邻硝基促进的选择性去酰基化和去磺酰化反应与碘、氧化叔胺双重催化的过氧化氢氧化苄醇的绿色新反应初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚酯类化合物是医药、染料、新材料等产品的重要有机中间体。酚酯类保护基也是实施酚羟基保护的经济而有效的方法。选择性去酰基化和去磺酰化反应是有机合成和酚羟基保护过程中比较重要的反应类型,对于试剂廉价、选择性好、产率高、条件温和的方法更有助于合成所需要的化合物以及保护基的发展和应用。
     本文第一部分主要研究了邻位硝基的促进作用在与Lewis酸三氯化铝络合下的多酚酯的选择性去酰基化和多磺酸酯的选择性去磺酰化反应中的应用。实验中主要以三氯化铝为催化剂,以三氯甲烷为溶剂,将一系列不同酰基的酚酯和不同磺酰基的磺酸酯分别进行选择性去酰基化和去磺酰化反应从而得到相应的硝基酚酯和硝基磺酸酯,不同于Fries重排的产物,并对此方法和机理进行了研究。对产物进行了表征,探索了影响反应的各个因素,优化了反应条件,并首次提出这类反应的机理。
     实验发现:大多数反应在室温条件下进行,无水三氯化铝用量为1.0~2.0 eq.,在十小时以内完成反应。结果表明,用此方法将多酚酯进行选择性去酰基化和多磺酸酯进行选择性去磺酰化反应,产率高,选择性好,所用试剂三氯化铝无毒便宜,反应条件较温和,该方法是一种很好的选择性去酰基化和去磺酰化方法。针对一系列不同的酚酯和磺酸酯,在同一Lewis酸三氯化铝存在下的对比反应结果,以及根据采用不同的Lewis酸进行对比实验的结果,还根据对该选择性反应实验过程中产生的氯化产物经气相色谱和气质联用进行定量和定性分析的结果,我们首次提出了酚酯和磺酸酯的邻位硝基使三氯化铝和硝基上氧以及硝基邻位的酚氧基络合,这种络合作用促进了酚酯的选择性去酰基化和磺酸酯的选择性去磺酰化,使硝基邻位的酰基或磺酰基脱去,而和硝基相间或相对的酯基稳定存在的这一类反应的机理。我们首次研究了硝基多磺酸酯的选择性去磺酰化方法,选择性去磺酰化产物是一类新型化合物,羟基是供电子基团,尤其在碱性条件下,我们推测,这将对磺酰氧和芳环碳形成的碳氧键会有显著影响,会在有机合成中有潜在应用。
     本文第二部分主要对碘、氧化叔胺双重催化的过氧化氢氧化苄醇的绿色新反应进行了初步研究。采用I2-R3NO-H_2O_2催化氧化体系对一系列苄醇进行了催化氧化,反应过程中我们加入催化量的碘和催化量的氧化叔胺,同时加入当量的绿色氧化剂过氧化氢,以三氯甲烷和等体积水为溶剂,将苄醇氧化成酮或醚。实验发现,用此方法对一系列苯基乙醇类苄醇进行反应生成了相应的酮,没有其它副产物生成;对于苯基丙醇类苄醇,多数反应较好,也生成了相应的酮,除了1-(4-丁氧基苯基)丙醇的催化氧化有66%醚产物生成;对于苯基丁醇类苄醇,苯基正丁醇反应生成酮的产率为81%,而苯基异丁醇反应则生成81%的醚产物;对于更长碳链的苯基苄醇,几乎都得到了醚产物。通过核磁共振、红外光谱等方法对产物的结构进行了表征,优化了反应条件,并提出这类反应可能的机理。
     结果表明,这是一种具有条件温和、试剂廉价、收率较高、操作简单、符合绿色化学概念等优点的绿色催化氧化方法。氧化脂肪叔胺作为催化剂尚属首次,碘分子作催化剂氧化醇类化合物未见文献报道。
     我们相信,这种绿色新反应将有助于解决氧化反应所带来的环境问题并降低产品的成本,会在科学研究和化工生产中有一定的应用。
Phenolic esters are important organic intermediates. They are used in synthesizing pharmaceutical products, dyes and new materials and so on. Phenolic esters provide effective protections for phenolic hydroxyl groups. Selective deacylation and desulfonation will yield new type of esters and sulfonates. Our research has been oriented in discovering mild, selective and high yielding procedures for these types of compounds.
     We started from 2-nitro-1, 4-diphenolic esters using AlCl3 at 20oC in anhydrous chloroform, the substrates were selectively deacylated into 4-hydroxyl-3-nitro-phenolic esters. In the selective deacylation of 4-nitro-1, 3-diphenolic esters yielded the corresponding 3-hydroxyl-4-nitro-phenolic esters.
     Similarly, when we started from 2-nitro-1, 4-diphenolic sulfonates, selective desulfonation yielded the 4-hydroxyl-3-nitro-phenolic sulfonates. In the selective desulfonation of 4-nitro-1, 3-diphenolic sulfonates yielded the corresponding 3-hydroxyl-4-nitro-phenolic sulfonates. Thus a series of nitro substituted phenolic esters and sulfonates were synthesized in high yields and at high reaction rates. The structures of the products were fully characterized by1HNMR, 13CNMR, IR and ESI-MS.
     In most cases, the selective reaction of aliphatic esters needed 1.0-2.0 eq. of AlCl3, and took less than 10 hours at room temperature for completion. But for aromatic carboxylic esters and aromatic sulfonates, higher reaction temperatures and longer reaction times were needed. The reaction conditions were optimized according to different phenolic esters and sulfonates. By comparing the reaction rates of the deacylation and desulfonation, a general mechanism represented by desulfonation directed by the nitro group is proposed. Thus we have established a new procedure for the selective deacylation and desulfonation of polyphenolic esters directed by a nitro group. The regioselectivity is excellent and the reaction rate and yield are high. The products are useful intermediates in organic synthesis.
     These reactions demonstrate that a nitro group on a phenolic ester or sulfonate has a better ability to complex with AlCl3 than an isolated phenolic ester group does (Fries rearrangement). The directing effect of the o-nitro group was demonstrated for the first time in the selective deacylation and desulfonation for the excellent regioselectivities and good yields.
     Selective desulfonation of polyphenolic sulfonates has never been realized before. This represents the first selective desulfonation procedure of polyphenolic sulfonates. The products of the selective desulfonation are new types of compounds. The hydroxyl group is electron donating, especially under basic conditions. We speculate that this would dramatically influence the behavior of the aryl carbon and the sulfonoxy oxygen bond and find potential applications in organic synthesis. In the second part of the paper, a new green procedure of biscatalytic oxidation of benzyl alcohols by tertiary amine oxides, iodine and hydrogen peroxide was developed preliminarily. A series of benzyl alcohols were oxidated to the corresponding ketones or ethers using 0.1 eq. I2, 0.1 eq. R3NO and 1.2 eq. H2O2 in chloroform and water.
