富勒烯衍生物纳米材料的密度泛函研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来由于相关理论和数值算法的飞速发展,使得密度泛函理论(densityfunctional theory,DFT)成为凝聚态物理、量子化学和材料科学的重要研究方法。本论文主要对经典富勒烯C_(60)、“遗失的富勒烯”C_(72)和C_(74)以及非典型富勒烯C_(64)的掺杂衍生物的几何结构、电子性质和光学性质等进行密度泛函研究。此外,本论文还对Si(100)-(2×1)表面吸附硫醇分子的相关性质等进行密度泛函研究。
     第一章简要介绍了富勒烯领域和表面科学的发展现状和发展前景。
     第二章简要介绍了密度泛函理论的基本框架和近年来的发展。密度泛函理论的发展以寻找适当的交换和关联能量泛函为主线。从最初的局域密度近似(local densityapproximation,LDA)、广义梯度近似(generally gradient approximation,GGA)到现在的非局域泛函、自相互作用修正和多种泛函形式的相继出现使得密度泛函理论可以提供越来越精确的计算结果。在发展方法和编制程序的同时,人们也常常使用一些已有的软件包进行材料物性研究。在本章的最后简单介绍了一些常用的密度泛函模拟计算软件包。
     第三章和第四章研究的是经典富勒烯C_(60)替代掺杂衍生物C_(58)Fe_2和内掺掺杂衍生物Fe@C_(60)的几何结构和电子性质。几何结构研究表明C_(58)Fe_2中的两个Fe原子替代C_(60)笼子中的一个[6,6]键时形成最稳定的结构,而Fe@C_(60)中的Fe原子在笼子内部稳定于靠近C_(60)的六边形中心处形成的结构最稳定。电子性质分析发现,C_(59)Fe分子和其中Fe原子的磁性完全淬灭,与C_(59)Fe截然不同的是,C_(58)Fe_2和Fe@C_(60)分子和其中的Fe原子都具有一定的磁性。
     第五章到第八章关注“遗失的富勒烯”C_(72)和C_(74)。本部分对实验上已经成功合成和分离的衍生物La_2@C_(72)、Si@C_(74)、Ba@C_(74)和La@C_(74)(C_6H_3Cl_2)进行密度泛函研究。对于几何结构而言,发现:在三种La_2@C_(72)同分异构体中,有着两对两两相邻五边形的La_2@C_(72)(#10611)结构最为稳定;半导体Si在C_(74)内部稳定于σ_h平面上靠近五边形中心处;而金属原子Ba和La在C_(74)内部稳定于σ_h平面上的C_2对称轴上靠近[6,6]双键处。对于电子性质而言,Si@C_(74)中的Si-C键既具有离子性又具有共价性。Ba@C_(74)和La@C_(74)的静态线性极化率分量α_(xx)和α_(yy)都是零。La@C_(74)笼子带有1μ_B的磁矩,而La@C_(74)(C_6H_3Cl_2)却有着闭壳层的电子结构。
     第九章和第十章研究非典型富勒烯C_(64)的外掺掺杂衍生物C_(64)X(X=Si和Ge)和C_(64)X_4(X=H、F、Cl、Br和I)的几何结构和电子性质。C_(64)的最低未占据轨道的波函数占据在三个直接相邻五边形上,因此该位置是化学反应中活性最强的区域,有利于外来原子在该位置的吸附,三个直接相邻五边形的公共顶点被确定为X原子在笼子外部最稳定的吸附位置。最稳定C_(64)Si和C_(64)Ge结构的反应热分别是1.82和0.49eV,表明从能量的角度来看该结构的合成反应可以进行。前线轨道理论(frontier orbitaltheory,FOT)能够很好地从理论上分析合成C_(64)Si和C_(64)Ge的可能性。随着原子序数的增加,C_(64)X_4(X=F、Cl、Br和I)的结构稳定性呈现一个逐渐降低的趋势,因为稳定性比C_(64)H_4差的C_(64)Cl_4已经在实验上成功合成,所以,C_(64)F_4将来一定可以在实验上被成功合成。C_(64)X_4(X=F、Cl、Br和I)的电负性也随着X的增加而逐渐降低,C-X基团的电负性因为加成位置的不同而不同。
     最后一章分析0.5ML覆盖度下Ally Mercaptan(ALM)/Si(100)-(2×1)表面的几何结构和电子性质。计算得到0.5ML覆盖度的ALM分子吸附到Si(100)-(2×1)表面上的吸附能是3.36eV,表明吸附从能量的角度来看可以进行。Si(100)-(2×1)、ALM/Si(100)-(2×1)和H/Si(100)-(2×1)的导带底和价带顶对应着不同K点,同时,费米面没有能级穿过,所以,三个表面都体现间接带隙半导体特性。当ALM分子吸附到满H原子吸附的Si(100)-(2×1)表面上时,能够降低体系的带隙。Si原子和C原子之间的电子转移和它们原子轨道之间的杂化说明ALM分子应该化学吸附在H/Si(100)-(2×1)上。
With the progress in density functional theory(DFT)and its numerical methods,DFT has become a routine method for condensed matter theory,quantum chemistry and material science.In this dissertation,we study a variety of fullerene members and their derivatives,including classical fullerene C_(60),"missing fullerene"C_(72)and C_(74),and the unconventional fullerene C_(64).The concerned properties include the geometric structure, electronic and optical properties.In addition,we also pay attention to the geometric, electronic properties of the Ally Mercaptan(ALM)molecule adsorbed on Si(100)-(2×1) surface.
     In the first chapter,we introduce the developments of the fullerene as well as the Si surface science.
     In chapter 2,we introduce the basic concept of DFT and review its recent progress. Finding a good exchange-correlation functional is one of the main targets in DFT.With the development of the modem functionals,from the local density approximation(LDA)and the generalized gradient approximation(GGA)to the more complicated functionals,DFT can obtain more and more accurate results.In addition,along with the development of methods,more and more new program packages have been used to study the properties of materials,thus,we introduce some program packages used usually in the dissertation in detail.
     In chapter 3 and chapter 4,we focus on the geometric and electronic properties of the Fe substitutional fullerene C_(58)Fe_2 and the Fe endohedral fullerene Fe@C_(60).The geometric structure research indicates that two Fe prefer to substitute the two carbon atoms of the[6,6] double bond in the most stable C_(58)Fe_2 isomer,while the most favorable endohedral site of Fe is under the center of a hexagon ring in Fe@C_(60).The electronic property analysis imply that the magnetic moments of Fe and the molecules in both Fe@C_(60)and C_(58)Fe_2 are preserved to some extent though there is hybridization between the Fe and C,in contrast to the completely quenched magnetic moment of the Fe and the molecule in C_(59)Fe.
     From chapter 5 to chapter 8,we pay our attention to the properties of the "missing fullerene" C_(72)and C_(74)derivatives,i.e,La_2@C_(72),Si@C_(74),Ba@C_(74),and La@C_(74)(C_6H_3Cl_2). In the respect of geometric structure,the La_2@C_(72)(#10611)isomer with the two-fused pentagons is found the most stable,while the most favorable endohedral site of the semiconductor Si is under the center of a pentagon ring on theσ_h plane,while the most favorable endohedral site for both Ba and La in the cage is off-center under the[6,6] double bond along the C_2 axis on theσ_h plane in C_(74).Concerned to the electronic structure,the Si-C bond in Si@C_(74)contains both covalent and ionic characters.The calculated polarizability componentsα_(xx)和α_(yy)of Ba@C_(74)and La@C_(74)are zero.All the La@C_(74)isomers have 1μ_B magnetic moment,while the electronic structure of La@C_(74) (C_6H_3Cl_2)is closed-shell.
     In chapter 9 and chapter 10,the structural and electronic properties of the exohedral unconventional fullerene derivatives C_(64)X(X=Si and Ge)and C_(64)X_4(X=H,F,Cl,Br,and I)are tudied.The wave functions of the lowest unoccupied molecular orbital of C_(64)are localized mainly around the triplet-pentagon-fusion,indicated as active sites in chemical reactions,facilitating atom to attach exohedrally.The vertex of the three fused pentagons in the C_(64)cage is confirmed as the most stable position to locate the X atom when four stable isomers of C_(64)X are calculated.The calculated reaction heats of the most stable C_(64)Si and C_(64)Ge isomers are 1.89 and 0.49eV,inferring the reactions to synthesize them are favorable.The frontier orbital theory(FOT)is used to study the possibility for synthesizing C_(64)X.On the other hand,it is discovered from the reactive heats,energy gaps and the largest vibrational frequencies that C_(64)F_4 should be the most stable of five C_(64)X_4 (X=H,F,Cl,Br,and I)molecules,since the less stable C_(64)Cl_4 has been successfully synthesized and isolated,therefore,C_(64)F_4 could be synthesized and isolated experimentally in future.The electronegativity of the fragment C-X of C_(64)X_4(X= F,Cl,Br,and I)is decreased along with the increase of the atom number of X.However,the electronegativity of the fragment C-X in the molecules is affected by the location site.
