淫羊藿苷对卵蛋白和内毒素诱导炎症反应的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     淫羊藿苷对卵蛋白诱导大鼠哮喘性气道炎症的影响
     目的:观察淫羊藿苷对卵蛋白诱导大鼠哮喘性气道炎症的影响。
     方法:(1)72只雄性SD大鼠随机分为6组,每组12只,分别是正常对照组(PBS)、模型组(OVA)、阳性对照组(OVA+地塞米松组)和OVA+淫羊藿苷低、中、高剂量组(5、10、20mg/kg-1);(2)采用卵蛋白(OVA)致敏和反复激发大鼠建立哮喘模型;(3)采用HE染色观察淫羊藿苷对OVA诱导的大鼠肺组织炎症浸润的干预作用及病理学评分的影响;(4)观察6组外周血总细胞数、嗜酸性粒细胞和巨噬细胞计数情况;(5)采用酶联免疫吸附测定法检测血清中IL-4、IFN-γ、IL-13和TNF-α的含量;(6)取各组大鼠肺泡灌洗液,采用酶联免疫吸附测定法检测肺泡灌洗液中IL-4和IFN-γ的含量。
     结果:(1)淫羊藿苷对大鼠哮喘模型肺组织病理学和炎症分级评分影响的结果显示:OVA+淫羊藿苷高剂量组支气管、血管和周围肺组织有炎性细胞浸润,支气管上皮可见部分损伤,与模型组相比较,支气管上皮和血管周围的炎症有所减轻。模型组大鼠肺组织炎症评分明显高于正常对照组, OVA+淫羊藿苷高剂量组与模型组相比较,炎症评分降低,差异有显著性(P<0.05);(2)淫羊藿苷对大鼠哮喘模型外周血细胞计数的影响结果显示:模型组外周血总细胞、嗜酸性粒细胞和巨噬细胞与正常对照组相比较均显著增加,OVA+淫羊藿苷高剂量组对嗜酸性粒细胞和巨噬细胞抑制明显,差异有显著性(P<0.05);(3)淫羊藿苷对大鼠哮喘模型外周血细胞因子影响的结果显示:模型组大鼠血清IL-4、IL-13和TNF-α水平与正常对照组相比较均显著增加,血清IFN-γ水平显著降低。OVA+淫羊藿苷高、中剂量组对哮喘大鼠血清IL-4、IL-13和TNF-α水平抑制明显,差异具有显著性(P<0.05),淫羊藿苷高剂量组能够增加大鼠哮喘模型血清IFN-γ的表达水平,差异有显著性(P<0.05);(4)淫羊藿苷对大鼠哮喘模型肺泡灌洗液中IL-4和IFN-γ表达影响的结果显示:模型组大鼠肺泡灌洗液中IL-4表达明显高于正常对照组;OVA+淫羊藿苷高剂量组与哮喘模型组相比较,大鼠肺泡灌洗液中IL-4表达明显降低,差异有显著性(P<0.05),哮喘模型组大鼠肺泡灌洗液中IFN-γ表达明显低于正常对照组,淫羊藿苷治疗组与哮喘模型组相比较,大鼠肺泡灌洗液中IFN-γ表达有所升高,差异有显著性(P<0.05)。
     结论:(1)淫羊藿苷具有改善哮喘大鼠肺组织炎症的作用;(2)淫羊藿苷具有抑制哮喘大鼠外周血嗜酸性粒细胞和巨噬细胞聚集的作用;(3)淫羊藿苷具有抑制哮喘大鼠血清和肺泡灌洗液中炎症细胞因子的作用。
     第二部分
     淫羊藿苷对大鼠哮喘性气道炎症影响的分子机制研究
     目的:观察淫羊藿苷对卵蛋白诱导大鼠Th1/Th2细胞因子失衡表达的影响及机理探讨。
     方法:(1)60只雄性SD大鼠随机分为正常对照组(PBS)、模型组(OVA诱导)、地塞米松组、OVA+淫羊藿苷低、中、高剂量组(5、10、20mg/kg-1);(2)采用卵蛋白(OVA)致敏和激发大鼠建立哮喘模型;(3)采用ELISA法观察淫羊藿苷对各组大鼠肺组织IL-4和IFN-γ的含量的影响;(4)采用免疫组化染色观察淫羊藿苷对各组大鼠肺组织T-bet和GATA-3的干预作用;(5)采用Realtime RT-PCR法观察淫羊藿苷对各组大鼠肺组织和脾脏淋巴细胞T-bet和GATA-3 mRNA表达的干预作用;(6)采用Western blot法观察淫羊藿苷对各组大鼠肺组织T-bet、GATA-3和NF-kB p65蛋白表达的干预作用。
     结果:(1)各组大鼠肺组织ELISA结果显示,OVA+淫羊藿苷中、高剂量组与哮喘模型组相比较,大鼠肺组织IL-4表达明显降低,差异有显著性(P<0.05),大鼠肺组织IFN-γ表达有升高趋势,但是无统计学意义(P>0.05);(2)各组大鼠肺组织GATA-3和T-bet免疫组化染色结果显示,OVA+淫羊藿苷高剂量组GATA-3染色明显减少,T-bet染色没有明显减少;(3)各组大鼠肺组织和脾脏淋巴细胞T-bet和GATA-3 mRNA表达结果显示,淫羊藿苷治疗组与哮喘模型组相比较,大鼠肺组织中T-bet和GATA-3 mRNA表达明显降低,差异有显著性(P<0.05);哮喘模型组大鼠脾脏淋巴细胞中GATA-3和T-betmRNA表达明显高于正常对照组,淫羊藿苷治疗组与哮喘模型组相比较,大鼠肺组织中GATA-3 mRNA表达明显降低,差异有显著性(P<0.05), T-bet mRNA表达有所降低,但是差异无显著性(P>0.05);(4)各组大鼠肺组织T-bet和GATA-3蛋白表达的结果显示,模型组T-bet和GATA-3表达与PBS对照组相比较显著增加,淫羊藿苷能够抑制GATA-3蛋白的增加,而对T-bet的抑制作用不明显;(5)各组大鼠肺组织NF-kB p65免疫组化染色结果显示,OVA+淫羊藿苷高剂量组的支气管、血管黏膜下和周围肺组织有炎性细胞浸润,NF-kB p65着色细胞较少,与模型组相比较,NF-kB p65阳性表达较少;(6)各组大鼠肺组织NF-kB p65蛋白检测结果显示,淫羊藿苷治疗组的p65总蛋白的表达减少,胞浆p65蛋白表达增加。
     结论:(1)淫羊藿苷能够调节哮喘大鼠肺组织Th1/Th2相关细胞因子表达失衡;(2)淫羊藿苷能够调节哮喘大鼠肺组织和脾脏淋巴细胞中Th1/Th2相关转录因子(T-bet/GATA-3)表达失衡;(3)淫羊藿苷具有抑制哮喘大鼠肺组织NF-kB p65蛋白激活的作用。
     第三部分
     淫羊藿苷调控内毒素诱导炎症反应的体内及体外实验研究
     目的:本研究旨在探讨淫羊藿苷在抑制LPS诱导的体内和体外炎症反应中的作用及信号转导机制。
     方法:(1)肺组织HE染色观察淫羊藿苷对LPS诱导的急性炎症的影响;(2)检测肺组织髓过氧化物酶(MPO)观察淫羊藿苷对LPS诱导的炎症反应的影响;(3)ELISA法观察淫羊藿苷对各组小鼠血清细胞因子的抑制作用(TNF-α, PGE2和NO); (4) Real-time RT-PCR观察淫羊藿苷对各组小鼠肺组织TNF-α、iNOS和COX-2mRNA表达的影响;(5) Western blot观察淫羊藿苷对PI3K/AKT的激活作用;(6)共聚焦和EMSA观察淫羊藿苷对NF-kB p65激活的抑制作用。结果:淫羊藿苷(20 mg/kg-1)干预后,能抑制LPS诱导的小鼠肺组织TNF-α、IL-6和COX-2 mRNA表达的增加;淫羊藿苷能够降低过氧化物酶(MPO)活性;在RAW 264.7细胞中,淫羊藿苷对LPS的细胞毒作用具有保护作用;免疫印迹和共聚焦显微镜分析表明,淫羊藿苷预处理RAW 264.7巨噬细胞后,能够减少p65核转位;淫羊藿苷能够激活PI3K/AKT信号通路。
     结论:(1)淫羊藿苷具有抑制LPS诱导的小鼠肺组织炎症反应的作用;(2)淫羊藿苷能够抑制LPS诱导的小鼠肺组织炎症因子基因表达;(3)淫羊藿苷能够抑制p65从胞浆进入细胞核;(4)淫羊藿苷能够激活PI3K/AKT信号通路。
partⅠ
     Effects of icariin on ovalbumin-induced asthma inflammation.