     Starting from a series of 1-phenylethyl alcohols, the corresponding ketones were obtained. However oxidation of 1-phenylpropyl alcohols yielded the corresponding ketones and the side product ethers were formed as well. In the oxidation of homologous compounds yielded mainly the corresponding ethers. The structures of the products were fully characterized by 1HNMR, IR and GC. The reaction conditions were optimized according to different benzyl alcohols. By comparing the reaction results of biscatalytic oxidation, a general mechanism is proposed. The results show that we have developed a new procedure on the green oxidation of benzyl alcohols using hydrogen peroxide catalyzed jointly by iodine and tertiary amine oxides. The reaction conditions are mild, the oxidant green and the yields good. This represents the first example of using aliphatic tertiary amine oxides as organocatalyst and the iodine molecule as catalyst in oxidation of alcohols.
引文
[1] 吴毓林, 姚祝军, 现代有机合成化学-选择性有机合成反应和复杂有机分子合成设计, 北京: 科学出版社, 2004, 4-6
    [2] 黄培强, 靳立人, 陈安齐, 有机合成, 北京: 高等教育出版社, 2004, 520-522
    [3] Sakaguchi S, Noshiki Y, Kitamura T, et al., Efficient catalytic alkane nitration with NO2 under air assisted by N-hydroxyphthalimide, Angew. Chem. Int. Ed., 2001, 40, 222-224
    [4] Minisci F, Punta C, Recupero F, et al., A new highly selective synthesis of aromatic aldehydes by aerobic free-radical oxidation of benzylic alcohols, catalyzed by n-hydroxyphthalimide under mild conditions-Polar and enthalpic effects, Chem. Commun., 2002, 688-689
    [5] Allen A D, Fenwick M F, Henry-Riyad H, Tidwell T, Nitroxyl radical reactions with 4-pentenyl and cyclopropylketenes: new routes to 5-hexenyl and cyclopropylmethyl radicals, J. Org. Chem., 2001, 66, 5759-5765
    [6] Wentzel B B, Donners M P J, Nolte R J M, et al, N-Hydroxyphthalimide/Cobalt(II) catalyzed low temperature benzylic oxidation using molecular oxygen, Tetrahedron, 2000, 56, 7797-7803
    [7] Bolm C, Magnus A S, Hildebrand J P, Catalytic synthesis of aldehydes and ketones under mild conditions using TEMPO/Oxone, Org. Lett., 2000, 2(8), 1173-1175
    [8] Amati A, Dosualdo G, Minisci F, et al., Catalytic processes of oxidation by hydrogen peroxide in the presence of Br2 or HBr. Mechanism and synthetic applications, Org. Proc. Res. & Dev., 1998, 2, 261-269
    [9] Eikawa M, Sakaguchi S, Ishii Y, et al., A new approach for oxygenation using nitric oxide under the influence of N-hydroxyphthalimide, J. Org. Chem., 1999, 64, 4676-4679
    [10] Tanaka S, Yamamoto H, Michaelson R C, et al., Stereoselective epoxidations of acyclic allylic alcohols by transition metal-hydroperoxide reagents. Synthesis of dl-C18 Cecropia juvenile hormone from farnesol, J. Am. Chem. Soc., 1974, 96(16), 5254-5255
    [11] Corey E J, Albright J O, Barton A E, et al., Chemical and enzymic syntheses of 5-HPETE, a key biological precursor of slow-reacting substance of anaphylaxis (SRS), and 5-HETE, J. Am. Chem. Soc., 1980, 102(4), 1435-1436
    [12] Breslow R, Corcoran R, Dale J A, et al., Selective steroid halogenations directed by proximity and substituent effects, J. Am. Chem. Soc., 1974, 96(6), 1973-1974
    [13] Rideout D C, Breslow R, Hydrophobic acceleration of Diels-Alder reactions, J. Am. Chem. Soc., 1980, 102(26), 7816-7817
    [14] Bohmer V, Calixarenes, Macrocycles with (almost) unlimited possibilities, Angew. Chem. Int. Ed., 1995, 34(7), 713-745
    [15] Maruoka K, Imoto H, Yamamoto H, Exo-Selective Diels-Alder reaction based on a molecular recognition approach, J. Am. Chem. Soc., 1994, 116(26), 12115-12116
    [16] Ono N, Miyake H, Kamimura A, Regioselective Diels-Alder reactions. The nitro group as a regiochemical control element, J. Chem. Soc. Perkin Trans. I, 1987, 9, 1929-1935
    [17] Vangveravong S, Nichols D E, Stereoselective synthesis of trans-2-(Indol-3-yl)cyclopropylamines: rigid tryptamine analogs, J. Org. Chem., 1995, 60(11), 3409-3417
    [18] 赵知中, 有机化学中的保护基团, 北京: 科学出版社, 1984, 89-91
    [19] Greene T W, Wuts P G M, Protective groups in organic synthesis.-3rd ed., Canada, 1999, 1
    [20] Robertson A and Robinson R., Synthesis of anthocyanins (IV) constitution of O-benzoylphloroglucinaldehyde, J. Chem. Soc., 1928, 1455-1459
    [21] (a) Fisher E, Ber., 1895, 28, 1145-1167 (b) Helferich B, Trityl?ther in der Chemie der Zucker, Angew. Chem., 1928, 41(32), 871-875
    [22] Parham W E and Anderson E L, The protection of hydroxyl groups, J. Am. Chem. Soc., 1948, 70(12), 4187-4189
    [23] Reese C B, Saffhill R, Sulston J E, Symmetrical alternative to the tetrahydropyranyl protecting group, J. Am. Chem. Soc., 1967, 89(13), 3366-3368
    [24] Bergmann M and Zervas L, Synthesis of glucopeptides of d-glucosamine, Chem. Ber., 1932, 65B, 1201-1205
    [25] Entwistle I D, The use of 2-nitrophenylpropionic acid as a protecting group for amino and hydroxyl functions to be recovered by hydrogen transfer reduction, Tetrahedron Lett. 1979, 20(6), 555-558
    [26] Mairanovsky V G, Electro-deprotection-electrochemical removal of protecting groups, Angew. Chem. Int. Ed. Engl., 1976, 15(5), 281-292
    [27] Cama L D, Christensen B G, Total synthesis of thienamycin analogs. 1. Synthesis of the thienamycin nucleus and dl-decysteaminylthienamycin, J. Am. Chem. Soc., 1978, 100(27), 8006-8007
    [28] Pillai V N R, Synthesis, Photoremovable Protecting Groups in Organic Synthesis, 1980, 1-26
    [29] Pillai V N R, Photolytic deprotection and activation of functional groups, Org. Photochem., 1987, 9, 225-323
    [30] Zehavi V, Applications of photosensitive protecting groups in carbohydrate chemistry, Adv. Carbohydr. Chem. Biochem., 1988, 46, 179-204
    [31] Sherring D C, Hodge P, Synthesis and separations using functional polymers, Wiley-Interscience, New York, 1988
    [32] Hodge P, Sherrington D C, Polymer-supported reactions in organic synthesis, Wiley-Interscience, New York, 1980