     In the last chapter,we focus on the structural and electronic properties of the 0.5ML-terminated ALM/Si(100)-(2×1)surface.The calculated absorption energy of the ALM molecule on the full-terminated H/Si(100)-(2×1)surface is 3.36eV,indicating that the adsorption is favorable in the view of energy.The bottom of the valence band and the top of the conduction band of Si(100)-(2x1),ALM/Si(100)-(2×1)and H/Si(100)-(2×1) are at the different K point,in addition,there is no energy level through the fermi level, therefore,all three surfaces show the indirect semiconductor character.When the ALM molecules are adsorbed on the full-terminated H/Si(100)-(2×1)surface,the band gap is decreased to some degree.Known from both the electron transference and atom orbital hybridizations between the silicon and carbon of the Si-C bond,we come to the conclusion that the ALM molecule should be chemical adsorbed on the H/Si(100)-(2×1)surface
引文
[1]白春礼.纳米科技现在与未来.第1版.四川:四川教育出版,2001
    [2]李玲,向航.功能材料与纳米技术.第1版.北京:化工工业出版社,2002
    [3]王阳生,曾友春,卢天祝,吴学忠,熊苹,李宗福,张勤,刘松柏,吴郁郁,卢润周,纳米-新世纪逐鹿.第1版.北京:解放军出版社,2004
    [4]阎子峰.纳米催化技术.第1版.北京:化学工业出版社,2003
    [5]曹茂盛.纳米材料导轮.第1版.哈尔滨工业大学出版社,2001
    [6]张立德,牟季美.纳米材料与纳米结构.第1版.北京:科学技术出版社,2001
    [7]江林.纳米世界探秘.第11版.北京:北京大学出版社,2001
    [8]刘吉平,郝向阳.纳米科学技术.第11版.北京:北京科学出版社,2002
    [9]G.D.Stein.Atoms and molecules in small aggregates.Phys.Teach.,1979,17:503-512
    [10]王广厚.团簇物理学第一版.上海:上海科学技术出版社,2003
    [11]H.W.Kroto,J.R.Heath,S.C.Obrien,R.F.Curl,R.E.Smalley.C_(60):Buckminsterfullerene.Nature,318:162-163
    [12]Lan-Feng Yuan,Jinlong Yang,Ke Deng,and Qing-Shi Zhu.A First-Principles Study on the Structural and Electronic Properties of C_(36)Molecules.J.Phys.Chem.A,2000,104:6666-6671
    [13]W.Kratschmer,L.D.Lamb,K.Fostriopoulos,and D.R.Huffman.Solid C_(60):A new form of carbon.Nature,1990,347:354-358
    [14]A.G.Rinzler,J.H.Hafner,P.Nikolaev,L.Lou,S.G.Kim,D.Tomanek,P.Nordlander,D.T.Colbert,and R.E.Smalley.Unraveling nanotubes:field emissionfrom an atomic wire.Science,1995,269:1550-1553
    [15]B.C.Guo,K.P.Kerns,and A.W.Castleman Jr.Ti_8C_(12)~+ -Metallo-Carbohedrenes:A New Class of Molecular Clusters? Science,1992,255:1411-1413
    [16]K.I.Perterson,P.D.Dao,R.W.Farley,and A.W.Castleman.Photoionization of sodium clusters.J.Chem.Phys.,1980,80:1780-1782
    [17]G.Cappellini,F.Casula,J.L.Yang,and F.Bechstedt.Quasiparticle energies in clusters determined via total-energy differences:Application to C_(60)and Na_4.Phys.Rev.B,1997,56:3628-3631
    [18]D.E.Tevault.Laser-induced emission spectrum of CuO_2 in argon matrices.J.Chem.Phys.,1982,76:2859-2863.
    [19]K.Deng,J.L.Yang,L.E Yuan,and Q.S.Zhu.A theoretical study of the linear OCuO species.J.Chem.Phys.,1999,111:1477-1482
    [20]B.Dai,K.Deng,and J.Yang.A theoretical study of the Y_4O cluster.Chem.Phys.Lett.,2002,364:188-195
    [21]B.Dai,K.Deng,J.Yang and Q.Zhu.Excited states of the 3d transition metal monoxides.J.Chem.Phys.,2003,118:9608-9613
    [22]B.Dai,L.Tian and J.Yang.A theoretical study of small copper oxide clusters:Cu_2O_x(x=1-4).J.Chem.Phys.,2004,120:2746-2751
    [23]D.Schroder,R.Brown,P.Schwerdtfeger,X.B.Wang,X.Yang,L.S.Wang and H.Schwarz..Theoretical Chemistry of Gold.Angew.Chem.Int.Ed.,2003,42:311-314
    24]B.Dai and J.Yang.Assignment of photoelectron spectra of AuX_2(X=Cl,Br,and I)clusters.Chem.Phys.Lett.,2003,379:512-516
    [25]K.-M.Ho,A.A.Shvartsburg,B.C.Pan,Z.Y.Lu,C.Z.Wang,J.G.Wacker,J.L.Fye,and M.F.Jarrold,Nature,1998,392:582-589
    [26]K.Deng,J.L.Yang,L.F.Yuan,and Q.S.Zhu.Hybrid density -functional study of Si_(13)clusters.Phys.Rev.A,2002,62:45201-1-45201-4
    [27]Y.Li,X.H.Liu,X.Y.Wang,and N.Q.Lou.Proton transfer reactions within the NH_3-CH_3OH~+ cluster.Chem.Phys.Lett.,1997,276:339-342
    [28]王广厚,窦烈,庞锦忠等.物理学进展.1987,7:1-5
    [29]T.D.Mark,J.A.W.Castleman.In:Bales S D,ed.Advances in Atomic and Molecular Phys v20.Florida:Academic Press,1985
    [30]S.Bjφrnholm,J.Borggreen,O.Echt,etal.Meanfield quantization of several hundred electrons in sodium metal clusters.Phys.Rev.Lett.,1990,65:1627-1630
    [31]H.W.Kroto,J.R.Health,S.C.O'Brien et al.C_(60):Buckyminster-fullerene.Nature,1985,318:162-163
    [32]Q.M.Zhang,J.Y.Ri,J.Bernhole.Structure and Dynamics of Solid C_(60).Phys.Rev.Lett.,1991,66:2633-2638
    [33]W.Kratschmer,K.Fostiropoulos and D.R.Huffrnam.The Infrared and Ultraviolet Absorption Spectra of Laboratory-Produced Carbon Dust:Evidence for the Presence of the C_(60)Molecule.Chem.Phys.Lett.1990,170:167-170
    [34]J.M.Hawkins,A.Meryer,T.A.Lewis,S.Loren,and F.J.Hollander.Crystal Structure of Osmylated C_(60):Confirmation of the Soccer Ball Framework.Science,1991,252:312-313
    [35]S.Okita and K.Miura,Molecular Arrangement in C_(60)and C_(70)Films on Graphite and Their Nanotribological Behavior.Nano Lett.,2001,1:101-103
    [36]T.M.Simeon,I.Yanov,J.Leszczynski.Ab initio quantum chemical studies of fullerene molecules with substitutes C_(59)X[X=Si,Ge,Sn],C_(59)X[X=B,Al,Ga,In],and C_(59_X[X=N,P,As,Sb].International Journal of Quantum Chemistry,1991,105:4429-436
    [37]D.Dubois and K.M.Kadish.Spctroelectrochemical Study of the Ca and C_(70)Fullerenes and Their Mono-,Di-,Tri-,and Tetraanions.J.Am.Chem.Soc.,1991,113:4364-4367
    [38]A.L.Balch,V.J.Catalano,J.W.Lee,M.M.Olmstead,S.R.Parkin.(.eta.2-C_(70))Ir(CO)Cl(PPh_3)_2:the synthesis and structure of an iridium organometallic derivative of a higher fullerene.J.Am.Chem.Soc.,1991,113:8953-8955
    [39]Kroto.The synthesis and structure of an iridium organometallic derivative of a higher fullerene(.eta.2-C_(70))Ir(CO)Cl(PPh_3)_2.Nature,1987,329:529-536
    [40]J.Klein,X.Liu.Theorems for carbon cages.J.Math.Chem.,1992,11:199-205
    [41]A.F.Hebard,M.J.Rosseinsky,R.C.Haddon,D.W.Murphy,S.H.Glarum,T.T.M.Palstra,A.P.Ramirez and A.R.Kortan.Superconductivity at 18K in Potassium-doped C_(60).Nature,1991,350:600-q501
    [42]K.Holczer,O.Klein,S.-M.Huang,R.B.Kaner,K.-J.Fu,R.L.Whetten,and F.Diederich.Alkali-fullerene superconductors:synthesis,composition and diamagnetic shilding.Science,1991,252:1154-1157
    [43]基泰尔(Charles Kittel)著,项金钟,吴兴惠译.固体物理导论.北京:化学工业出版社材料科学与工程出版中心,2005
    [44]美国物理学评述委员会.90年代物理学-凝聚态物理学.北京:科学出版社,1994
    [45]孙大明,席光康.固体的表面与界面[M].安徽:安徽教育出版社,1996
    [46]德国物理学会著.中国物理学会译.新世纪物理学.山东:山东教育出版社,2005
    [47]正中,王恩信,完利祥.表面与界面物理.成都:电子科技大学出版社,1993
    [48]姚寿山,李戈扬,胡文斌.表面科学与技术.北京:机械工业出版社,2005
    [49]德鲁·迈尔斯著,吴大诚等译.表面、界面和胶体-原理及应用.北京:化学工业出版社材料科学与工程出版中心,2005
    [50]W.Heisenberg.Quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen/Quantum Theoretical Re Interpretation of Kinematic and Mechanical Relations.Z.Phys.,1925,33:879-893
    [51]E.Schrodinger.Quantisiemng als Eigenwertproblem(Erste Mitteilung).Ann.d.Phys.,1926,79:361-376
    [52] W. Heitler, F London. Theory of the Chemical Bond. Z. Phys, 1927,44:455-472
    
