., et al., Magnetic Polymer Particles. PCT Int. Appl. WO Patent No. 8303920; 1983.
    [16]杨旭,潘复生,陶长元等.表面含羧基的磁性高分子微球的制备和表征[J].化学世界, 2006, 5: 276.
    [17]靳艳巧,李曦,张超灿.微悬浮聚合法制备聚苯乙烯磁性微球的研究[J].高分子材料科学与工程, 2006, 22: 87.
    [18] Hiroyouki Itoh, Tadao Sugimoto., J Colloid and Interface Science, 2003, 265(2): 283.
    [19]邓建国,贺传兰,龙新平等.磁性Fe 3 O4聚吡咯纳米微球的合成与表征[J],高分子学报, 2003, 3: 393.
    [20] Santra S., Tapec R., Dobson J., Langmuir, 2001, 17: 2900.
    [21] Lin Y., Tsai C., Huang H., Chem. Mater., 2005, 17: 4570.
    [22] Xia D., Li D., Ku Z., Langmuir, 2007, 23: 5377.
    [23] Kell A., Somaskandan K., Stewart G., Langmuir, 2008, 24: 3493.
    [24] Tang H., Yu C., Oduoro W., He H., Langmuir, 2008, 24: 1587.
    [25] Bagwe R., Hilliard L., Tan W., Langmuir, 2006, 22: 4357.
    [26] Wang L., Wang K., Santra S., Anal. Chem., 2006, 78: 647.
    [1] Stern E. A., Farrell R. A., Phys. Rev., 1960, 120: 130.
    [2] Raether H., Surface Plasmon on Smooth and Rough Surfaces and on Gratings, Springer-Verlag Berlin Heidelberg, 1988: 1.
    [3] Salamon Z., Angus Macleod H., G. Tollin, Biochimica et Biophysica Acta, 1997, 1331: 117.
    [4]全原粲著,邓衡译,薄膜,北京:电子工业出版社,1988: 212.
    [5]王柯敏,光化学传感器理论与方法,长沙:湖南教育出版社,1995: 74.
    [6]尹树百,薄膜光学,北京:科学出版社,1987: 9.
    [7]唐晋发,顾培夫,薄膜光学与技术,北京:机械工业出版社,1989: 9.
    [8] Liu X., Song D., Zhang Q., Tian Y., Zhang H., Trends in Analytical Chemistry, 2005, 24(10): 887.
    [9] Hanning A., Roeraade J., Delrow J. J., Jorgenson. R. C., Sensors and Actuators B: Chemical, 1999, 54(1-2): 25.
    [10] Neff H., Zong W., Lima A. M., Thin Solid Films, 2006, 496(2): 688.
    [11] Kruchinin A. A., Vlasov Y. G., Sensors and Actuators B: Chemical, 1996, 30(1): 77.
    [12] Homola J., Sinclair S. Y., Sensors and Actuators B, 1998, 51: 331.
    [13] Naraoka R., Kajikawa K., Sensors and Actuators B: Chemical, 2005, 107(2): 952.
    [14] Ho H. P., Lam W. W., Sensors and Actuators B: Chemical, 2003, 96(3): 554.
    [15] Chen F. C., Chen S. J., Biosensors and Bioelectronics, 2004, 20(3): 633.
    [16] Homola J., Koudela I., Yee S. S., Sens. and Actuators B, 1999, 54: 16.
    [17] Jorgenson R. C., Yee S. S., Sensors and Actuators B: Chemical, 1993, 12(3): 213.
    [18] Tiefenthaler K. K., Lukosz W., Opt. Lett., 1984, 9: 137.
    [19] Challener W. A., Edwards J. D., McGowan R. W., Skorjanec J., Yang Z., Sensors and Actuators B: Chemical, 2000, 61(1-2): 42.
    [20] Liedberg B., Nylander C., Lundstrom I., Sensors and Actuators B, 1983, 4: 299.
    [21] Sun Y., Liu X., Song D., Sensors and Actuators, 2007,122: 469
    [22] Severs A., Schasfoort R., Biosens. Bioelectron, 2001, 16: 221.
    [23] Morgan H., Taylor D. A., Biosens. Bioelectron, 2005, 21: 433.
    [24] Doong R., Shih H., Biosens. Bioelectron, 2006, 22: 185.
    [25] Jordan C. E., Frutos A. G., Thiel A. J., Corn R. M., Anal. Chem., 2007, 79: 4939.
    [26] Okahata Y., Kawase M., Nikura K., Ohtake F., Furusawa H., Ebara Y., Anal. Chem., 2008, 80: 1288.
    [27] Frutos A. G., Corn R. M., Anal. Chem. News & Features, 1998, July: 449A.
    [28] Severns A. H., Schasfoort R. B. M., Biosens. Bioelectron, 1993, 8: 365.
    [29] Leung P. T., Pollard-Knight D., Malan G. P., Finlan M. F., Sens. and Actuators B, 2004, 102: 169.