    [33] Pennington M W, Dunn B M, Methods in molecular biology, Pepitide Synthesis Protocols, 1994, 35, 91-169
    [34] Grant G, Synthetic peptides, New York, 1992
    [35] Epton R, Collected papers, Second international symposium, Intercept Ltd, Andover, U.K., 1992
    [36] Hruby V J and Meyer J-P, The chemical synthesis of peptides in bioorganic chemistry, Oxford University, New York, 1998, 27-64
    [37] Beaucage S L and Iyer R P, The synthesis of modified oligonucleotides by the phosphoramidite approach and their applications, Tetrahedron, 1993, 49(28), 6123-6194
    [38] Engels J W, Uhlmann E, Gene synthesis [new synthetic methods (77)], Angew. Chem. Int. Ed. Engl., 1989, 28(6), 716-734
    [39] Beaucage S L, Caruthers M H, The chemical synthesis of DNA/RNA in bioorganic chemistry: nucleic acids, Oxford University, New York, 1996, 36-74
    [40] Danishefsky S J, Bilodeau M T, Glycals in organic synthesis: the evolution of comprehensive strategies for the assembly of oligosaccharides and glycoconjugates of biological consequence, Angew. Chem. Int. Ed. Engl., 1996, 35, 1380
    [41] Roberge J Y, Beebe X, Danishefsky S J, Solid phase convergent synthesis of N-linked glycopeptides on a solid support, J. Am. Chem. Soc., 1998, 120, 3915-3927
    [42] Frasier-Reid B, Madsen R, Campbell A S, et al., Chemical synthesis of oligosaccharides in bioorganic chemistry: oligosaccharides, Oxford University, New York, 1999, 89-133
    [43] Nicolaou K C, Bockovich N J, Chemical synthesis of complex carbonhydrates in bioorganic chemistry: oligosaccharides, Oxford University, New York, 1999, 134-173
    [44] 华东理工大学有机化学教研组, 有机合成中的保护基, 上海: 华东理工大学出版社, 2004, 10-16
    [45] Bhatt M V and Kulkarni S U, Cleavage of ethers, Synthesis, 1983, 249-282
    [46] Kamai A, Gayatri N L, An efficient method for 4β-anilino-4’-demethylepipodophyllotoxins: Synthesis of NPF and W-68, Tetrahedron Lett., 1996, 37(19), 3359-3362
    [47] Hwang K, Park S, Selective cleavage of aryl methyl ether moiety of aryloxyaryl methyl ether by 48% hydrogen bromide/tetrabutylphosphonium bromide, Synth. Commun., 1993, 23(20), 2845-2849
    [48] Li G, Patel D, Hruby V J, An efficient procedure for the demethylation of aryl-methyl ethers in optically pure unusual amino acids, Tetrahedron Lett., 1993, 34(34), 5393-5396
    [49] A. M. Bernard, M. R. Ghiani, P. P. Piras, et al., Dealkylation of activated alky aryl ethers using lithium chloride in dimethylformamide, Synthesis, 1989, 287
    [50] K. Kirschke and E. Wolff, Selective cleavage of methyl-aryl ethers with LiI in quinoline. J. Prakt. Chem. Ztg., 1995, 337(5), 405
    [51] Inaba T, Umezawa I, Yuasa M, et al., The first total synthesis of deoxybouvardin and RA-VII, novel antitumor cyclic hexapeptides, J. Org. Chem., 1987, 52(13), 2957-2958
    [52] Node M, Nishide K, Fuji K, et al., Hard acid and soft nucleophile system. 2. Demethylation of methyl ethers of alcohol and phenol with an aluminum halide-thiol system, J. Org. Chem., 1980, 45(22), 4275-4277
    [53] Horie T, Kobayashi T, Kawamura Y, et al., Studies of the selective o-alkylation and dealkylation of flavonoids. XVIII. A convenient method for synthesizing 3,5,6,7-tetrahydroxyflavones, Bull. Chem. Soc. Jpn., 1995, 68(7), 2033-2041
    [54] Kiso Y, Nakamura S, Ito K, et al., Deprotection of O-methyltyrosine by a ‘pushpull’ mechanism using the thioanisole-trifluoromethanesulfonic acid system. Application to the convenient synthesis of a potent N-methylenkephalin derivative, J. Chem. Soc., Chem. Commun., 1979, 21, 971-972
    [55] Kiso Y, Ukawa K, Nakamura S, et al., Efficient removal of protecting groups by a ‘pushpull’ mechanism. II. Deprotection of O-benzyltyrosine with a thioanisole-trifluoroacetic acid system without O-to-C rearrangements, Chem. Pharm. Bull., 1980, 28, 673-676
    [56] Ohsawa T, Hatano K, Kayoh K, et al., Dissolving metal reduction with crown ether—reductive demethylation of mono-, di- and trimethoxybenzene derivatives with toluene radical anion, Tetrahedron Lett., 1992, 33(38), 5555-5558
    [57] Azzena U, Denurra T, Melloni G, et al., Electron-transfer-induced reductive demethoxylation of anisole: evidence for cleavage of a radical anion, J. Org. Chem., 1992, 57(5), 1444-1448
    [58] Kende A S, Rizzi J P, A regiospecific synthesis of (±)-decarbomethoxyaklavinone, Tetrahedron Lett., 1981, 22(19), 1779-1782
    [59] J. A. Dodge, M. G. Stocksdale, K. J. Fahey, et al., Regioselectivity in the alkaline thiolate deprotection of aryl methyl mthers, J. Org. Chem., 1995, 60(3), 739-741
    [60] Hwu J R, Tsay S-C, Counterattack reagents sodium trimethylsilanethiolate and hexamethyldisilathiane in the bis-o-demethylation of aryl methyl ethers, J. Org. Chem., 1990, 55(24), 5987-5991
    [61] Nayak M K, Chakraborti A K, Chemoselective aryl alkyl ether cleavage by thiophenolate anion through its in situ generation in catalytic amount, Tetrahedron Lett., 1997, 38(50), 8749-8752
    [62] Mann F G, Pragnell M J, Dealkylation by the secondary phosphide ion, Chem. Ind. (London), 1964, 31, 1386-1387
    [63] Meier H, Dullweber U, Bis(stilbenyl)squaraines-Novel pigments with extended conjugation, Tetrahedron Lett., 1996, 37(8), 1191-1194
    [64] Hwu J R, Wong F F, Huang J, et al., Sodium bis(trimethylsilyl)amide and lithium diisopropylamide in deprotection of alkyl aryl ethers: -effect of silicon, J. Org. Chem., 1997, 62(12), 4097-4104
    [65] Bovicelli P, Mincione E, Ortaggi G, Chemo and regioselective opening of ethereal carbon-oxygen bonds by monochloroborane-dimethylsulfide, Tetrahedron Lett., 1991, 32(30), 3719-3722
    [66] Majetich G, Zhang Y, Wheless K, Hydride-promoted demethylation of methyl phenyl ethers, Tetrahedron Lett., 1994, 35(47), 8727-8730
    [67] Kawaski M, Matsuda F, Terashima S, Synthetic studies on nogalamycin congeners [2]1,2 chiral synthesis of the cdef-ring system of nogalamycin, Tetrahedron, 1988, 44(18), 5713-5725