    [53] L. Pauling. The Nature of the Chemical Bond, Cornell University Press, 1960
    
    [54] R. S. Mulliken. Bonding Power of Electrons and Theory of Valence. Science, 1931, 9:347-388
    
    [55] K. Fukui and H. Fujimoto. Frontier Orbitals and Reaction Paths: Selected Papers of Kenichi Fukui, World Scientic Publishing Company. 1997
    
    [56] D. R. Hartree. The wave mechanics of an atom with non-coulombic central field: parts I, II, III. Proc. Camb. Phil. Soc, 1928,24:111-132
    
    [57] Fock. Noherungsmethode zur Losung des quantenmechanischen mehrkorper problems. Z. Phys., 1930, 61:126-148
    
    [58] C. C. J. Roothaan. New Developments in Molecular Orbital Theory. Rev. Mod. Phys., 1951,23:69-89
    
    [59] J. A. Pople. Approximation Molecular Orbital Theory. McGraw Hill. 1970
    
    [60] E. A. Hylleraas. Theory of Atoms. Z. Phys., 1929, 48:469-475
    
    [61] J. A. Pople, M. H. Gorden, and K. Raghavachari. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys., 1987, 87:5968-5975
    
    [62] Chr. Mailer and M. S. Plesset. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev., 1934,46:618-622
    
    [63] R. R. Monaco, M. Zhao. Computational studies of peripheral ring twisting in meso-N-methyl pyridyl-substituted porphyrins. Int. J. Quan. Chem., 1993,46:701-709
    
    [64] J. B. Foresman and E. Frisch. Expolring Chemistry with Electronic Structure Methods, 2nd Edition, Gaussian Inc. Pittsburgh. 1996
    
    [65] W. Kohn. Nobel Lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys., 1999,71:1253-1266
    
    [66] P. Hohenberg, W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. 1964, B136:864-871
    
    [67] W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev, 1965,140:A1133~A1138
    
    [68] L. S. Thomas. The Calculation of Atomic Fields. Proc. Cambridge Philos. Soc, 1927, 23:542-548
    
    [69] E. Fermi. Eine statistische Begriindung zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendungen auf die Theorie des periodischen Systems der Elemente. Z. Phys, 1928,48:73-79
    [70]徐克尊,陈宏芳,周子肪.近代物理学.高等教育出版社,1993
    [71]C.F.von Weizsacker.Zur Theorie der Kernmassen.Z.Phys.,1935,96:431-458
    [72]F Perrot.Hydrogen-hydrogen interaction in an electron gas.J.Phys.:Condens.Matt.,1994,6:431-446
    [73]L.W.Wang.Michael P.Teter,Kinetic-energy functional of the electron density.Phys.Rev.B,1992,45:13196-13220
    [74]E.Smargiassi,P.A.Madden.Orbital-free kinetic-energy functionals for first-principles molecular dynamics.Phys.Rev.B,1994,49:5220-5226
    [75]李震宇,中国科学技术大学博士学位论文.新材料物性的第一性原理研究.2004
    [76]邓珂,中国科学技术大学博士学位论文.原子团簇和高分辨振转光谱的研究.2004
    [77]W.Kohn.Highlights in Condensed Matter.Theory.North Holland,1985
    [78]K.Capelle,G.Vignale.Nonuniqueness of the Potentials of Spin Density Functional Theory.Phys.Rev.Lett.,2001,86:5546-5549
    [79]W.Yang,P.W.Ayers,and Q.Wu.Potential Functionals:Dual to Density Functionals and Solution to the v-Representability Problem.Phys.Rev.Lett.,2004,92:146404-146407
    [80]R.Stowasser,R.Hoffmann.What Do the Kohn-Sham Orbitals and Eigenvalues Mean? J.Am.Chem.Soc.,1999,32:3414-3420
    [81]M.Lüders,A.Ernst,W.M Temmerman,Z.Szotek and P.J.Durham.Ab initio angle resolved photoemission in multiple-scattering formulation.J.Phys.:Cond.Matt.,2001,13:8587-8606
    [82]R.Hoffmann.An Extended Hückel Theory of Hydrocarbons,J.Chem.Phys.,1963,39:1397-1412
    [83]J.Muscat,A.Wander and N.M.Harrison.On the prediction of band gaps from hybrid functional theory.Chem.Phys.Lett.,2001,342:397-401
    [84]J.C.Slater.Quantum Theory of Molecular and Solids.Vol 4.McgrawHill.1974
    [85]S.H.Vosko,L.Wilk,M.Nusair.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis.Canadian Journal of Physics,1980,58:1200-1211
    [86]J.P.Perdew and Y.Wang.Accurate and simple analytic representation of the electron gas correlation energy.Phys.Rev.B,1992,45:13244-13249
    [87] R. M. Martin. Electronic Structure: Theory and Practical Methods. Canbridge University Press, 2004
    