     Objective:Observation of icariin on ovalbumin-induced airway inflammation.
     Methods:(1) 72 male SD rats were randomly divided into 6 groups of 12 rats were the control group (PBS), model group (OVA), the positive control group (OVA+ dexamethasone group) and OVA+ icariin low, medium and high dose group (5,10,20 mg/kg-1); (2) Using ovalbumin (OVA) sensitization and the establishment rat asthma model; (3) Observation effects of icariin on the OVA-induced lung inflammation and pathological score; (4) Observation 6 groups of peripheral blood cells, total peripheral blood cell counts, eosinophil and macrophage counts; (5) Using enzyme-linked immunosorbent assay detect serum IL-4, IFN-γ, IL-13 and TNF-a levels; (6) Obtained BALF of rats, using enzyme-linked immunosorbent assay detection of BALF in IL-4 and IFN-y levels.
     Results:(1) Effects of icariin on the lung tissue of asthmatic rats and inflammatory grading score of the results:OVA+ high dose icariin bronchus, blood vessels and around submucosal inflammatory cell infiltration in lung tissue, visible part of the bronchial epithelial mucosal injury, compared with model group, bronchial epithelium and vascular inflammation around some relief. Model of lung tissue inflammation scores were significantly higher than the control group, OVA+ icariin high dose group compared with model group, inflammation score decreased, the difference was significant (P<0.05); (2) Asthma model of rat peripheral blood cell counts showed that:the model group peripheral blood cells, eosinophils and macrophages compared with the control group were significantly increased, OVA+ icariin high dose group on eosinophils cells and macrophages significantly inhibited, the difference was significant (P<0.05); (3) Effects of icariin on peripheral blood cytokines of asthmatic rats showed:model group, serum levels of IL-4, IL-13 and TNF-a levels compared with the control group were significantly increased, serum IFN-γlevels decreased significantly. OVA+ icariin high dose group on asthma serum IL-4, IL-13 and inhibition of TNF-a levels significantly, the difference was significant (P<0.05), icariin high dose can increase asthma model of serum levels of IFN-γexpression, the difference was significant (P<0.05); (4) Effects of icariin on IL-4 and IFN-γ expression in BALF of asthmatic rats:model group, IL-4 were significantly higher than the normal control group in BALF; OVA+ icariin high dose group compared with the asthma model group, IL-4 expression was lower in BALF, there was a significant difference (P<0.05), asthma model group IFN-y expression was significantly lower than the control group in BALF and icariin treatment group compared with the asthma model group, IFN-y expression was increased in BALF, the difference was significant (P<0.05).
     Conclusion:(1) Icariin improve the asthma model in rats with lung tissues inflammation; (2) Inhibit the asthma model peripheral blood eosinophils and macrophages; (3) Icariin inhibit the asthma model of rat cytokines in serum and BALF.
     PartⅡ
     Effects of icariin on asthmatic airway inflammation in molecular mechanisms.
     Objective:Observation of icariin on ovalbumin-induced imbalance of Thl/Th2 cytokine expression and its mechanism.