    [68] Narayana C, Padmanabhan S, Kabalka G W, Tetrahedron Lett., 1990, 31, 6977
    [69] Ueki M, Inazu T, Phosphinyl- and phosphinothioylamino acids and peptides. VI. The protection of the hydroxyl function in the tyrosine side chain by the dimethylphosphinothioyl group, Bull. Chem. Soc. Jpn., 1982, 55(1), 204-207
    [70] Ueki M, Shinozaki K, Phosphinyl- and phosphinothioylamino acids and peptides. VII. The use of the dimethylphosphinothioyl group as a cysteine thiol-protecting group, Bull. Chem. Soc. Jpn., 1983, 56(4), 1187-1191
    [71] Boss R, Scheffold R, Cleavage of allyl ethers with Pd/C, Angew. Chem. Int. Ed. Engl., 1976, 15(9), 558-559
    [72] Bois-Choussy M, Neuville L, Beugelmans R, et al., Synthesis of modified carboxyl binding pockets of vancomycin and teicoplanin, J. Org. Chem., 1996, 61(26), 9309-9322
    [73] Beugelmans R, Bourdet S, Bigot A, et al., Reductive deprotection of aryl allyl ethers with Pd(Ph3)4/NaBH4, Tetrahedron Lett., 1994, 35(25), 4349-4350
    [74] Dessolin M, Guillerez M-G, Thieriet N, et al., New allyl group acceptors for palladium catalyzed removal of allylic protections and transacylation of allyl carbamates, Tetrahedron Lett., 1995, 36(32), 5741-5744
    [75] Thomas R M, Mohan G H, Iyengar D S, A novel, mild and facile reductive cleavage of allyl ethers by NaBH4/I2 system, Tetrahedron Lett., 1997, 38(26), 4721-4724
    [76] Espanet B, Dunach E, Perichon J, The photolysis of ethyl 5-oxo-2-phenyl-2,5-dihyroisoxazole-4-carboxylate in amines and alcohols, Tetrahedron Lett., 1992, 33(20), 2845-2846
    [77] Kadam S M, Nayak S K, Banerji A, Asymmetric dihydroxylation of olefins containing sulfur: Chemoselective oxidation of C--C double bonds in the presence of sulfides, 1, 3-dithianes, and disulfides, Tetrahedron Lett., 1992, 35(29), 5129-5132
    [78] Alonao E, Ramon J, Yus M, Reductive deprotection of allyl, benzyl and sulfonyl substituted alcohols, amines and amides using a naphthalene-catalysed lithiation, Tetrahedron, 1997, 53(42), 14355-14368
    [79] Effenberger F, Jager J, Synthesis of the adrenergic bronchodilators (R)-terbutaline and (R)-salbutamol from (R)-cyanohydrins, J. Org. Chem., 1997, 62(12), 3867-3873
    [80] Choudary B M, Prasad A D, Swapna V, et al., Chromium pillared clay catalysed allylic oxidation and oxidative deprotection of allyl ethers and amines : a simple and convenient procedure, Tetrahedron, 1992, 48(5), 953-962
    [81] Thurston D E, Murty V S, Langley D R, et al., O-debenzylation of a pyrrolo[2,1-c][1,4]benzodiazepine in the presence of a carbinolamine functionality: synthesis of DC-81, Synthesis, 1990, 81-84
    [82] Marples B A, Muxworthy J P, Baggaley K H, Oxidative cleavage of benzyl ethers using dimethyldioxirane, Synlett, 1992, 646-647
    [83] Hwu J R, Wein Y S, Leu Y-J, Calcium metal in liquid ammonia for selective reduction of organic compounds, J. Org. Chem., 1996, 61(4), 1493-1499
    [84] Oriyama T, Kimura M, Oda M, Koga G, Tin(II) bromide - acetyl bromide: A mild and efficient reagent for direct conversion of alcohol benzyl ethers into acetates, Synlett, 1993, 437-440
    [85] Yoshino H, Tsujii M, Kodama M, et al., A large-scale synthesis of [metTyr1, meArg7, D-Leu8] dynorphin A-(1-8)-NHEt (E-2078) by application of the trifluoroacetic acid-pentamethylbenzene deprotecting procedure in the final stage, Chem. Pharm. Bull., 1990, 38, 1735-1737
    [86] Bhatt M V and Kulkarni S U, Cleavage of ethers, Synthesis, 1983, 249-282
    [87] McOmie J F W and Watts M S, Chem. and Ind. (London), 1963, 1658
    [88] Feutrill G I and Mirrington, Demethylation of aryl methyl ethers with thioethoxide ion in dimethyl formamide, Tetrahedron Lett., 1970, 11(16), 1327-1328
    [89] Hansson C and Wickberg B, Selective Dealkylation of Activated Aromatic Ethers, Synthesis, 1976, 191-192
    [90] Harrison I T, Cleavage of alkyl aryl ethers with lithium iodide, Chem. Commun., 1969, 11, 616-617
    [91] (a). Evers M C, Captopril and intermediate products, Chemica Script., 1986, 26, 585-587 (b). Tiecco M, Selective Dealkylations of Aryl Alkyl Ethers, Thioethers, and Selenoethers, Synthesis, 1988, 749-759
    [92] Grynkiewiez G, Poenie M, and Tsien R Y, A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties, J. Bio. Chem., 1985, 260(6), 3440
    [93] Blinks J R, Wier W G, Hess P and Prendergast F G, Measurement of calcium(2+) concentrations in living cells, Prog. Biophys. Mol. Biol., 1982, 40, 1-2
    [94] Massami K, Yutaka S, Shiro A, et al., Preparation of antibacterical and antitumor epoxyclohexenedione derivative, JP, PCT Int. Appl. WO 95 08546, 30 Mar 1995
    [95] Patrice D, Preparation of 5-phenylpyrrolo [1,2,3-de]-1,4-benzoxazine and thiazine derivative as antiinflammatories and allergy inhibitors, Ger. Offen. DE 4304806, 18 Aug 1994
    [96] Radhakrishna A S, Rao K R, Sivaprakash S K, et al., Potassium fluoride on alumina-a new reagent for selective-o-demethylation of arylalkyl ethers, Synth. Commun., 1991, 21, 379
    [97] Ahmad R, Saa J M, and Cava M P, Regioselective o-demethylation in the aporphine alkaloid series, J. Org. Chem., 1977, 42, 1228-1230
    [98] Oussaid A, Thach L N, and Loupy A, Selective dealkylations of alky aryl ethers in heterogeneous basic media under microwave irradiation, Tetrahedron Lett., 1997, 38, 2451-2454
    [99] Kawamura Y, Takatsuki H, Torii F, et al., Studies of the selective o-alkylation and dealkylation of flavonoids. XVI. Demethylation of 2'-methoxyacetophenones with anhydrous aluminum chloride or bromide in acetonitrile, Bull. Chem. Soc. Jpn., 1994, 67(2), 511-515
    [100] Deslongchamps P, Belanger A, Berney D J, et al., The total synthesis of (+)-ryanodol. Part I. General strategy and search for a convenient diene for the construction of a key tricyclic intermediate, Can. J. Chem., 1990, 68, 115-126
    [101] Kametani T, Huang S P, Ihara M, et al., A novel cleavage of aryl benzyl ethers and allyl aryl ethers by sodium bis(2-methoxyethoxy)aluminum hydride, J. Org. Chem., 1976, 41, 2545-2548