    [88] A. D. Becke. Density functional exchange energy approximation with correct. Phys. Rev. A, 1988,38:3098-3100
    
    [89] K. Burke, J. P. Perdew, and Y. Wang, J. F. Dobson, G Vignale, and M. P. Das, Plenum. Electronic Density Functional Theory: Recent Progress and New Directions. Ed, 1998
    
    [90] C. Adamo, V. Barone. Exchange functional with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPWIPW models. J. Chem. Phys., 1998,108:664-675
    
    [91] J. P. Perdew, K. Burke, and M.S. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996,77:3865-3868
    
    [92] J. P. Perdew. Density functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 1986, 33:8822-8824
    [93] C. Lee, W. Yang, and R. G. Parr. Development of the Colle Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B, 1988,37:785-789
    [94] C. Filippi, C. J. Umrigar, M. Taut. Comparison of exact and approximate density functional for an exactly soluble model. J. Chem. Phys., 1994,100:1290-1296
    [95] X. Xu and W. A. Goddard. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc. Natl Acad. Sci. USA., 2004,101:2673-2677
    
    [96] J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha. Accurate Density Functional with Correct Formal Properties: A Step beyond the Generalized Gradient Approximation. Phys. Rev. Lett., 1999, 82:2544-2547
    
    [97] J. M. Tao and J. P. Perdew, V. N. Staroverov and G. E. Scuseria. Climbing the Density Functional Ladder: Nonempirical Meta Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett., 2003, 91:146401-146404
    
    [98] A. D. Becke. Density functional thermochemistry III. The role of exact exchange. J. Chem. Phys., 1993, 98:5648-5652
    
    [99] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77:3865-3868
    
    [100] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1997,78:1396-1396
    [101]W.Kohn and M.C.Holthausen.A Chemist's Guide to Density Functional Theory.Second Edition,Wiley-VCH,2001
    [102]M.Ernzerhof,G.E.Scuseria.Assessment of the Perdew-Burke-Emzerhof exchange correlation functional.J.Chem.Phys.,1999,110:5029-5036
    [103]J.P.Perdew,A.Zunger.Self-interaction correction to density functional approximations for many electron systems.Phys.Rev.B,1981,23:5048-5079
    [104]A.Svane,O.Gunnarsson.Transition-metal oxides in the self-interaction-corrected density-functional formalism.Phys.Rev.Lett.,1990,65:1148-1151
    [105]V.I.Anisimov,J.Zaanen,and O.K.Andersen.Band theory and Mott insulators:Hubbard U instead of Stoner.Phys.Rev.B,1991,44:943-954
    [106]L.Belpassi,I.Infante,F.Tarantelli,and L.Visscher.The Chemical Bond between Au(Ⅰ)and the Noble Gases.Comparative Study of NgAuF and NgAu+(Ng)Ar,Kr,Xe)by Density Functional and Coupled Cluster Methods.J.Am.Chem.Soc.,2008,130:1048-1060
    [107]G.Vignale,M.Rasolt.Density functional theory in strong magnetic fields.Phys.Rev.Lett.,1987,59:2360-2363
    [108]A.K.Rajagopal and J.Callaway.Inhomogeneous Electron Gas.Phys.Rev.B,1973,7:1912-1919
    [109]A.K.Rajagopa.Inhomogeneous relativistic electron gas.J.Phys.C,1978,11:L943-L948
    [110]T.Yanai,T.Nakajima,Y.Ishikawa,K.Hirao.A highly efficient algorithm for electron repulsion integrals over relativistic four-component Gaussian-type spinors.J.Chem.Phys.,2002,116:10122-10128
    [111]E.V.Lenthe,E.J.Baerends,and J.G.Snijders.Relativistic regular two component Hamiltonians.J.Chem.Phys.,1993,99:4597-4610
    [112]S.Baroni,S.de Gironcoli,and A.D.Corso,P.Giannozzi.Phonons and related crystal properties from density-functional perturbation theory.Rev.Mod.Phys.,2001,73:515-562
    [113]Y.A.Mantz and R.L.Musselman.ZINDO Calculations of the Ground State and Electronic Transitions in the Tetracyanonickelate Ion,Ni(CN)_4~(2-).Inorganic Chemistry,2002,41:5770-5777
    [114]Y.K.Han and J.Jung.Does the "Superatom" Exist in Halogenated Aluminum Clusters? J.Am.Chem.Soc.,2008,130:2-3
    [115]A.Ugrinov,A.Sen,A.C.Reber,M.Qian,and S.N.Khanna.[Te_2As_2]~(2-):A Planar Motif with "Conflicting" Aromaticity. J. Am. Chem. Soc, 2008,130:782-787
    [116] A. C. Reber, S. N. Khanna, P. J. Roach, W. H. Woodward, and A. W. Castleman, Jr. Spin Accommodation and Reactivity of Aluminum BasedClusters with O2. J. Am. Chem. Soc, 2007,129:16098-16101
    
    [117] B. P. Cao, H. Nikawa, T. Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka, H. Sawa, Z. Slanina, N. Mizorogi, and S. Nagase.Addition of Adamantylidene to La2@C78: Isolation and Single-Crystal X-ray Structural Determination of the Monoadducts. J. Am. Chem. Soc, 2008,130:983-989
    
    [118] S. Stevenson, M. C. Thompson, H. L. Coumbe, M. A. Mackey, C. E. Coumbe, and J. Paige Phillips. Chemically Adjusting Plasma Temperature, Energy, and Reactivity (CAPTEAR) Method Using NOx and Combustion for Selective Synthesis of Sc3N@C80 Metallic Nitride Fullerenes. J. Am. Chem. Soc, 2007,129:16257-16262
    [119] A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez, A. R. Kortan. Superconductivity at 18 K in potassium doped C60. Nature, 1991,350:600-601
    
    [120] R. H. Xie. Doping effect on the third order optical nonlinearities of C70, Physics Letters A,1999,258:51-58
    
    [121] W. Branz, I. M. L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, and T. P. Martin. Cage substitution in metal-fullerene clusters. J. Chem. Phys., 1998, 109: 3425-3430
    
    [122] T. Guo, C. M. Jin, R. E. Smalley. Doping bucky: formation and properties of boron-doped buckminsterfullerene. J. Phys. Chem., 1991,95:4948-4950
    [123] R. Q. Yu, M. x. Zhan, D. D. Cheng, S. Y. Yang, Z. Y Liu, and L. S. Zheng. Simultaneous Synthesis of Carbon Nanotubes and Nitrogen-Doped Fullerenes in Nitrogen Atmosphere. J. Phys. Chem., 1995, 99:1818-1819
    
    [124] T. Kimura, T. Sugai, and H. Shinohara. Production and characterization of boron-and silicon-doped carbon clusters. Chem. Phys. Lett., 1996,256:269-273
    [125] J. L. Fye and M. F. Jarrold. Structures of Silicon Doped Carbon Clusters. J. Phys. Chem. A, 1997,101:1836-1840
    