     Methods:(1) 60 male SD rats were randomly divided into control group (PBS), model group (OVA-induced), dexamethasone group, OVA+ icariin low, medium and high dose group (5,10,20 mg/kg-1); (2) Using ovalbumin (OVA) sensitization and the establishment rat asthma model; (3) Using ELISA, observation effects of icariin on IL-4 and IFN-y in the lung tissue; (4) Using immunohistochemical staining assay detect T-bet and GATA-3 in the lung tissue; (5) Using Realtime RT-PCR, observation effects of icariin on T-bet and GATA-3 mRNA expression in the lung tissue and spleen lymphocytes; (6)Using Western blot, observation T-bet, GATA-3 and NF-κB p65 protein expression of icariin in the lung tissue of rats.
     Results:(1) The ELISA lung tissue showed that, OVA+ icariin, the high dose group compared with the asthma model group, rat lung tissue IL-4 expression was significantly lower, the difference was significant (P<0.05) the lung tissue expression of IFN-y tended to increase, but no statistical significance (P>0.05); (2) lung tissue of rats in each group GATA-3 and T-bet immunohistochemical staining showed that, OVA+ prostitution high dose of sheep Lophanthus rugosus glycosides staining decreased GATA-3, T-bet staining did not significantly reduced; (3) the lung tissue and spleen lymphocytes T-bet and GATA-3 mRNA expression showed that icariin treatment group compared with the asthma model group, the lung tissue of T-bet and GATA-3 mRNA expression was lower, the difference was significant (P<0.05); asthma model in rat spleen lymphocyte GATA-3 and T-betmRNA was significantly higher than the normal control group, icariin treatment group compared with the asthma model group, the lung tissue of GATA-3 mRNA expression was lower, the difference was significant (P<0.05), T-bet mRNA expression decreased, but the difference was not statistically significant (P>0.05); (4) of the lung tissue T-bet and GATA-3 protein expression showed that the model group T-bet and GATA-3 expression compared with the PBS control group, a significant increase in icariin inhibits GATA-3 protein increased, while no significant inhibition of T-bet; (5) The lung tissue NF-κB p65 immunohistochemistry results, OVA+ high dose icariin the bronchus, blood vessels and submucosal surrounding lung tissue with inflammatory cell infiltration, NF-κB p65 cells on small, compared with the model group, NF-κB p65 expression less; (6) The lung tissue NF-κB p65 protein show, icariin treatment group decreased expression of p65 total protein, cytoplasmic p65 protein expression.
     Conclusion:(1) Asthma model icariin can regulate lung tissue expression of Thl/Th2 cytokines imbalance; (2) Icariin can regulate lung tissue of asthmatic rats and the spleen lymphocytes of Thl/Th2 associated transcription factors (T-bet/GATA-3) expression imbalance; (3) Icariin inhibits asthmatic lung tissue activation of NF-κB p65 protein in the role.
     PartⅢ
     Icariin regulation of allergic inflammation induced by endotoxin in vivo and in vitro experimental study
     Objective:This study purpose to explore the icariin in inhibiting LPS-induced inflammatory response in vivo and in vitro function and signal transduction mechanism.
     Methods:(1) Observation effects of icariin on LPS-induced acute inflammation by HE staining; (2) Observation effects of icariin on lung tissue myeloperoxidase; (3) Using enzyme-linked immunosorbent assay detect serum cytokines (TNF-α, PGE2 and NO); (4) Using Real-time RT-PCR observation of icariin on the lung tissue of mice in each group TNF-α, iNOS and COX-2mRNA expression; (5) Using western blot observe the activation of the PI3K/AKT; (6) Using EMSA confocal observation effect of icariin on the activation of NF-κB p65 inhibition.
     Results:Icariin (20 mg/kg-1) after the intervention, can inhibit the LPS-induced mouse lung tissue TNF-a, IL-6 and increased expression of COX-2mRNA; Icariin can reduce peroxidase (MPO) activity; In RAW 264.7 cells, effects of icariin on the cytotoxicity of LPS has a protective effect; Western blot and confocal microscopy analysis showed that icariin pretreatment RAW 264.7 macrophage cells, can reduce the p65 nuclear translocation; Icariin to activate PI3K/AKT signaling pathway.
     Conclusions:(1) Icariin can inhibit LPS-induced inflammatory response in mice the role of lung tissue; (2) Icariin can inhibit LPS-induced inflammation in mouse lung tissue factor gene expression; (3) Icariin can inhibit p65 from the cytoplasm into the nucleus; (4) Icariin can activate PI3K/AKT signaling pathway.
引文
1. James G. Martin, Meiyo Tamaoka. Rat models of asthma and chronic obstructive lung disease. Pulmonary Pharmacology & Therapeutics.2006; 19(6):377-385.
    2. Yadav UC, Naura AS, Aguilera-Aguirre L, et al. Aldose reductase inhibition suppresses the expression of Th2 cytokines and airway inflammation in ovalbumin-induced asthma in mice. J Immunol.2009;183(7):4723-4732.
    3. Denburg JA, Keith PK. Eosinophil progenitors in airway diseases:clinical implications. Chest.2008; 134(5):1037-1043.
    4. Foster PS, Rosenberg HF, Asquith KL, et al. Targeting eosinophils in asthma. Curr Mol Med.2008;8(6):585-590.
    5. Rottier BL, Duiverman EJ. Anti-inflammatory drug therapy in asthma. Paediatr Respir Rev.2009; 10(4):214-219.
    6. Kuperman DA, Schleimer RP. Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr Mol Med. 2008;8(5):384-392.
    7. Tomkinson A, Tepper J, Morton M,et al. Inhaled vs subcutaneous effects of a dual IL-4/IL-13 antagonist in a monkey model of asthma. Allergy.2010;65(1):69-77.
    8. Tachdjian R, Mathias C, A1 Khatib S, et al. Pathogenicity of a disease-associated human IL-4 receptor allele in experimental asthma. J Exp Med.2009 28;206(10):2191-204.
    9. Cortes JR, Rivas MD, Molina-Infante J, et al. Omeprazole inhibits IL-4 and IL-13 signaling signal transducer and activator of transcription 6 activation and reduces lung inflammation in murine asthma. J Allergy Clin Immunol. 2009;124(3):607-610,
    10. Munitz A, Brandt EB, Mingler M, et al. Distinct roles for IL-13 and IL-4 via IL-13 receptor alphal and the type II IL-4 receptor in asthma pathogenesis.Proc Natl Acad Sci.2008 20;105(20):7240-7245.