    [30] He L., Emily Y., Smith L., Andrew L., Frank G. S., Benkovic S. J., Natan M. J., 99’Pittcon Book of Abstracts, Orlando, Floreida, 1999, 2182P
    [31] Steiner G., Pham M. T., Kuhne C., Salzer R., Fresenius J. Anal. Chem., 2008, 80: 2539.
    [32] Pham M. T., Matz W., Seifart H., Anal. Chim. Acta, 1997, 350: 209.
    [33] Magruder R. H., Witting J. E., Zuhr R. A., J. Non-Crystalline Solids, 1993: 163.
    [34] Magruder R. H., Zuhr R. A., Osborne D. H., Nuclear Instr. Meth. in Phys. Revs.B, 1995, 99: 590.
    [35]方华丰,周宜开,化学传感器,1997, 17(3): 177.
    [36]吴桦,隋森芳,生物物理学报,1992, 8(2): 245.
    [37] Cui X., Pei R., Wang Z., Yang F., Ma Y., Dong S., Yang X., Biosens. Bioelectron., 2003, 18: 59.
    [38] Hanken D. G., Naujok R. R., Gray J. M., Corn R. M., Anal. Chem., 2007, 69: 240.
    [39] Hanken D. G., Corn R. M., Anal. Chem., 2007, 79: 3665.
    [40] Pope J. M., Tan Z., Kimbrell S., Buttry D. A., J. Am. Chem. Soc., 2008, 130: 10085.
    [41] Iwasaki Y., Horiuchi T., Morita M., Niwa O., Sens. Actuators B, 2006, 117: 145.
    [42]蔡德,光谱分析辞典,北京:光谱实验室编辑部, 1987: 140.
    [43] Vandernoot V. A., Lai E. P. C., Spectr., 1991, 6, 28.
    [44] Krone J. R., Nelson R. W., Dogruel D., Williams P., Granzow R., Anal. Biochem., 2007, 366: 108.
    [45] Nelson R. W., Krone J. R., Jansson O., Anal. Chem. 2006, 78: 4363.
    [46] Sonksen C. P., Nordhoff E., Jansson O., Malmqvist M., Roepstorff P., Anal. Chem., 2007, 79: 2629.
    [47] Owega S., Lai E. P., Bawagan A. D., Anal. Chem., 2005, 77: 393.
    [48] Jory A. J., Bradbarry G. W., Cann P. S., Sambles J. R., Meas. Sci. Technol., 1995, 6: 1193.
    [49] Nelson S. G., John K. S., Yee S. S., Sens. and Actuators B, 2003, 95: 132.
    [50] Kochergin V. E., Valeiko M. V., Beloglazov A. A., Ksensvich T. I., Nikitin P. I., Quantum Electronics, 1998, 28: 835.
    [51] Piehler J., Brecht A., Gauglita G., Maul C., Grabley S., Zerlin M., Biosens. Bioelectron., 2007, 23: 107.
    [52] Jorgenson R. C., Yee S. S., Sens. and Actuators B, 2005, 105: 96.
    [53] Hanning A., Roeraade J., Delrow J. J., Jorgenson R. C., Sens. and Actuators B, 2007, 126: 415.
    [54] Homola J., Yee S. S., Sens. and Actuators B, 2006, 115: 349.
    [55] Piliarik M., PárováL., Homola J., Biosens. Bioelectron, 2009, 24: 1399.
    [56] Manera M. G., Leo G., Curri M. L., Sens. and Actuators B, 2004, 100: 75.
    [1] Epperson P. M., Sweedler J. V., Bilhorn R. B., Sims G. R., Denton M. B., Anal. Chem., 1988, 60 (5): 327A.
    [2]张展霞,肖敏,分析实验室,1995, 14(5): 80.
    [3] Sims G. R., Donton M. B., In Multichannel Image Detectors, ACS Stmposium Series, No. 236, 1983, 2 : Chap. 5.
    [4] Billorn R. B., Epperson P. M., Denton M. B., Appl. Spetrosc., 1987, 41: 1125.
    [5] Sweedler J. V., Denton M. B., Anal. Chem., 1988, 6.
    [6]刘贤德主编,CCD及其应用原理,武汉:华中理工大学出版社, 1990: 20.
    [7]候云艳,电荷耦合器件分光光度计的应用研究,长春:吉林大学硕士学位论文, 1998: 2.
    [8] Epperson P. M., Jalkiem R. D., Denton M. B., Anal. Chem., 1989, 61: 282.
    [9] Galley P. J., Hieftje G. M., Spectrochim Acta, 1993, 488(6/7): 769.
    [10] Berger C. E., Beumer T. A., Kooyman R. P., Greve J., Anal. Chem., 1998, 70: 703.
    [11] Sakai G., Ogata K., Uda T., Miura N., Yamazoe N., Sens. and Actuators B, 1998, 49: 5.
    [12] Lawerence C. R., Geddes N. J., Furlong D. N., Biosensors Bioelectron, 1996, 11: 389.