    [126] I. M. L. Billas, W. Branz, N. Malinowski, F. Tast, M. Heinebrodt, T. P. Martin, C. Massobrio, M. Boero and M. Parrinello. Experimental and computational studies of heterofullerenes. Nanostructured Materials, 1999, 12:1071-1076
    [127] T. G Schmalz, W. A. Seitz, D. J. Klein, G E. Hite. Elemental carbon cages. J. Am. Chem. Soc, 1988,110:1113-1127
    [128]Z.F.Chen,K.q.Ma,Y.M.Pan,X.Z.Zhao,and A.C.Tang.Theoretical studies of heterofullerenes C_(68)X_2(X=N,B).Canadian Journal of Chemistry,1999,77:291-298
    [129]N.Kurita,K.Kobayashi,H.Kumahora,and K.Tago.Bonding and electronic properties of substituted fullerenes C_(58)B_2 and C_(58)N_2.Phys.Rev.B,1993,48:4850-4854
    [130]I.M.L.Billas,C.Massobrio,M.Boero.First principles calculations of Si doped fullerenes:Structural and electronic localization properties in C_(59)Si and C_(58)Si_2.J.Chem.Phys.,1999,111:6787-6796
    [131]吴海平,邓开明,杨金龙.C_(58)Si_2的几何结构和电子结构研究,2003,28:194-198(Journal of Nanjing University of Science and Technology,2003,28:194-198)
    [132]G.E.Scuseria.Ab Initio Calculations of Fullerenes,Science,1996,16:942-945
    [133]Gustavo E.Scuseria.Ab Initio Calculations of Fullerenes.Science,1996,271:942-945
    [134]C.Filippi,C.J.Umrigar,M.Taut.Comparison of exact and approximate density functionals for an exactly soluble model.J.Chem.Phys.,1994,100:1290-1296
    [135]C.G.Ding,J.L.Yang,Q.X.Li,K.L.Wang,F.Toigo.Electronic structure and magnetism of Y_(13)clusters.Phys.Lett.A,1999,256:417-421
    [136]W.Kohn and L.J.Sham,Self-Consistent Equations Including Exchange and Correlation Effects,Phys.Rev.1965,140:A1133-A1138
    [137]R.Fletcher.Practical Methods of Optimization.1980,Vol.1
    [138]S.Y.Liu and S.Q.Sun.Recent progress in the studies of endohedral metallofullerenes.Journal of Organometallic Chemistry,2000,599:74-86
    [139]T.Guo,C.M.Jin,R.E.Smalley.Doping bucky:formation and properties of boron-doped buckminsterfullerene.J.Phys.Chem.,1991,95:4948-4950
    [140]J.M.Hawkins,A.Meyer,T.A.Lewis,S.Loren,and F.J.Hollander,Crystal Structure of Osmylated C_(60):Confirmation of the Soccer Ball Framework.Science,1991,12:312-313
    [141]K.Hedberg,L.Hedberg,D.S.Bethune,C.A.Brown,H.C.Dora,R.D.Johnson,and M.D.Vries.Bond Lengths in Free Molecules of Buckminsterfullerene,C_(60),from Gas Phase Electron Diffraction.Science,1991,254:410-412
    [142]R.E.Haufler,L.S.Wang,L.P.F.Chibante,C.M.Jin,J.Conceicao,Y.Chai and R.E.Smalley.Fullerene triplet state production and decay:R2PI probes of C_(60)and C_(70)in a supersonic beam,Chem.Phys.Lett.,1991,179:449-454
    [143]G.L.Lu,K.M.Deng,H.P.Wu.Geometric and electronic structures of metal-substitutional fullerene C59Sm and metal-exohedral fullerenes C60Sm. J. Chem. Phys., 2006,124:054305-1-054305-5
    
    [144] K. Fukui. Recognition of stereochemical paths by orbital interaction. Acc. Chem. Res., 1971,4:57-64
    
    [145] W. Branz, I. M. L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, and T. P. Martin. Cage substitution in metal-fullerene clusters. J. Chem. Phys., 1998, 109:3425-3430
    
    [146] G Y. Sun, M. C. Nicklaus, R.-h. Xie, Structure, Stability, and NMR Properties of Lower Fullerenes C38-C50 and Azafullerene C44N6. J. Phys. Chem. A, 2005, 109:4617-4622
    
    [147] J. I. Aihara. Weighted HOMO-LUMO energy separation as an indexof kinetic stability for fullerenes. Theo. Chem. Acc., 1999,102:134-138
    
    [148]J. I. Aihara. Kinetic stability of carbon cages in non-classical metallofullerenes. Chem. Phys. Lett., 2001, 343:465-469
    
    [149] I. M. L. Billas, F. Tast, W. Branz, N. Malinowski, M. Heinebrodt, T.P. Martin, M. Boero, C. Massobrio, M. Parrinello. Experimental and computational studies of Si-doped fullerenes. Euro. Phys. J. D., 1999, 9:337-340
    
    [150] S. H. Wang, F. Chen, Y.-C. Fann, M. Kashani, M. Malaty, Susan A. Jansen. Assessment of the Stability of Heterohedral Fullerenes: A Theoretical Analysis of C60-xNx and C60-xBx Where x = 1 and 2. J. Phys. Chem, 1995, 99:6801-6807
    
    [151] C. G. Ding , J. L. Yang , and X. Y. Cui , C. T. Chan. Geometric and electronic structures of metal-substituted fullerenes C59M (M=Fe, Co, Ni, and Rh). J. Chem. Phys, 1999,111:8481-8485
    
    [152] G. L. Lu, K. M. Deng, H. P. Wu. Geometric and electronic structures of metal-substitutional fullerene C59Sm and metal-exohedral fullerenes C60Sm. J. Chem. Phys, 2006,124:054305-1-054305-5
    
    [153] C. G. Ding, J. L. Yang, and X. Y. Cui, Geometric and electronic structures of metal-substituted fullerenes C59M(M=Fe, Ni, and Rh). J. Chem. Phys, 1999, 111:8481-8485
    
    [154] J. Lu, Y. Luo, Y. H. Huang, X. W. Zhang, X. G Zhao, emiempirical calculations on heterofullerene C59Si: structural and electronic localization. Solid State Communications, 2001,118:309-312
    
    [155] J. Lu, Y. S. Zhou, X. W. Zhang, and X. G Zhao, Density functional theory studies of beryllium-doped endohedral fullerene Be@C60: on center displacement of beryllium inside the C_(60)cage.Chem.Phys.Lett.,2002,352:8-11
    [156]J.B.Claridge,Y.Kubozono,M.J.Rosseinsky.A Complex Fulleride Superstructure-Decoupling Cation Vacancy and Anion Orientational Ordering in Ca_(3+x)C_(60)with Maximum Entropy Data Analysis.Chem.Mater.,2003,15:1830-1839
    [157]R.Deng and O.Echt.Collisional formation and dissociation of Na@C_(60)~+.Chem.Phys.Lett.,2002,353:11-18
    [158]T.Kaji,T.Shimada,H.Inoue,Y.Kuninobu,Y.Matsuo,E.Nakamura,K.Saiki,Molecular Orientation and Electronic Structure of Epitaxial Bucky Ferrocene (Fe(C_(60)(CH_3)_5)C_5H_5).Thin Films.J.Phys.Chem.B,2004,108:9914-9919
    [159]Y.Yang,F.H.Wang,Y.S.Zhou,L.f.Yuan,and J.1.Yang,Density functional calculations of the polarizability and second-order hyperpolarizability of C_(50)Cl_(10).Phys.Rev.A,2005,71:013202-1-013202-1-5
    [160]X.M.Pan,Z.Fu,B.Hong,L.Zhao,Y.Q.Qiu,Z.M.Su and R.S.Wang,Theoretical studies of the relative stabilities and electronic properties on B endohedral and exohedral fullerenes.Synthetic Metals,2005,152:325-328
    [161]J.Lu,X.W,Zhang,and X.G.Zhao.Metal-cage hybridization in endohedral La@C_(60),Y@C_(60)and Sc@C_(60).Chem.Phys.Lett.,2000,332:51-57
    [162]M.Sh.Son and Y.K.Sung.The atom-atom potential.Exohedral and endohedral complexation energies of complexes of X@C_(60)between fullerene and rare-gas atoms(X =He,Ne,Ar,Kr,and Xe).Chem.Phys.Lett.,1995,245:113-118
    [163]T.Pradeep,G.U.Kulkami,K.R.Kannan,T.N.Guru Row,C.N.R.Rao,A novel iron fullerene(FeC_(60))adduct in the solid state.J.Am.Chem.Soc.,1992,114:2272-2273
    [164]Y.J.Basir and S.L.Anderson.Transition-metal C_(60)bonding by guided ion beam scattering.International Journal of Mass Spectrometry,999,185:603-615
    [165]P.Byszewski,R.Didusko.Platinum particles deposited on synthetic boron-doped diamond surfaces.Electrochem.Soc.,1994,24:1392-1395
    [166]P.Byszewski,Z.Kucharski.Electronic Structure and Mossbauer Effect in C_(60)Fe Complexes.Fullerene.Sci.Technol.,1997,5:1261-1274
    [167]W.Branz,I.M.L.Billas,N.Malinowski,F.Tast,M.Heinebrodt,and T.P.Martin.Cage substitution in metal-fullerene clusters.J.Chem.Phys.,1998,109:3425-3429
    [168]I.M.L.Billas,C.Massobrio,M.Boero,M.Parrinello,W.Branz,F.Tast,N.Malinowski,M.Heinebrodt and T.P.Martin,First principles calculations of iron-doped heterofullerenes.Computational Materials Science,2000,17:191-195
    [169] C. G. Ding , J. L. Yang , and X. Y. Cui, C. T. Chan. Geometric and electronic structures of metal-substituted fullerenes C59M (M=Fe, Co, Ni, and Rh). J. Chem. Phys., 1999,111:8481-8485
    