    11. Wark PA, Bucchieri F, Johnston SL, et al. IFN-gamma-induced protein 10 is a novel biomarker of rhinovirus-induced asthma exacerbations.J Allergy Clin Immunol.2007;120(3):586-593.
    12. Movahedi M, Mahdaviani SA, Rezaei N, et al. IL-10, TGF-beta, IL-2, IL-12, and IFN-gamma cytokine gene polymorphisms in asthma.J Asthma.2008;45(9):790-4.
    13. Antoniu SA. Challenges in targeting TNF alpha in asthma and COPD.Curr Opin Investig Drugs.2009;10(5):404-406.
    14. Lykouras D, Sampsonas F, Kaparianos A, et al. Role and pharmacogenomics of TNF-alpha in asthma.Mini Rev Med Chem.2008;8(9):934-942.
    15. Brightling C, Berry M, Amrani Y. Targeting TNF-alpha:a novel therapeutic approach for asthma.J Allergy Clin Immunol.2008;121(1):5-10
    16. Izuhara K, Arima K, Kanaji S, et al. IL-13:a promising therapeutic target for bronchial asthma.Curr Med Chem.2006;13(19):2291-2298.
    17. Izuhara K. Involvement of IL-4 and IL-13 signals in the pathogenesis of bronchial asthmaArerugi.2005;54(1):7-11.
    18. Izuhara K, Arima K. Signal transduction of IL-13 and its role in the pathogenesis of bronchial asthma.Drug News Perspect.2004; 17(2):91-98.
    19. Sela B. Interleukin IL-13:a central mediator in allergic asthma.Harefuah. 1999; 137(7-8):317-319.
    1. Mazzarella G, Bianco A, Catena E,et al. Thl/Th2 lymphocyte polarization in asthma.Allergy.2000;55 Suppl 61:6-9.
    2. Colavita AM, Reinach AJ, Peters SP. Contributing factors to the pathobiology of asthma. The Thl/Th2 paradigm.Clin Chest Med.2000;21(2):263-277,
    3. Nakanishi K. Pathological role of super Thl cells in induction of atopic dermatitis and bronchial asthma.Arerugi.2008;57(8):989-994.
    4. McGee HS, Agrawal DK. TH2 cells in the pathogenesis of airway remodeling: regulatory T cells a plausible panacea for asthma.Immunol Res. 2006;35(3):219-232.
    5. Nakamura Y, Hoshino M. TH2 cytokines and associated transcription factors as therapeutic targets in asthma.Curr Drug Targets Inflamm Allergy. 2005;4(2):267-270.
    6. Park HJ, Lee CM, Jung ID,et al. Quercetin regulates Thl/Th2 balance in a murine model of asthma. Int Immunopharmacol.2009;9(3):261-7.
    7. Fietta P, Delsante G The effector T helper cell triade.Riv Biol.2009;102(1):61-74.
    8. Wegmann M. Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Rev Mol Diagn.2009;9(1):85-100.
    9. Robinson DS, Lloyd CM. Asthma:T-bet-a master controller?Curr Biol.2002 30;12(9):R322-324.
    10. Wang SY, Yang M, Xu XP, et al. Intranasal delivery of T-bet modulates the profile of helper T cell immune responses in experimental asthma. J Investig Allergol Clin Immunol.2008;18(5):357-365.
    11. Raby BA, Hwang ES, Van Steen K, et al. T-bet polymorphisms are associated with asthma and airway hyperresponsiveness. Am J Respir Crit Care Med. 2006;173(1):64-70.
    12. Zhu J, Yamane H, Cote-Sierra J, Guo L, Paul WE.GATA-3 promotes Th2 responses through three different mechanisms:induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Thl cell-specific factors. Cell Res.2006;16(1):3-10.
    13. Barnes PJ. Role of GATA-3 in allergic diseases. Curr Mol Med. 2008;8(5):330-334.
    14. Sel S, Wegmann M, Dicke T, et al. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme. J Allergy Clin Immunol.2008;121(4):910-916.
    15. Erpenbeck VJ, Hohlfeld JM, Discher M, Krentel H, Hagenberg A, Braun A, Krug N. Increased messenger RNA expression of c-maf and GATA-3 after segmental allergen challenge in allergic asthmatics.Chest.2003;123(3 Suppl):370S-1S.
    16. Wu JF, Dong JC, Xu CQ. et al. Effects of icariin on inflammation model stimulated by lipopolysaccharide in vitro and in vivo. Zhongguo Zhong Xi Yi Jie He Za Zhi.2009;29(4):330-334.
    17. Charokopos N, Apostolopoulos N, Kalapodi M, et al. Bronchial asthma, chronic obstructive pulmonary disease and NF-kappaB. Curr Med Chem. 2009;16(7):867-83.
    18. Edwards MR, Bartlett NW, Clarke D, et al. Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther. 2009;121(1):1-13.
    19. Bamborough P, Callahan JF, Christopher JA, et al. Progress towards the development of anti-inflammatory inhibitors of IKKbeta. Curr Top Med Chem. 2009;9(7):623-639.
    20. Nam NH. Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem. 2006;6(8):945-951.
    1. Tsushima K, King LS, Aggarwal NR,et al. Acute lung injury review.Intern Med. 2009;48(9):621-630.
    2. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, et al. Incidence and outcomes of acute lung injury. N Engl J Med. 2005;353(16):1685-1693.
    3. Mirzapoiazova T, Kolosova IA, Moreno L, Sammani S, Garcia JG, Verin AD. Suppression of endotoxin-induced inflammation by taxol. Eur Respir J. 2007;30(3):429-35.
    4. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol.2004;202(2):145-156.
    5. Mazzon E, Cuzzocrea S. Role of TNF-alpha in lung tight junction alteration in mouse model of acute lung inflammation. Respir Res.2007;30(8):75.