    [102] Baldwin J E and Haraldsson G G, Acta. Chem. Scand. Ser. B, B40, 1986, 400
    [103] Nicolosi G, Piattelli M, Sanfilippo C, Acetylation of phenols in organic solvent catalyzed by a lipase from chromobacterium viscosum, Tetrahedron, 1992, 48(12), 2477-2482
    [104] Srivastava V, Tandon A, Ray S, Convenient and selective acetylations of phenols, amines and alcohols, Synth. Commun., 1992, 22, 2703-2710
    [105] Illi V O, Phase transfer catalyzed acylation, Tetrahedron Lett., 1979,20(26), 2431-2432
    [106] Lam L K T, Farhat K, The use of pivaloyl chloride in the selective synthesis of 3-(tert-butyl)-4-methoxyphenol-a BHA isomer, Org. Prep. Proced. Int., 1978, 10(2), 79-82
    [107] Stadler P A, Eine einfache veresterungsmethode im Eintopf-Verfahren, Helv. Chim. Acta., 1978, 61(5), 1675-1681
    [108] Lezonff C C, Dixit D M, Photochemistry of oxalate esters as a route to free radicals. Decay routes of crowded free radicals, Can. J. Chem., 1977, 55, 3349-3350
    [109] Nishiguchi T, Taya H, Facile acylation of alcohols using esters and silica gel-supported metallic sulphates and hydrogen sulphates, J. Chem. Soc., Perkin Trans. 1, 1990, 1, 172-173
    [110] Barton D H R, Chow Y L, Cox A, et al., Photochemical transformations. Part XIX. Some photosensitive protecting groups, J. Chem. Soc., 1965, 1, 3571-3578
    [111] Fischer E, Fischer H O L, Carbomethoxy derivatives of the phenolcarboxylic acids and their use in synthesis. VIII. Derivatives of orsellinic and α-resorcylic acids, Ber., 1913, 46, 1138-1148
    [112] Hansen M M, Riggs J R, A novel protecting group for hindered phenols, Tetrahedron Lett., 1998, 39(18), 2705-2706
    [113] Kuhn M, Warburg A. von, über ein neues glykosidierungsverfahren II. Glykoside des 4-demethylepipodophyllotoxins. 23. mitteilung über mitosehemmende naturstoffe, Helv. Chim. Acta., 1969, 52(4), 948-955
    [114] Ueki M, Sano Y, Sori I, et al., Methylphosphinyl (Dmp): A new protecting group of tyrosine suitable for peptide synthesis by use of boc-amino acids, Tetrahedron Lett., 1986, 27(35), 4181-4184
    [115] Lantos I, Love B, The total synthesis of (±)-decinine, Tetrahedron Lett., 1975, 16(24), 2011-2014
    [116] Wolfrom M L, Koos E W, Bhat H B, Osage orange pigments. XVIII. Synthesis of osajaxanthone, J. Org. Chem., 1967, 32, 1058-1060
    [117] Boisselier V Le, Postel M, Duňch E, Bi(III) as New Catalyst for the Selective Hydrolysis of Esters, Tetrahedron Lett., 1997, 38(17), 2981-2984
    [118] Parmar V S, Kumar A, Bisht K S, et al., Novel chemoselective de-esterification of esters of polyacetoxy aromatic acids by lipases, Tetrahedron, 1997, 53(6), 2163-2176
    [119] Pedrocchi-Fantoni G, Servi S, Regio- and chemo-selective properties of lipase from Candida cylindracea, J. Chem. Soc., Perkin Trans. 1, 1992, 1029-1033
    [120] Yanada R, Negoro N, Bessho K, Yanada K, Metallic samarium and iodine in alcohol. Deacylation and dealkyloxycarbonylation of protected alcohols and lactams, Synlett, 1995, 1261-1263
    [121] Varma R S, Varma M, Chatterjee A K, Microwave-assisted deacetylation on alumina: a simple deprotection method, J. Chem. Soc., Perkin Trans. 1, 1993, 9, 999-1000
    [122] Quick J, Crelling J K, The acetyl function as a protecting group for phenols, J. Org. Chem., 1978, 43(1), 155-156
    [123] Zaugg H E, Selective cleavage of aryl esters by anhydrous alkali carbonates, J. Org. Chem., 1976, 41, 3419-3421
    [124] Bell K H, Facile selective aminolysis of phenolic benzoates with 1-butanamine in benzene, Tetrahedron Lett., 1986, 27(20), 2263-2264
    [125] King P K, Stroud S G, Mild homogeneous deblocking employing 2-bromo-1, 3,2-benzodioxaborole1, Tetrahedron Lett., 1985, 26(11), 1415-1418
    [126] Yamashiro D, Li C H, Protection of tyrosine in solid-phase peptide synthesis, J. Org. Chem., 1973, 38(3), 591-592
    [127] Lantos I and Love B, The total synthesis of (±)-decinine, Tetrahedron Lett., 1975, 16(24), 2011-2014
    [128] Baldwin J E, Barton H R, Dainis I, et al., Photochemical transformations. Part XXIV. The synthesis of 18-hydroxyoestrone, J. Chem. Soc. C, 1968, 2283-2289
    [129] Dwivedi S, Misra R A, Formation of phenols with reaction of electrochemically generated superoxide ion with aryl tosylates, Indian J. Chem., Sect. B, 1992, B31, 282-284
    [130] Civitello E R, Rapoport H, Synthesis of the enantiomeric furobenzofurans, late precursors for the synthesis of (+)- and (-)-Aflatoxins B1, B2, G1, and G2, J. Org. Chem., 1994, 59, 3775-3782
    [131] Sridhar M, Kumar B A, Narender R, Expedient and simple method for regeneration of alcohols from toluenesulfonates using Mg---MeOH, Tetrahedron Lett., 1998, 39(18), 2847-2850
    [132] Haslam C, Protective groups in organic chemistry, McOmie, J. F. W., Plenum Press, London, 1973
    [133] Sommer H Z, J. Krenzer, US 3919289, Nov. 11, 1975
    [134] Chaudhuri K and Chawla H M, A novel observation on the reaction of 1,4-diacetoxybenzene with cerium(IV) ammonium nitrate, Current Science, 1986, 55, 852
    [135] Chawla H M and Chakrabarty K, Synthesis of nitrohydroxyxanthones & oxidative coupling of phenols using cerium(IV) Ammonium nitrate, Indian J. Chem., 1985, B24, 1277-1279
    [136] Chaudhuri K and Chawla H M, Chemical components of cassia javanica leaves, Indian J. Pharm. Sci., 1985, 47(4), 172-173
    [137] Kehrmann F, Klopfenstein W, Quelques remarques sur l'action de l'acide nitrique sur le dérivé diacétylé de l'hydroquinone, Helv. Chim. Acta. 1923, 6(1), 952-954
    [138] Blay G, Cardona M L, Garcia M B, et al., A selective hydrolysis of aryl acetates, Synthesis, 1989, 438-439
    [139] Ono M and Itoh I, N-methyl-2-dimethylaminoacetohydroxamic acid as a new reagent for the selective cleavage of active esters under neutral conditions, Tetrahedron Lett., 1989, 30, 207-210