    [170] Y. Watanabe, M. Tanamura, Y. Matsumoto, H. Asami, and A. Kato, Ferroelectric/(La,Sr)2CuO4 epitaxial heterostructure with high thermal stability. Appl. Phys. Lett., 1995, 66: 299-301
    
    [171] T. Kanbara, Y. Kubozono, Y. Takabayashi, S. Fujiki, S. Iida, Y. Haruyama, S. Kashino, S. Emura, and T. Akasaka. Dy@C60: Evidence for endohedral structure and electron transfer, Phys. Rev. B, 2001,64:113403-1-113403-5
    
    [172] X. Liu, T. G Schmalz and D. J. Klein. Favorable structures for higher fullerenes. Chem. Phys. Lett., 1992,188:550-554
    
    [173] T. C. Dinadayalane and G Narahari Sastry. Isolated pentagon rule in buckybowls: a computational study on thermodynamic stabilities and bowl-to-bowl inversion barriers. Tetrahedram. 2003, 59:8347-8351
    
    [174] S. Stevenson, P. W. Fowler, T. Heine, J. C. Duchamp, G. Rice, T. Glass, K. Harich, E. Hajdu, R. Bible, H. C. Dorn, Materials scienceA stable non-classical metallofullerene family, Nature, 2000,408:427-428
    
    [175] K. Kobayashi, S. Nagase, and T. Akasaka. A theoretical study of C80 and La2@C80, Chem. Phys. Lett, 1995(245): 230-236
    
    [176] F. H. Hennrich, R. H. Michel, A. Fischer. Airborne nanostructured particles and occupational orbital. Chem. Int. Ed. Engl, 1996, 35:1732-1734
    
    [177] F. H. Hennrich, R. H. Michel, A. Fischer, S. R. Schneider, S. Gilb, M. M. Kappes, D. Fuchs, M. Burk, K. Kobayashi, S. Nagase. Isolation and Characterization of Cgo, Angew. Chemie Int. Ed. Eng, 1996, 35:1732-1734
    
    [178] H. Ajie, M. M. Alvarez, S. J. Anz, R. D. Beck, F. Diederich, K. Fostiropoulos, D. R. Huffman, W. Kratschmer, Y. Rubin, K. E. Schriver, D. Sensharma, and R. L. Whetten. Characterization of the Soluble All-Carbon Molecules C60 and C70. J. Phys. Chem. 1990,94: 8630-8633
    
    [179] R. D. Johnson, G Meijer, J. R. Salem, D. S. Bethune. 2D Nuclear magnetic resonance study of the structure of the fullerene C70, J. Am. Chem. Soc, 1991, 113:3619-3621
    
    [180] R. Ettl, I. Chao, F. Diederich, R. L. Whettean. Isolation of C76, a chiral (D2) allotrope of carbon, Nature, 1991, 353:149-153
    [181] F. Diederich, R. L. Whetten, C. Thilgen, R. Ettl, I. Chao, and M. M. Alvarez, Fullerene Isomerism:Isolation of C_(2v),-C_(78)and D_3-C_(78).Science,1991,254:1768-1770
    [182]K.Kikuchi,N.Nakahara,T.Wakabayashi,S.Suzuki,H.Shiromaru,Y.Miyake,K.Saito,I.Ikemoto,M.Kainosho,Y.Achiba.NMR characterization of isomers of C_(78),C_(82)and C_(84)fullerenes,Nature,1992,357:142-145
    [183]R.Taylor,G.J.Langley,A.G.Avent,T.J.S.Dennis,H.W.Kroto and D.R.M.Walton.~(13)C NMR spectroscopy of C_(76),C_(78),C_(84)and Mixtures of C_(86)-C_(102):Anomalous Chromatographic Behaviour of C_(82),and Evidence for C_(70)H_(12).J.Chem.Soc.,Perkin Trans.,1993,2:1029-1036
    [184]H.Steger,J.Holzapfel,A.Hielscher.,W.Kamke and I.V.Hertel,Single-photon ionization of higher fullerenes C_(76),C_(78)and C_(84).Determination of ionization potentials.Chem.Phys.Lett.1995,234:455-459
    [185]R.Taylor,GJ Langley,AG Avent,TJS Dennis,HW Kroto,and DRM Walton.~(13)C NMR-Spectroscopy of C_(76),C_(78),C_(84)and mixtures of C_(86)Cio_2-Anomalous Chromatographie behavior.J.Chem.Soc.Perkin.Trans.,1993,2:1029-1036
    [186]Z.Slanina,X.Zhao,X.Grabuleda,M.Ozawa,F.Uhlik,P.Ivanov,K.Kobayashi,and S.Nagase.Unconventional cage structures of endohedral metallofullerenes.J.Mole.Struct:ThemChem.,1999,461:97-104
    [187]T.S.M.Wan and H.W.Zhang.Production,Isolation,and Electronic Properties of Missing Fullerenes:Ca@C_(72)and Ca@C_(74).J.Am.Chem.Soc.,1998,120:6806-6807
    [188]S.Stevenson,P.Burbank,K.Harich,Z.Sun,H.C.Dom,P.H.M.van Loosdrecht,M.S.deVries,J.R.Salem,C.-H.Kiang,R.D.Kohnson,D.S.Bethune.La_2@C_(72):Metal-Mediated Stabilization of a Carbon Cage,J.Phys.Chem.A,1998,102:2833-2837
    [189]K.Kobayashi,S.Nagase,and T.Akasaka.A theoretical study of C_(80)and La_2@C_(80).Chem.Phys.Lett.,1995,245:230-236
    [190]G.Sun,M.Kertesz.Theoretical ~(13)C NMR Spectra of IPR Isomers of Fullerenes C_(60),C_(70),C_(72),C_(74),C_(76),and C_(78)Studied by Density Functional Theory.J.Phys.Chem.A,2000,104:7398-7403
    [191]H.Kato,A.Taninaka,T.Sugai,H.Shinohara,Structure of a Missing-Caged Metallofullerene:La_2@C_(72).J.Am.Chem.Soc.,2003,125:7782-7783
    [192]R.Fletcher.Practical Methods of Optimization.Wiley.NewYork.1980
    [193]Kobayashi,S.Nagase.Structures and electronic states of M@C_(82)(M=Sc,Y,La and lanthanides).Chem.Phys.Lett.,1998,282:325-329
    [194]T.Akasaka,S.Nagase,K.Kobayashi,M.Walchli,K.Yamamoto,H.Funasaka,M.Kako,T.Hoshino,T.Erata.~(13)C and ~(139)La NMR Studies of La_2@C_(80):First Evidence for Circular Motion of Metal Atoms in Endohedral Dimetallofullerenes. Angew. Chem. Int. Ed. Engl, 1999,36:1643-1645
    