    6. Haegens A, Heeringa P, van Suylen RJ, et al. Myeloperoxidase deficiency attenuates lipopolysaccharide-induced acute lung inflammation and subsequent cytokine and chemokine production.J Immunol.2009;182(12):7990-7996.
    7. Shen W, Gan J, Xu S, et al. Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway.Pharmacol Res. 2009;60(4):296-302.
    8. Ndengele MM, Muscoli C, Wang ZQ, Doyle TM, Matuschak GM, Salvemini D. Superoxide potentiates NF-kappaB activation and modulates endotoxin-induced cytokine production in alveolar macrophages. Shock.2005;23(2):186-193.
    9. Cloutier A, Ear T, Blais-Charron E, Dubois CM, McDonald PP. Differential involvement of NF-kappaB and MAP kinase pathways in the generation of inflammatory cytokines by human neutrophils. J Leukoc Biol. 2007;81(2):567-577.
    10. Shao DZ, Lin M. Platonin inhibits LPS-induced NF-kappaB by preventing activation of Akt and IKKbeta in human PBMC. Inflamm Res. 2008;57(12):601-606.
    11. Schabbauer G, Tencati M, Pedersen B, Pawlinski R, Mackman N. PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice. Arterioscler Thromb Vasc Biol.2004;24(10):1963-1969.
    12. Saitoh H, Masuda T, Zhang XY, et al. Effect of antisense oligonucleotides to nuclear factor-kappaB on the survival of LPS-induced ARDS in mouse. Exp Lung Res.2002;28(3):219-231.
    13. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249(4975):1431-1433.
    14. Banfi A, Tiszlavicz L, Szekely E, et al. Development of bronchus-associated lymphoid tissue hyperplasia following lipopolysaccharide-induced lung inflammation in rats. Exp Lung Res.2009;35(3):186-197.
    15. Van der Veen BS, de Winther MP, et al. Myeloperoxidase:molecular mechanisms of action and their relevance to human health and disease. Antioxid Redox Signal.2009 Nov;11(11):2899-2937.
    16. Kollias G. TNF pathophysiology in murine models of chronic inflammation and autoimmunity.Semin Arthritis Rheum.2005;34(5 Suppll):3-6.
    17. Glaros T, Larsen M, Li L. Macrophages and fibroblasts during inflammation, tissue damage and organ injury.Front Biosci.2009;14:3988-3993.
    18. Won JH, Shin JS, Park HJ. Anti-inflammatory effects of madecassic acid via the suppression of NF-kappaB pathway in LPS-induced RAW 264.7 macrophage cells. Planta Med.2010;76(3):251-257.
    19. Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells.Lab Invest.2006 Jan;86(1):9-22.
    20. Ghosh S, Hay den MS. New regulators of NF-kappaB in inflammation. Nat Rev Immunol.2008;8(11):837-848.
    21. Schabbauer G, Tencati M, Pedersen B, Pawlinski R, Mackman N. PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice. Arterioscler Thromb Vasc Biol.2004;24(10):1963-1969.
    22. Hazeki K, Nigorikawa K, Hazeki O. Role of phosphoinositide 3-kinase in innate immunity. Biol Pharm Bull.2007 Sep;30(9):1617-1623.
    1. Donata Vercelli. Discovering susceptibility genes for asthma and allergy.Nature reviews, Immunology,2008;8,217-220.
    2. Gern JE. The Urban Environment and Childhood Asthma study. J Allergy Clin Immunol.2010;125(3):545-549.
    3. Polonikov AV, Ivanov VP, Solodilova MA. Genetic variation of genes for xenobiotic-metabolizing enzymes and risk of bronchial asthma:the importance of gene-gene and gene-environment interactions for disease susceptibility. J Hum Genet.2009;54(8):440-449.
    4. Von Mutius E. Gene-environment interactions in asthma. J Allergy Clin Immunol. 2009;123(1):3-11.
    5. Yang I A, Hollo way JW. Asthma:advancing gene-environment studies. Clin Exp Allergy.2007;37(9):1264-1266.
    6. Davies-Gray M. The health psychology of asthma. Emerg Nurse.2000;8(2):10-7.
    7. Taylor GH. Psychology of asthma. N Z Med J.1988 Sep 14;101(853):585.
    8. Price J, Lenney W, Duncan C,et al. HPA-axis effects of nebulised fluticasone propionate compared with oral prednisolone in childhood asthma. Respir Med. 2002;96(8):625-631.
    9. Chen E, Miller GE. Stress and inflammation in exacerbations of asthma. Brain Behav Immun.2007;21(8):993-999.
    10. Corrigan CJ. Asthma refractory to glucocorticoids:the role of newer immunosuppressants. Am J Respir Med.2002;1(1):47-54.
    11. Segerstrom SC. Individual differences, immunity, and cancer:lessons from personality psychology. Brain Behav Immun.2003;17 Suppl 1:S92-7.
    12. Schroder NW. The role of innate immunity in the pathogenesis of asthma. Curr Opin Allergy Clin Immunol.2009 Feb;9(1):38-43.
    13. Finkelman FD, Hogan SP, Hershey GK, et al. Importance of cytokines in murine allergic airway disease and human asthma.J Immunol.2010;184(4):1663-74.
    14. Hamid Q, Tulic M. Immunobiology of asthma. Annu Rev Physiol. 2009;71:489-507.
    15. Foster PS, Rosenberg HF, Asquith KL,et al. Targeting eosinophils in asthma. Curr Mol Med.2008;8(6):585-590.
    16. Matsumoto K, Tamari M, Saito H.Involvement of eosinophils in the onset of asthma. J Allergy Clin Immunol.2008;121(1):26-27.
    17. Jacobsen EA, Ochkur SI, Lee NA,et al. Eosinophils and asthma. Curr Allergy Asthma Rep.2007;7(1):18-26.
    18. Kikuchi S, Kikuchi I, Takaku Y, et al. Neutrophilic inflammation and CXC chemokines in patients with refractory asthma. Int Arch Allergy Immunol. 2009;149 Suppl 1:87-93.