    [140] Trollsas M, Orrenius C, Sahlen F, et al., Preparation of a novel cross-linked polymer for second-order nonlinear optics, J. Am. Chem. Soc., 1996, 118: 8542-8548
    [141] Kauffmann H, Kugel W, 4-Nitro-resorcinol, Chem. Ber. 1911, 44, 753-754
    [142] Shridhar D R, Bhagat R, Reddy G, Potential hypolipidemic agents: Part IV - Synthesis & hypolipidemic activities of some new ethyl 3-aryl-2H-1, 4-benzoxazin-7-yloxyalkanoates, Indian J. Chem. Sect. B, 1986, 25, 883-885
    [143] Wolfrom M L, Koos E W, Bhat H B, Osage orange pigments. XVIII. Synthesis of osajaxanthone, J. Org. Chem., 1967, 32, 1058-1060
    [144] Civitello E R and Rapoport H, Synthesis of the enantiomeric furobenzofurans, late precursors for the synthesis of (+)- and (-)-Aflatoxins B1, B2, G1, and G2, J. Org. Chem., 1994, 59, 3775-3782
    [145] Horner L and Simons G, Organophorus compounds. Part 101. Tertiary phosphines containing o-alkoxyphenyl groups. Synthesis and properties, Phosphorous and Sulfur, 1983, 14(2), 189-209
    [146] Grynkiewiez G, M. Poenie, and R. Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Bio. Chem., 1985, 260(6), 3440-3450
    [147] Baker W and Lothian O M, Chelation. III. Stabilization of kekule forms in o-hydroxycarbonyl compounds, J. Chem. Soc., 1936, 274-281
    [148] (a). Amin G C, Chaughuley A S U, Fries rearrangement of esters of 2-nitroresorcinol, J. Indian Chem. Soc. 1959, 36, 617-621 (b). Amin G C, Chaughuley A S U, Fries rearrangement of esters of 4-nitroresorcinol, J. Indian Chem. Soc. 1959, 36, 833-837
    [149]Drake N L and Ross A B, Polycyclic compounds containing nitrogen. ?. The Diels- Alder reaction of 1-nitro-1-alkenes, J. Org. Chem., 1958, 23: 717-720
    [150] Trost B M, Fleming L, Comprehensive Organic Synthe-sis, Vol. 2, Oxford, England, 1991, 745-747
    [151] Barton D, Stoddart J F, Ollis W D, Comprehensive Organic Chemistry, Vol. 1 Oxford, England, 1979, 1170
    [152] Ono N, The Nitro Group In Organic Synthesis, John Wiley: New York, 2001, 274
    [153] Banberjee T and Srikantiah S M, Neighbouring hydroxy group assisted o-alkylation and solvolysis of an unsymmetrical diester derivative of myo-inositol, Tetrahedron Lett., 1994, 35(43), 8053-8056
    [154] Anastas P T, Warner J C, Green chemistry: Theory and practice, London: Oxford University Press, 1998
    [155] Anastas P C, Williamson T C, Green chemistry frontiers in benign chemistry syntheses and processes, London: Oxford University Press, 1998
    [156] 纪红兵,佘远斌,绿色氧化与还原,北京:中国石化出版社,2005, 1
    [157] 胡常伟,李贤均,绿色化学原理及应用,北京:中国石化出版社,2002, 4
    [158] Trost B M, The atom economy-A search for synthetic efficiency, Science, 1991, 254, 1471-1477
    [159] 胡玉才,宋俊芬,姜 丽等,绿色化学研究进展,应用化工,2005,34(2), 67-71
    [160] Pillai U R, Sahle Demessie E, Selective oxidation of alcohols by molecular oxygen over a Pd/MgO catalyst in the absence of any additives, Green Chem, 2004, 6(3), 161-165
    [161] Okuyama K, Sugiyama J, Nagahata R, et a1., An environmentally begin process for aromatic polycarbonate synthesis by efficient oxidative carbonylation catalyzed by Pd-carbene complexes, Green Chem., 2003, 5(5), 563-566
    [162] Kovacs G, Nadasdi L, Laurenczy G, et a1., Aqueous organometallic catalysis catalysis, Isotope exchange reactions in H2-D2O and D2-H2O systems catalyzed by water-soluble Rh- andRu- phosphine complexes, Green Chem., 2003, 5(2), 213-217
    [163] Bal R, Sivasanker S, Selective O-alkylation of cresols with methanol: catalysis by Cs loaded silica, a solid base, Green Chem., 2(100, 2(3), 106-107
    [164] Tomishige K, Miyazawa T, Asadullah M, et a1., Cata1yst performance in reforming of tar derived from biomass over noble metal catalysts, Green Chem, 2003, 5(4), 399-403
    [165] Kumar C P, Reddy K R, Rao V V, et a1., Vapour phase ammoxidation of toluene over vanadium oxide supported on Nb2O5-TiO2, Green Chem., 2002, 4(5), 513-516
    [166] Jyothi T M, Sugunan S, Rao B S, Selective methylation of anisole to 2, 6-xylenol over rare earth promoted SnO2 catalysts, Green. Chem., 2002, 2(6), 269-271
    [167] Bhanage B M, Fuiita S, Ikushima Y, et a1., Transesterification of urea and ethylene glycol to ethylene carbonate as an important step for urea based dimethyl carbonate synthesis, Green Chem., 2003, 5(4), 429-432
    [168] Chiker F, Launay F, Nogier J P, et a1., Green and selective epoxidafion of alkenes catalysed by new TiO2-SiO2 SBA mesoporous solids. Green Chem., 2003, 5(3), 318-322
    [169] Guidotti M, Ravasio N, Psaro R, et a1., Heterogeneous catalytic ipoxidation of fatty acid methyl esters on titanim-grafted silicas, Green Chem., 2003, 5(4), 421-424
    [170] Zhang X Y, Li L J, Zhang G S, An efficient and green procedure for the preparation of acylals from aldehydas catalyzed by Fe2(SO4)3?xH2O, Green Chem., 2003, 5(5), 646-648
    [171] Mal N K, Bhaumik A, Kumar P, et a1., Microporous niobium phosphates and catalytic properties prepared by a supramolecular templating mechanism, Chem. Cornmun, 2003, (7), 872-873
    [172] Wang J, Park J N, Wei X Y, et a1, Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe2+, Co2+ ionexchanged Na-β zeolite, Chem. Commun, 2003, (5), 628-629
    [173] Corma A, Renz M, Sn-Bata zeolite as diastereselctive water-resistant heterogeneous Lewis-acid catalyst for carbon-carbon bond formation in the intramolecular carbony1ene reaction, Chem. Commun., 2004, (5), 550-551
    [174] Ma A Z, Grunert W, Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts, Chem. Commun., 1999, (1), 71-72
    [175] Wali A, Das J, Pillai S M, et a1., Disproportionation isomerization and de-ter-butylation of 2, 6-di-ter-butylphenol catalyzed by H-MCM-41, Green Chem., 2002, 4(6), 587-591
    [176] Climent M J, Velty A, Corma A, Design of a solid catalyst for the synthesis of a molecule with blossom orange scent, Green Chem., 2002, 4(6), 565-569
    [177] Brooks C D, Huang C H, Mc Carron M, et a1., Heterogeneously catalysed cleavage of carbon-carbon double bonds with hydrogen peroxide using calcined heteropolyacids on oxide supports, Chem. Commun., 1999, (1), 37-38
    