    [195] T. G Schmalz, W. A. Seitz, D. J. Klein, G E. Hite. Elemental carbon cages, J. Am. Chem. Soc, 1988,110:1113-1127
    
    [196] P. W. Fowler and D. E. Manolopoulos. An Atlas of Fullerene Clarendon. Oxford. 1995
    
    [197] H. Shinohara, H. Yamaguchi, N. Hayashi, H. Sato, M. Ohkohchi, Y. Ando, Y. Saito. isolation and spectroscopic properties of scandium fullerenes (Sc2@C74, Sc2@C82, and Sc2@C84). J. Phys. Chem., 1993,97:4259-4261
    
    [198] H. Nikawa, T. Kikuchi, T. Wakahara, T. Nakahodo, T. Tsuchiya, G M. A. Rahman, T. Akasaka, Y. Maeda, K. Yoza, E. Horn, K. Yamamoto, N. Mizorogi, S. Nagase. Missing Metallofullerene La@C74. J. Am. Chem. Soc, 2005,127:9684-9685
    
    [199] A. Reich, M. Panthofer, H.Modrow, U. Wedig. M. Jansen. The Structure of Ba@C74. J. Am. Chem. Soc, 2004,126:14428-14434
    
    [200] T. Kodama, R. Fujii, Y. Miyake, S. Suzuki, H. Nishikawa, I. Ikemoto, K. Kikuchi and Y. Achiba. 13C NMR study of Ca@C74: the cage structure and the site-hopping motion of a Ca atom inside the cage, Chem. Phys. Lett., 2004,399:94-97
    
    [201] P. Kuran, M. Krause, A. Bartl and L. Dunsch. Preparation, isolation and characterisation of Eu@C74: the first isolated europium endohedral fullerene. Chem. Phys. Lett., 1998,292:580-586
    
    [202] K. Kikuchi, K. Furukawa, K. Sato, D. Shiomi, T. Takui, T. Kato, H. Matsuoka, N. Ozawa, T. Kodama, H. Nishikawa, I. Ikemoto. Multifrequency EPR Study of Metallofullerenes: Eu@C82 and Eu@C74. J. Phys. Chem. B, 2004,108:13972-13976
    
    [203] J. Lu, X. Zhang, and X. Zhao. Relativistic electronic structure calculations on endohedral Gd@C60, La@C60, Gd@C74, and La@C74, Applied Physics A: Materials Science & Processing, 2000, 70:461-464
    
    [204] Y. F. Lian, Z. J. Shi, X. H. Zhou, X. R. He and Z. N. Gu. High-yield preparation of endohedral metallofullerenes by an improved DC arc-discharge method. Carbon, 2000, 38: 2117-2121
    
    [205] T. Hirata, N. Motegi, and R. Hatakeyama. Si-Fullerene Compounds Produced by Controlling Spatial Structure of an Arc-Discharge Plasma. Jpn. J. Appl. Phys., 2000, 39: L1130-L1132
    
    [206] T. Hirata, R. Hatakeyama, T. Mieno, N. Y. Sato, H. Mase, M. Niwano, N.Miyamoto, and N. Sato. Proceedings of the First Asia Pacific International Symposium on the Basic and Application of Plasma Technology.Toulia, Taiwan. 1997, p31
    
    [207] R. Hatakeyama, T. Hirata, Y. Ijiro, T. Mieno, N. Y. Sato, H. Mase, M.Niwano, and N. Sato. Proceedings of the 15th Symposium on Plasma Processing, Hamamatsu. Japan. 1998, p470.
    
    [208] K. Shiga, K. Ohno, Y. Kawazoe, Y. Maruyama, T. Hirata, R. Hatakeyama, N. Sato. Ab initio molecular dynamics simulation for the insertion process of Si and Ca atoms into C74. Mater. Sci. Eng. A, 2000, 290:6-10
    
    [209] T. Oku, I. Narita, Hatakeyama, T. Hirata, N. Sata, T. Mieno, and N. Sato. Atomic and electronic structures of Si-included C74 cluster studied by HREM and molecular orbital calculations. Diamond and Related Materials, 2002,11:935-939
    
    [210] V. I. Kovalenko and A. R. Khamatgalimov. Open-shell fullerene C74: phenalenyl-radical substructures.Chem. Phys. Lett., 2003, 377:263-268
    
    [211] S. Saito, S. Okada, S. Sawada, and N. Hamada. Common Electronic Structure and Pentagon Pairing in Extractable Fullerenes. Phys. Rev. Lett., 1995, 75:685-688
    
    [212] O. V. Boltalina, I. N. Ioffe, L. N. Sidorov, G Seifert, K.Vietze. Ionization Energy of Fullerenes. J. Am. Chem. Soc, 2000,122:9745-9749
    
    [213] B. L. Zhang, C. Z. Wang, K. M. Ho, C. H. Xu, and C. T. Chan. The geometry of large fullerene cages: C72 to C102. J. Chem. Phys., 1993, 98:3095-3102
    
    [214] J. Lu, Y. S. Zhou, S. Zhang, X.W. Zhang, and X. G Zhao. Structural and electronic properties of endohedral and exohedral complexes of silicon with C60. Chem. Phys. Lett., 2001, 343:39-43
    
    [215] A. A. Goryunkov, V. Y. Markov, I. N. Ioffe, R. D. Bolskar, M. D. Diener, I. V. Kuvychko, S. H. Strauss, O. V. Boltalina. C74F38: An Exohedral Derivative of a Small-Bandgap Fullerene with D3 Symmetry. Angew. Chem. Int. Ed., 2004,43:997-1000
    
    [216] G. Peters, M. Jansen. A New Fullerene Synthesis Angew. Chem. Int. Ed. Engl., 1992,31:223-224
    
    [217] O. Haufe, A. Reich, C. Moschel, M. Jansen. Darstellung, Isolierung und Charakterisierung von Ba@C74. Z. Anorg. Allg. Chem., 2001, 627:23-27
    
    [218] Z. Slanina and S. Nagase. Stability computations for Ba@C74 isomers. Chem. Phys. Lett., 2006,422:133-136
    
    [219] Z. Slanina, F. Uhlik, S. Nagase. Computed Structures of Two Known Yb@C74 Isomers. J. Phys. Chem. A, 2006,110:12860-12863.
    