    19. Walters EH, Wood-Baker R, et al.Innate immune activation in neutrophilic asthma. Thorax.2008;63(1):88-89.
    20. Simpson JL, Grissell TV, Douwes J, et al. Innate immune activation in neutrophilic asthma and bronchiectasis.Thorax.2007;62(3):211-8.
    21. Izuhara K. Involvement of IL-4 and IL-13 signals in the pathogenesis of bronchial asthma. Arerugi.2005;54(1):7-11.
    22. Kips JC, Tournoy KG, Pauwels RA. New anti-asthma therapies:suppression of the effect of interleukin (IL)-4 and IL-5.Eur Respir J.2001;17(3):499-506.
    23. Izuhara K, Arima K, Kanaji S, et al. IL-13:a promising therapeutic target for bronchial asthma.Curr Med Chem.2006;13(19):2291-2298.
    24. Izuhara K, Arima K. Signal transduction of IL-13 and its role in the pathogenesis of bronchial asthma.Drug News Perspect.2004;17(2):91-98.
    25. Baraldo S, Lokar Oliani K, Turato G, et al. The Role of Lymphocytes in the Pathogenesis of Asthma and COPD.Curr Med Chem.2007;14(21):2250-2256.
    26. Kay AB. The role of T lymphocytes in asthma.Chem Immunol Allergy. 2006;91:59-75.
    27. Van Oosterhout AJ, Bloksma N. Regulatory T-lymphocytes in asthma. Eur Respir J.2005;26(5):918-932.
    28. Gelfand EW, Dakhama A.CD8+ T lymphocytes and leukotriene B4:novel interactions in the persistence and progression of asthma.J Allergy Clin Immunol. 2006;117(3):577-582.
    29. Gogate S, Katial R. Pediatric biomarkers in asthma:exhaled nitric oxide, sputum eosinophils and leukotriene E4.Curr Opin Allergy Clin Immunol. 2008;8(2):154-157.
    30. Bacharier LB. Management of asthma in preschool children with inhaled corticosteroids and leukotriene receptor antagonists.Curr Opin Allergy Clin Immunol.2008;8(2):158-162.
    31. Mortaz E, Engels F, Nijkamp FP,et al. New insights on the possible role of mast cells in aspirin-induced asthma. Curr Mol Pharmacol.2009;2(2):182-189.
    32. Marone G, Triggiani M, Genovese A,et al. Role of human mast cells and basophils in bronchial asthma. Adv Immunol.2005;88:97-160.
    33. Swindle EJ, Collins JE, Davies DE. Breakdown in epithelial barrier function in patients with asthma:identification of novel therapeutic approaches. J Allergy Clin Immunol.2009 Jul;124(1):23-34.
    34. Mota Pinto A, Todo-Bom A. The role of the epithelial cell in asthma Rev Port Pneumol.2009 May-Jun;15(3):461-472.
    35. Hammad H, Lambrecht BN. Dendritic cells and epithelial cells:linking innate and adaptive immunity in asthma. Nat Rev Immunol.2008;8(3):193-204.
    36. Matangkasombut P, Pichavant M, et al. Natural killer T cells and the regulation of asthma. Mucosal Immunol.2009 Sep;2(5):383-92. Epub 2009 Jul 8.
    37. Barry Kay. Natural Killer T Cells and Asthma. N Engl J Med 2006;354:1186-1188.
    38. Da Silva CA, Frossard N. Potential role of stem cell factor in the asthma control by glucocorticoids.Chem Immunol Allergy.2005;87:154-162.
    39. Da Silva CA, Reber L, Frossard N. Stem cell factor expression, mast cells and inflammation in asthma.Fundam Clin Pharmacol.2006;20(1):21-39.
    40. Hollams E, Hales B, Bachert C, et al. Th2-associated immunity to bacteria in asthma in teenagers and susceptibility to asthma. Eur Respir J.2010 Jan 28.
    41. Inoue H. Allergic asthma and intrinsic inhibitors of cytokine signaling. Arerugi. 2006;55(1):1-9.
    42. Ichinose M, Barnes PJ. Cytokine-directed therapy in asthma.Curr Drug Targets Inflamm Allergy.2004;3(3):263-269.
    43. Nakamura Y, Hoshino M. TH2 cytokines and associated transcription factors as therapeutic targets in asthma. Curr Drug Targets Inflamm Allergy.2005 Apr;4(2):267-270.
    44. Kips JC. Cytokines in asthma. Eur Respir J Suppl.2001 Dec;34:24s-33s.
    45. Barnes PJ.Glucocorticoids and asthma.Ernst Schering Res Found Workshop. 2002;(40):1-23.
    46. Umland SP, Schleimer RP, Johnston SL. Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma.Pulm Pharmacol Ther. 2002;15(1):35-50.
    47. Grzanka A, Jarzab J.Nongenomic effects of glucocorticoids, an important mechanism of inhaled glucocorticoids action in asthma. Pneumonol Alergol Pol. 2009;77(5):453-459.
    48. Iwasaki T, Tamura G, Sano K, et al. Comparison of CRH test and ACTH test in patients with bronchial asthma. Arerugi.1999;48(6):632-638.
    49. Movahedi M, Mahdaviani SA, Rezaei N, et al. IL-10, TGF-beta, IL-2, IL-12, and IFN-gamma cytokine gene polymorphisms in asthma. J Asthma. 2008;45(9):790-794.
    50. Kwon NH, Kim JS, Lee JY, et al. DNA methylation and the expression of IL-4 and IFN-gamma promoter genes in patients with bronchial asthma. J Clin Immunol.2008;28(2):139-146.
    51. Matera MG, Calzetta L, Cazzola M. TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm Pharmacol Ther. 2010;23(2):121-128.
    52. Tomkinson A, Tepper J, Morton M, et al. Inhaled vs subcutaneous effects of a dual IL-4/IL-13 antagonist in a monkey model of asthma. Allergy.2010 Jan;65(1):69-77.
    53. Munitz A, Brandt EB, Mingler M, et al. Distinct roles for IL-13 and IL-4 via IL-13 receptor alphal and the type II IL-4 receptor in asthma pathogenesis.Proc Natl Acad Sci U S A.2008 May 20;105(20):7240-7245.