    [13] Geedes N. J., Martin A. S., Caruso F., Urquhart R. S., Furlong D. N., Samoles J. R., Than K. A., Edgar J. A., J. Immunol. Methods, 1994, 175: 149.
    [14] Kooyman R. P., Kolkman H., Vengent J., Greve J., Anal. Chim. Acta, 1988, 213: 35.
    [15] Daniels P., Deascon J., Eddowes M., Pedley D., Sens. and Actuators, 1988, 15: 11.
    [16] Sagiv J., J. Am. Chem. Soc., 1980, 102: 92.
    [17] Cohen S. R., Naaman R., Sagiv J., J. Phys. Chem., 1986, 90: 3054.
    [18] Porter M. D., Bright T. B., Allara D. L., Chidsey C. E., J. Am. Chem. Soc., 1987, 109: 3559.
    [19] Maria, Pantaleo, Gabriella, Sens. and Actuators B, 2007, 126: 562.
    [20] Sabina, Maria, Marcel, Biosens. Bioelectron, 2008, 24: 552.
    [21] Trevi?o J., Calle A., Rodríguez-Frade J.M., Talanta, 2009, 78: 1011.
    [1] Humke E. W., Ni J., ERICE V. M., J Biol Chem, 1998, 273 (25): 15702.
    [2] Villa P., Kaufmann S. K., Earnshaw W. C., TIBS, 1997, 22 (10): 388.
    [3] Cohen G. M., Bio Chem J, 1997, 326: 1.
    [4] Alnemri E. S., J Cell Biochem, 1997, 64: 33.
    [5] Leidberg B., Ivarsson B., Hegg P. O., Lundstrom I., J. Colloid Interface Sci., 1986, 114: 386.
    [6] Jordan C. E., Frutos A. G., Thiel A. J., et al, Anal. Chem., 1997,69: 4939.
    [7] Goodrich T. T., Lee H. J., Corn R. M., J. Am. Chem. Soc., 2004, 126: 4086.
    [8]张阳德,纳米生物分析化学与分子生物学,化学工业出版社, 2005: 26.
    [9] Algar W. R., Krull U. J., Analytical Chimica Acta, 2007, 581: 193.
    [10] Zhu C., Zhou J., Zhao K., et al., Electrochimica Acta, 2006, 52: 575.
    [11] Wang S., Gaylord B., Bazan G. C., J. Am. Chem. Soc., 2004, 126: 5446.
    [1] Mu Y., Song D.Q., et al, Talanta [J], 2005, (66) :181.
    [2]宋大千,刘霞,赵丽巍等,高等学校化学学报[J],2003,24(7): 1185.
    [3]赵晓君,王珍,许汉英等,高等学校化学学报[J],1998,19(8): 1214.
    [4] Wei J.Y., Liu X., et al. Chem Res Chinese U [J], 2003, 19(2) :183.
    [5] Haik Y., Pai V., et al. J Magn Magn Mater [J], 1999, 194(123):254.
    [6] Abudiab T., Beitle R. R. J Chromatogr. A [J],1998, 795: 211.
    [7] Chen J. P., Su D. R. Biotechnol Prog [J], 2001, 17(2) :369.
    [8] Asmatulu R., Zalich M. A., Claus R. O., et al. J Magn Magn Mater [J], 2005 ,292 :108.
    [9]赵晓君,牟颖等,高等学校化学学报[J],1999, 20(5):704.
    [10] Zenon G., John G., Anal. Biochem., 1990, 185:131.
    [11] Lundstrom I., Biosens. Bioelectron., 1994, 9: 725.
    [12] Lyon L. A., Musick M. D., Smith P. C., Reiss B. D., Pena D. J., Natan M. J., Sens. Actuator B, 1999, 54: 118.
    [13] Lyon L. A., Pena D. J., Natan M. J., J. Phys. Chem. B, 1999, 103: 5826.
    [14] Chah S., Hutter E., Roy D., Fendler J. H., Yi J., Chem. Phys., 2001, 272: 127.
    [15] He L., Musick M. D., Nicewarner S.R., Sallinas F. G., Benkovic S. J., Natan M. J., Keating C. D., J.Am. Chem. Soc., 2000,122: 9071.
    [16] Zayats M., Pogorelova S. P., Kharitonov A. B., Lioubashevski O., Katz E., Willner I., Chem. Eur. J., 2003, 9: 6108.
    [17] Lyon L. A., Musick M. D., Natan M. J., Anal. Chem., 1998, 70: 5177.
    [18] Kubitschko S., Spinke J., Bruckner T., Pohl S., Oranth N., Anal. Biochem., 1997, 253: 112.
    [19] Vaknin D., Als-Nielsen J., Piepenstock M., Losche M., Biophys. J., 1991, 60: 1545.
    [20] Savage M. D., Mattson G., Desari S., J. In Avidin/Biotin Chemistry: A Handbook, 1992: 467.
    [21]方华丰,周宜开,化学传感器,1997,17(3): 177.
    [22] Jungar C., Strandh M., Ohlson S., Mandenius C., Anal. Biochem., 2000, 281: 151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700