    [178] Ichihara J, Kambara A, Iteya K, et a1., Cetylpyridinium dodecatungstate on fluorapatite: efficient and reusable solid catalyst for solvent-free epoxidation, Green Chem., 2003, 5
    [179] Keh C C K, Li C J, Direct formation of 2, 4-disubstituted tetrahydropyranols in water mediated by an acidic solid resin, Green Chem., 2003, 5(1), 80-81
    [180] Blanco Brieva G, Cano Serrano E, Campos Martin J M, et a1., Direct synthesis of hydrogen peroxide solution with palladium-loaded sulfonic add polystyrene resins, Chem. Commun., 2004, (10), 1184-1185
    [181] Cativiela C, Fraile J M, Garcia J I, et a1., Heterogeneous catalysis in the synthesis and reactivity of allantoin, Green Chem., 2003, 5(2), 275-277
    [182] Kishore D, Kannan S, Isomerization of eugenol and safrole over Mg-Al hydrotalcite, a solid base catalyst, Green Chem., 2002, 4(6), 607-610
    [183] TawarM B, Jyothi T M, Sawant P D, et a1., Calcined Mg-Al hydrotalcite as an efficient catalyst for the synthesis of guaiacol, Green Chem., 2000, 2(6), 266-268
    [184] Ramani A, Chanda B M, Velu S, et a1., One-pot synthesis of coumarins, Green Chem., 1999, 1(3), 163-165
    [185] Wei T, Wang M H, Wei W, et a1., Synthesis of dimethl carbonate by transesterification over Cao/carbon commposites, Green Chem., 2003, 5(3), 343-346
    [186] Tomeshige K, Yasuda H, Yoshida Y, et a1., Catalytic performance and properties of ceria based catalysts for cyclic carbonate synthesis from glycol and carbon dioxide, Green Chem., 2004, 6(4), 206-214
    [187] Pouillou x Y, Courtois G, Boisseau M, eta1., Solid base catalysts for the synthesis of phytosterol esters, Green Chem., 2003, 5(1): 89-91
    [188] Lopez Pestana J M, Avila Rey M J, Martin Aranda R M, Ultrasound-promoted N-alkylation of imidazole, catalysis by solid-base, alkali-metal doped carbons, Green Chem., 2002, 4(6), 628-630
    [189] He L N, Yasuda H, Sakakura T, New procedure for recycling homogeneous catalyst: propylene carbonate syntheses under supercritical CO2 conditions, Green Chem., 2003, 5(1), 92-94
    [190] Zhao F Y, Ikushima Y, Chatterjee M, et a1., An effective and recyclable catalyst for hydrogenation of α,β-unsaturated aldehydes into saturated aldehydes in supervritical carbon dioxide, Green Chem., 2003, 5(1), 76-79
    [191] Park K C, Tomiyasu H, Gasification reaction of organic compounds catalyzed by RuO2 in supercrifical water, Chem. Commun., 2003, (6), 694-695
    [192] Doherty S, Gaodrich P, Hardacre C, et a1., Marked enantioselectivity enhancemen ts for Diels-Alder reactions in ionic liquids catalysed by platinum diphosphine complexes, Green Chem., 2004, 6(3), 63-67
    [193] Zhang X Y, Fan X S, Niu H Y, et a1., An ionic liquid as a recyclable medium for the green preparation of α, α’-bis(substituted benzeylidene) cycoalkanones catalyzed by FeCl3?6H2O, Green Chem., 2003, 5(2), 267-269
    [194] Oh C R, Choo D J, Shim W H, et a1., Chiral Co(III) (salen)-catalysed hydrolytic kinetic resolution of racemic epoxides in ionic liquids, Chem. Commun, 2003, (9), 1100-1101
    [195] Hagiwara H, Sayuri T, Okabe T, et a1., Conjugate addition of unmodified aldehydes: recycle of heterogeneous amine catalyst and ionic liquid, Green Chem., 2002, 4(5), 461-463
    [196] 贡长生,张克力,绿色化学化工实用技术,北京: 化学工业出版社,2002, 36-37
    [197] Li C J, Organic reactions in aqueous medium-with a focus on carbon-carbon bond formation, Chem. Rev., 1993, 93, 2023-2035
    [198] (a) Rideout D C, Breslow R, Hydrophobic acceleration of Diels-Alder reactions, J. Am. Chem. Soc., 1980, 102(26), 7816-7817 (b) Breslow R, Martra V, Rideout D, Selective diels-alder reactions in aqueous solutions and suspensions, Tetrahedron Lett. 1983, 24(18), 1901-1904 (c) Breslow R, Martra V, On the origin of product selectivity in aqueous diels-alder reactions, Tetrahedron Lett. 1984, 25(12), 1239-1240
    [199] Li C J, Organic reactions in aqueous medium-with a focus on carbon-carbon bond formation, Chem. Rev., 1993, 93, 2023-2035
    [200] Sloboda-Rozner D, Alsters P L, Neumann R, A water-soluble and “self-assembleed” polyoxometalate as a recyclable catalyst for oxidation of alcohols in water with hydrogen peroxide, J. Am. Chem. Soc., 2003, 125, 5280-5281
    [201] Parmar D U, Bhatt S D, Bajaj H C, Jasra R V, Hydrogenation of alkenes and aromatic hydrocarbons using water-soluble RuCl2(TPPTS)3 in aqueous medium, J. Mol. Catal. 2003, A202, 9-15
    [202] Zarka M T, Nuyken O, Weberskirch R, Amphiphilic polymer supports for the asymmetric hydrongenation of amino Acid precursors in water, Chem. Eur. J., 2003, 9, 3228-3234
    [203] Sullivan D A, Industrial solvents: In Kirk-othmer encyclopedia of chemical technology. Wiley, New York, 1997
    [204] Raston C R, Scott J, Chemoselective, solvent-free aldol condensation reaction, Green Chem., 2000, 49-52
    [205] Tank K, Toda F, Solvent-free organic synthesis, Chem. Rev., 2000, 100, 1025-1074
    [206] (a) Blaney P, Grigg R, Sridharan V, Traceless solid-phase organic synthesis, Chem. Rev., 2002, 102(7), 2607-2624 (b) Guillier F, Orain D, Bradley M, Linkers and cleavage strategies in solid-phase organic synthesis and combinatorial chemistry, Chem. Rev., 2000,100(6), 2091-2158
    [207] Varma R S, Sain R K, Microwave-assisted reduction of carbonyl compounds in solid state using sodium borohydride supported on alumina, Tetrahedron Lett., 1997, 38, 4337-4338
    [208] Yamaguchi K, Supported ruthenium catalyst for the heterogeneous oxidation of alcohol with molecular oxygen, Angew. Chem. Int. Ed, 2002, 41, 4538
    [209] Kaneda K, Yamashita T, Ebitani K, Heterogeneous oxidation of allylic and benzyl alcohols catalyzed by Ru-Al-Mg hydrotalcites in the presence of molecular oxygen, J. Org. Chem., 1998, 63, 1750-1751