    54. Chung KF, Adcock IM. Pathophysiological mechanisms of asthma. Application of cell and molecular biology techniques. Mol Biotechnol.2001;18(3):213-232.
    55. Lambrecht BN, Hammad H.Biology of lung dendritic cells at the origin of asthma.Immunity.2009;31(3):412-424.
    56. Hai CM. Mechanistic systems biology of inflammatory gene expression in airway smooth muscle as tool for asthma drug development.Curr Drug Discov Technol. 2008;5(4):279-288.
    57. Wang SY, Yang M, Xu XP, et al. Intranasal delivery of T-bet modulates the profile of helper T cell immune responses in experimental asthma. J Investig Allergol Clin Immunol.2008;18(5):357-365.
    58. Raby BA, Hwang ES, Van Steen K, et al. T-bet polymorphisms are associated with asthma and airway hyperresponsiveness.Am J Respir Crit Care Med.2006 Jan 1;173(1):64-70.
    59. Ko FW, Lun SW, Wong CK, et al. Decreased T-bet expression and changes in chemokine levels in adults with asthma.Clin Exp Immunol.2007;147(3):526-532.
    60. Sel S, Wegmann M, Dicke T, et al. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme. J Allergy Clin Immunol.2008 Apr;121(4):910-916.
    61. Zhang DH, Yang L, Cohn L, et al. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity.1999;11(4):473-482.
    62. Ray A, Cohn L. Th2 cells and GATA-3 in asthma:new insights into the regulation of airway inflammation.J Clin Invest.1999; 104(8):985-993.
    1. Xu W, Zhang Y, Yang M, et al. LC-MS/MS method for the simultaneous determination of icariin and its major metabolites in rat plasma. J Pharm Biomed Anal.2007;45(4):667-672.
    2.邹节明,孟杰,颜正华,等.中药复方有效成分淫羊藿苷的药代动力学研究[J].中草药,2002;33(1):55.
    3.刘海培,孟繁华,郭继芬,等.高效液相色谱-串联质谱法测定大鼠血浆中淫羊藿素[J].药学学报,2009;44(10):1140-1144.
    4. Ding L, Liang XG, Hu Y, et al. Involvement of p38MAPK and reactive oxygen species in icariin-induced cardiomyocyte differentiation of murine embryonic stem cells in vitro. Stem Cells Dev.2008; 17(4):751-760.
    5. Zhu D, Qu L, Zhang X, et al. Icariin-mediated modulation of cell cycle and p53 during cardiomyocyte differentiation in embryonic stem cells. Eur J Pharmacol. 2005;514(2-3):99-110.
    6. Wo Y, Zhu D, Yu Y, et al. Involvement of NF-kappaB and AP-1 activation in icariin promoted cardiac differentiation of mouse embryonic stem cells. Eur J Pharmacol.2008;586(1-3):59-66.
    7. Ding L, Liang XG, Zhu DY, et al. Icariin promotes expression of PGC-1alpha, PPARalpha, and NRF-1 during cardiomyocyte differentiation of murine embryonic stem cells in vitro. Acta Pharmacol Sin.2007;28(10):1541-1549.
    8. Shen X, He H. Effects of icariin on expression of glucose regulated protein 78 in vascular smooth muscle cell induced by homocysteine. Zhongguo Zhong Yao Za Zhi.2009;34(15):1964-1967.
    9. Xu HB, Huang ZQ. Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vascul Pharmacol.2007;47(1):18-24.
    10. Xu HB, Huang ZQ. Vasorelaxant effects of icariin on isolated canine coronary artery. J Cardiovasc Pharmacol.2007;49(4):207-213.
    11. Zhu D Y, Lou YJ. Icariin-mediated expression of cardiac genes and modulation of nitric oxide signaling pathway during differentiation of mouse embryonic stem cells into cardiomyocytes in vitro.Acta Pharmacol Sin.2006;27(3):311-320.
    12. Li L, Zhou QX, Shi JS. Protective effects of icariin on neurons injured by cerebral ischemia/reperfusion. Chin Med J (Engl).2005;118(19):1637-1643.
    13. Li L, Tsai HJ, Li L, et al. Icariin inhibits the increased inward calcium currents induced by amyloid-beta(25-35) peptide in CA1 pyramidal neurons of neonatal rat hippocampal slice. Am J Chin Med.2010;38(1):113-125.
    14. Sha D, Li L, Ye L, et al. Icariin inhibits neurotoxicity of beta-amyloid by upregulating cocaine-regulated and amphetamine-regulated transcripts. Neuroreport.2009;20(17):1564-1567.
    15.王晓云,章玲,徐运.淫羊藿苷对小鼠缺血-再灌注损伤的保护作用[J].江苏医药,2009;35(6):697-672.
    16. Wang L, Zhang L, Chen ZB, et al. Icariin enhances neuronal survival after oxygen and glucose deprivation by increasing SIRT1. Eur J Pharmacol. 2009;609(1-3):40-44.
    17. Nie J, Luo Y, Huang XN, et al. Icariin inhibits beta-amyloid peptide segment 25-35 induced expression of beta-secretase in rat hippocampus. Eur J Pharmacol. 2010;626(2-3):213-218.
    18. Xu RX, Wu Q, Luo Y, et al. Protective effects of icariin on cognitive deficits induced by chronic cerebral hypoperfusion in rats. Clin Exp Pharmacol Physiol. 2009;36(8):810-815.
    19. Luo Y, Nie J, Gong QH, et al. Protective effects of icariin against learning and memory deficits induced by aluminium in rats. Clin Exp Pharmacol Physiol.2007 Aug;34(8):792-795.
    20. Ye HY, Lou YJ. Estrogenic effects of two derivatives of icariin on human breast cancer MCF-7 cells. Phytomedicine.2005;12(10):735-741.
    21. Jiang Z, Hu B, Wang J, et al. Effect of icariin on cyclic GMP levels and on the mRNA expression of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in penile cavernosum. J Huazhong Univ Sci Technolog Med Sci. 2006;26(4):460-462.
    22. Zhang ZB, Yang QT. The testosterone mimetic properties of icariin. Asian J Androl. 2006;8(5):601-605.
    23. Liu WJ, Xin ZC, Xin H, et al. Effects of icariin on erectile function and expression of nitric oxide synthase isoforms in castrated rats. Asian J Androl. 2005;7(4):381-388.
    24. Teng F, Zeng YY, Huang XY, et al. Effect of icariin on intermediate and advanced activation of murine T lymphocytes in vitro. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.2008;24(11):1059-1061.
    25.张奉学,张俊丽,符林春,等.淫羊藿苷体外抑制SIV感染诱导的CEMx174细胞凋亡[J].中国药理学通报,2008;24(5):684-687.
    26.肖幸丰,王志强,楼宜嘉.淫羊藿苷伍用三七总皂苷对小鼠免疫功能的调节作用[J].中草药,2006;37(6):888-890.
    27.赵连梅,纪昕,潘晓明,等.淫羊藿苷对化疗后免疫抑制小鼠的免疫促进作用[J].中国免疫学杂志,2009;25(1):1092-1095.
    28.李翠玲,张玲,顾洪涛.淫羊藿苷体内抑瘤作用及其机制[J].中国肿瘤生物治疗杂志,2007;14(2)137-140.
    29.毛海婷,张玲,王芸,等.ICA和PJA对高转移性人肺癌细胞体外侵袭转移能力抑制的研究[J].中国免疫学杂志,2001,17(1):27-35.
    30.王谦,张玲,毛海婷,等.中药淫羊藿苷抑制肝癌HepG2-2-15细胞增殖和免疫逃逸作用研究[J].中国免疫学杂志,2007;23(10)908-910.
    31.唐菁,张玲,顾洪涛,等.淫羊藿苷、黄芩苷联合多柔比星抑制肝癌细胞APRIL表达和逆转肿瘤免疫逃逸[J].中国肿瘤生物治疗杂志,2007;14(6):516-519.
    32. Chen KM, Ge BF, Ma HP, et al. Icariin, a flavonoid from the herb Epimedium enhances the osteogenic differentiation of rat primary bone marrow stromal cells. Pharmazie.2005;60(12):939-942.
    33. Mok SK, Chen WF, Lai WP, et al. Icariin protects against bone loss induced by oestrogen deficiency and activates oestrogen receptor-dependent osteoblastic functions in UMR 106 cells. Br J Pharmacol.2010;27.
    34. He W, Li ZL, Cui YL, et al. Effect of icariin on the mRNA expressions of Cbfalpha1, BMP2, BMP4 in rat osteoblasts. Beijing Da Xue Xue Bao. 2009;41(6):669-673.
    35. Zhao J, Ohba S, Komiyama Y, et al.Icariin:a potential osteoinductive compound for bone tissue engineering. Tissue Eng Part A.2010;16(1):233-243.
    36. Liu MH, Sun JS, Tsai SW, et al. Icariin protects murine chondrocytes from lipopolysaccharide-induced inflammatory responses and extracellular matrix degradation. Nutr Res.2010;30(1):57-65.
    37. Hsieh TP, Sheu SY, Sun JS, et al. Icariin isolated from Epimedium pubescens regulates osteoblasts anabolism through BMP-2, SMAD4, and Cbfal expression. Phytomedicine.2009;9.
    38. Nian H, Ma MH, Nian SS, et al. Antiosteoporotic activity of icariin in ovariectomized rats. Phytomedicine.2009;16(4):320-326.
    39. Zhao J, Ohba S, Shinkai M, et al.Icariin induces osteogenic differentiation in vitro in a BMP-and Runx2-dependent manner. Biochem Biophys Res Commun. 2008;369(2):444-448.
    40. Wu JF, Dong JC, Xu CQ. et al. Effects of icariin on inflammation model stimulated by lipopolysaccharide in vitro and in vivo. Zhongguo Zhong Xi Yi Jie He Za Zhi.2009;29(4):330-334.
    41.王国芳,吴织芬,郭留云,等.淫羊藿苷、黄芩苷和大黄素抑制LPS对体外培养人牙龈成纤维细胞的作用[J].临床口腔医学杂志,2009;25(2)69-72.
    42. Zhao F, Tang YZ, Liu ZQ. Protective effect of icariin on DNA against radical-induced oxidative damage. J Pharm Pharmacol.2007;59(12):1729-1732.
    43. Wang YK, Huang ZQ. Protective effects of icariin on human umbilical vein endothelial cell injury induced by H2O2 in vitro.Pharmacol Res. 2005;52(2):174-182.
    44. Liu ZQ. Icariin:a special antioxidant to protect linoleic acid against free-radical-induced peroxidation in micelles.J Phys Chem A. 2006;110(19):6372-6378.
    45. Pan Y, Kong L, Xia X, et al. Antidepressant-like effect of icariin and its possible mechanism in mice. Pharmacol Biochem Behav.2005;82(4):686-694.
    46. Pan Y, Kong LD, Li YC, et al. Icariin from Epimedium brevicornum attenuates chronic mild stress-induced behavioral and neuroendocrinological alterations in male Wistar rats. Pharmacol Biochem Behav.2007;87(1):130-140.
    47. Pan Y, Zhang WY, Xia X, et al. Effects of icariin on hypothalamic-pituitary-adrenal axis action and cytokine levels in stressed Sprague-Dawley rats. Biol Pharm Bull.2006;29(12):2399-2403.
    48. Pan Y, Wang FM, Qiang LQ, et al. Epub 2009 Jul 23.Icariin attenuates chronic mild stress-induced dysregulation of the LHPA stress circuit in rats. Psychoneuroendocrinology.2010;35(2):272-283.
    49.宫兆华,董竞成,谢瑾玉,等.补肾益气药调节哮喘大鼠下丘脑-垂体-肾上腺轴及白细胞介素-6功能紊乱的实验研究[J].中国中西医结合杂志,2008;28(4):348-350.
    50. Chung BH, Kim JD, Kim CK, et al.Icariin stimulates angiogenesis by activating the MEK/ERK-and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells. Biochem Biophys Res Commun.2008;376(2):404-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700