    [210] Csjernik G,Ell A H, Pugin B,et al, Efficient ruthenium-catalyzed aerobic oxidation of alcohols using a biomimetic coupled catalytic system, J. Org. Chem., 2002, 67, 1657-1662
    [211] Wang J, Park J N, Wei X Y,et al, Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe2+, Co2+ ion-exchanged Na zeolite, Chem. Commun., 2003, 628-629
    [212] Ji H B, Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature, Catal. Comm un,2002,3, 511-512
    [213] Marko I E, Giles P R , Tsukazaki M , et al., Efficient, aerobic, ruthenium-catalyzed oxidation of alcohols into aldehydes and ketones, J. Am. Chem. Soc., 1997, 119(51), 12661-12662
    [214] Liu R, Liang X, Dong C, et al., Transition-metal-free: a highly efficient catalytic aerobic alcohol oxidation process, J. Am. Chem. Soc., 2004, 126, 4112-4113
    [215] Sato K, Oaki M, Takagi J, Noyori R, Organic solvent- and halide-free oxidation of alcohols with aqueous hydrogen peroxide, J. Am. Chem. Soc., 1997, 119(50), 12386-12387
    [216] Sato K, Takagi J, Oaki M, Noyori R, Hydrogen peroxide oxidation of benzylic alcohols to benzaldehydes and benzoic acids under halide-free conditions, Tetrahedron Lett., 1998, 39(41), 7549-7552
    [217] Szuromi P D, Chemistry: A bone-supported catalyst, Editors’ Choice, Science, 2000, 289, 509
    [218] Fey T, Fischer H, Bachmann S, Albert K, Bolm C, Silica-supported TEMPO catalysts: synthesis and application in the anelli oxidation of alcohols, J. Org. Chem., 2001, 66, 8154-8159
    [219] Adam W, Saha-Moller C R, Ganeshpure P A, Synthetic applications of nonmetal catalysts for homogeneous oxidations, Chem. Rev. , 2001, 101(11), 3499-3548
    [220] Nishimura T, Onoue T, Uemura S, Ohe K, et a1., Pd(OAc)2-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen, Tetrahedron Lett., 1988, 39(33), 6011-6014
    [221] Kakiuchi N, Maeda Y, Nishimura T, et a1., Pd(II)-hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air, J. Org. Chem., 2001, 66(20), 6620-6625
    [222] Firouzabadi H, Irapoor N, Sobhani S, Sardarian A R, High yield preparation of a-ketophosphonates by oxidation of alpha-hydroxyphosphonates with zinc dichromate trihydrate (ZnCr2O7 center dot 3H2O) under solvent-free conditions, Tetrahedron Lett., 2001, 42, 4369-4371
    [223] Mark I E, Gautier A, Chell-Regnaut I, et a1., Efficient and practical catalytic oxidation of alcohols using molecular oxygen, J. Org. Chem., 1998, 63(22), 7576-7577
    [224] Samajdar S, Becher F F, Banik B K, Surface-mediated highly efficient oxidation of alcohols by bismuth nitrate, Syn. Commun., 2001, 31(17), 2691-2695
    [225] Shi Z J, Guan B T, Xing D, et al., Highly selective aerobic oxidation of alcohol catalyzed by a gold(I) complex with an anionic ligand, J. Am. Chem. Soc., 2005, 127, 18004-18005
    [226] Brink G J T, Arends I W C E, Sheldon R A, Green catalytic oxidation of alcohols in water, Science, 2000, 287, 1636-1639
    [227] Uozumi Y, Catalytic oxidation of alcohols in water under atmospheric oxygen by use of an amphiphilic resin-dispersion of a nanopalladium catalyst.Angew. Chem. Int. Ed, 2003, 42, 194
    [228] Li C B, Zheng P W, Li J, et al.,The dual roles of oxodiperoxovanadate both as a nucleophile and an oxidant in the green oxidation of benzyl alcohols or enzyl halides to aldehydes and ketones, Angew. Chem. Int. Ed., 2003, 42 (41), 5063-5066
    [229] Yamaguchi K, Supported ruthenium catalyst for the heterogeneous oxidation of alcohol with molecular oxygen, Angew. Chem. Int. Ed, 2002, 41, 4538
    [230] Hu A, Ngo H L, Lin W, 4,4'-Disubstituted BINAP for highly enantioselective Ru-catalyzed asymmetric hydrogenation of ketones, Org. Lett., 2004, 6(17), 2937-2940
    [231] Nakamura K, Matsuda T, Asymmetric reduction of ketones by the acetone powder of geotrichum candidum, J. Org. Chem., 1998, 63(24), 8957–8964
    [232] Noller C R, A dams R, The use of aliphatic acid anhydrides in the preparation of ketones by the Friedel and Crafts reaction, J. Am. Chem. Soc., 1924, 46, 1889–1896
    [233] Horner L and Simons G, Phosphorous and Sulfur, 1983, 14, 189
    [234] Shriner R L, Moffett R B, Halogen substituted benzopyrylium salts, J. Am. Chem. Soc., 1939, 61(6), 1474-1477
    [235] Jawis B B and Saukaitis J C, Nucleophilic displacements on halogen atoms. II. kinetic study of the reactions of α-halo sulfones with triphenylphosphine, J. Am. Chem. Soc., 1973, 95(23), 7708-7715
    [236] Ganapathy S, Sekhar B B V S, et al., Photo-arbuzov rearrangements of dimethyl benzyl and dimethyl p-acetylbenzyl phosphite, J. Am. Chem. Soc., 1999, 121(10), 2085-2096
    [237] Noji M, Ohno T, Ishii K, et al., Secondary benzylation using benzyl alcohols catalyzed by lanthanoid, scandium, and hafnium triflate, J. Org. Chem., 2003, 68, 24,9340-9347
    [238] Goslinski T, Golankiewicz B, Clercq E D, Balzarini J, Synthesis and biological activity of strongly fluorescent tricyclic analogues of acyclovir and ganciclovir, J. Med. Chem., 2002, 45(23), 5052-5057
    [239] (a). Amin G C, Chaughuley A S U, J. Indian Chem. Soc. 1959, 36, 617-621 (b). Amin G C, Chaughuley A S U, J. Indian Chem. Soc. 1959, 36, 833-837
    [240] Read W T, Researches on hydantoins synthesis of the soporific, 4,4-phenylethyl-hydantoin, J. Am. Chem. Soc.,1922, 44(8), 1746-1755
    [241] Wang D, Zhang Z, Palladium-catalyzed cross-coupling reactions of carboxylic anhydrides with organozinc reagents , Org. Lett., 2003, 5(24), 4645-4648
    [242] Stauffer S R, Coletta C J, Tedesco R, et al., Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-α-selective agonists, J. Med. Chem., 2000, 43(26), 4934-4947
    [243] Aramini A, Brinchi L, Germani R, Savelli G, Reductions of α,β-unsaturated ketones by NaBH4 or NaBH4-CoCl2: selectivity control by water or by aqueous micellar solutions, Eur. J. Org. Chem., 2000, 9, 1793-1798
    [244] Vismara E, Fontana F, Bernardinis D, Facile and convenient syntheses of quinones from phenols, J. Org. Chem., 1989, 54(3), 728-731

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700