    [220] H. Y. Wang, X. B. Li, Y. J. Tang, H. P. Mao, Z. -H. Zhun. Static Polarizabilities of Cun,Agn and Aun(n<9) Clusters. Chin. J. Chem. Phys., 2005,18:50-55
    [221] A. H. Goller, S. Erhardt and U. W. Grummt. Limitations of the sum-over-states approach to second-order hyperpolarizabilities: para-nitroaniline and alltransl, 3, 5, 7-octatetraene. J. Mole. Struct: ThemChem., 2002, 585:143-158
    
    [222] H. A. Kurtz, J. P. J. Stewart, K. M. Dieter. Calculation of the nonlinear optical properties of molecules. J. Comput. Chem., 1990,11:82-87
    
    [223] G R. J. Williams. Finite field calculations of molecular polarizability and hyperpolarizabilities for organic π-electron systems. J. Mole. Struct: ThemChem., 1987, 151:215-222
    
    [224] J. Lu, X. Zhang, X. Zhao, Relativistic electronic structure calculations on endohedral Gd@C60, La@C60, Gd@C74, and La@C74, Applied Physics A: Materials Science & Processing, 2004,70:461-466
    
    [225] F. Lebedkin, Vyacheslav P. Bubnov, Eduard B. Yagubskii, Ilya N. Ioffe, Pavel A. Khavrel, Igor V. Kuvychko, Steven H. Strauss, Olga V. Bo ltalina, Analysis of the polarizability and optical properties of C60. J. Phys. B: At. Mol. Opt. Phys., 1996, 29:5087-5113
    
    [226] S. Saito, S. Okada, S. Sawada, and N. Hamada. Common Electronic Structure and Pentagon Pairing in Extractable Fullerenes. Phys. Rev. Lett., 1995, 75:685-688
    
    [227] W. Branz, I. M. L. Billas, N. Malinowski, F. Tast, M. Heinebrodt, and T. P. Martin. Cage substitution in metal-fullerene clusters. J. Chem. Phys., 1998,109:3425-3430
    
    [228] V. I. Kovalenko and A. R. Khamatgalimov. Open-shell fullerene C74: phenalenyl-radical substructures. Chem. Phys. Lett., 2003, 377:263-268
    
    [229] K. Kobayashi, S. Nagase and T. Akasaka. Endohedral dimetallofullerenes Sc2@C84 and La2@C80. Chem. Phys. Lett., 1996, 261:502-506
    
    [230] R. Car, M. Parrinello. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett., 1985, 55:471-2474
    
    [231] C. M. Tang, Y. B. Yuan, K. M. Deng, Y. Z. Liu, and X. Y. Li, J. L. Yang, and X. Wang. Geometric and electronic properties of endohedral Si@C74. J. Chem. Phys., 2006, 125:104307-1-104307-4
    
    [232] O. V. Boltalina, I. N. Ioffe, I. D. Sorokin, L. N. Sidorov. Electron Affinity of Some Endohedral Lanthanide Fullerenes. J. Phys. Chem. A, 1997,101:9561-9563
    
    [233] H. Weiss, R. Ahlrichs, and M. Haser. Direct algorithm for self-consistent-field linear response theory and application to C60: Excitation energies, oscillator strengths, and frequency-dependent polarizabilities. J. Chem. Phys., 1993, 99:1262-1270
    [234]R.Antoine,Ph.Dugourd,D.Rayane,E.Benichou,and M.Broyer,F.Chandezon and C.Guet.Direct measurement of the electric polarizability of isolated C_(60)molecules.J.Chem.Phys.,1999,110:9771-9772
    [235]K.Kobayashi,S.Nagase,Y.Maeda,T.Wakahara and T.Akasaka.La_2@C_(80):is the circular motion of two La atoms controllable by exohedral addition? Chem.Phys.Lett.,2003,374:562-566
    [236]M.Yamada,T.Wakahara,T.Nakahodo,T.Tsuchiya,Y.Maeda,T.Akasaka,K.Yoza,E.Horn,N.Mizorogi,S.Nagase.Synthesis and Structural Characterization of Endohedral Pyrrolidinodimetallofullerene:La_2@C_(80)(CH_2)_2NTrt.J.Am.Chem.Soc.,2006,128:1402-1403
    [237]M.Yamada,T.Nakahodo,T.Wakahara,T.Tsuchiya,Y.Maeda,T.Akasaka,M.Kako,K.Yoza,E.Hom,N.Mizorogi,K.Kobayashi,S.Nagase.Positional Control of Encapsulated Atoms Inside a Fullerene Cage by Exohedral Addition.J.Am.Chem.Soc.,2005,127:14570-14571
    [238]L.Feng,T.Nakahodo,T.Wakahara,T.Tsuchiya,Y.Maeda,T.Akasaka,T.Kato,E.Hom,K.Yoza,N.Mizorogi,S.Nagase.A Singly Bonded Derivative of Endohedral Metallofullerene:La@C_(82)CBr(COOC_2H_5)_2.J.Am.Chem.Soc.,2005,127:17136-17137
    [239]E.B.Iezzi,J.C.Duchamp,K.Harich,T.E.Glass,H.M.Lee,M.M.Olmstead,A.L.Balch,H.C.Dom.A Symmetric Derivative of the Trimetallic Nitride Endohedral Metallofullerene,Sc_3N@C_(80).J.Am.Chem.Soc.,2002,124:524-525
    [240]Y.Iiduka,O.Ikenaga,A.Sakuraba,T.Wakahara,T.Tsuchiya,Y.Maeda,T.Nakahodo,T.Akasaka,M.Kako,N.Mizorogi,S.Nagase.Chemical Reactivity of Sc_3N@C_(80(and La_2@C_(80).J.Am.Chem.Soc.,2005,127:9956-9957
    [241]I.E.Kareev,S.F.Lebedkin,V.P.Bubnov,E.B.Yagubskii,I.N.Ioffe,P.A.Khavrel,I.V.Kuvychko,S.H.Strauss,O.V.Boltalina.Trifluoromethylated Endohedral Metallofullerenes:Synthesis and Characterization of Y@C_(82)(CF_3)_5.Angew.Chem.Int.Ed.,2005,44:1846-1849
    [242]Y.Chai,T.Guo,C.M.Jin,R.E.Haufler,L.P.Felipe Chibante,Jan Fure,Lihong Wang,J.Michael Alford,Richard E.Smalley.Fullerenes with metals inside.J.Phys.Chem.,1991,95:7564-7568
    [243]M.D.Diener,J.M.Alford.Isolation and properties of small-bandgap fullerenes.Nature,1998,393:668-671
    [244]X.Lu,Z.Chen.Curved Pi-Conjugation,Aromaticity,and the Related Chemistry of Small Fullerenes(<C_(60))and Single-Walled Carbon Nanotubes.Chem.Rev.,2005, 105:3643-3696
    
    [245] K. Kobayashi, S. Nagase, M.Yoshida, E. Osawa. Are the Isolated Pentagon Rule and Fullerene Structures Always Satisfied? J. Am. Chem. Soc, 1997,119:12693-12694
    
    [246] C. -R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, M. Sakata, H. Shinohara. Materials science C66 fullerene encaging a scandiudimer. Nature, 2000,408:426-427
    
    [247] M. Takata, E. Nishibori, M. Sakata, C. R-Wang and H. Shinohara Sc2 dimer in IPR-violated C66 fullerene: a covalent bonded metallofullerene. Chem. Phys. Lett., 2003, 372:512-518
    
    [248] C. R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, M. Sakata, H. Shinohara. M. Science C66 fullerene encaging a scandium dimer. Nature, 2000,408:426-427
    
    [249] M. M. Olmstead, H. M. Lee, J. C. Duchamp, S. Stevenson, D. Marciu, H. C. Dorn, A. L. Balch. Sc3N@C68: Folded Pentalene Coordination in an Endohedral Fullerene that Does Not Obey the Isolated Pentagon Rule. Angew. Chem. Int. Ed., 2003,42:900-903
    
    [250] H. Kato, A. Taninaka, T. Sugai, H. Shinohara. Structure of a Missing Caged Metallofullerene: La2@C72. J. Am. Chem. Soc, 2003,125:7782-7783
    
    [251] M. F. Ge, J. K. Feng, M. Cui, S. F. Wang, and W. Q. Theoretical Studies of Various Structures of CnSi(n=28,29).Tian. Acta. Chim. Sin., 1999, 57:645-648
    
    [252] L. F. James, F. J. Martin. Quantum Chemistry Studies on Electronic Structures and Spectra of C77Si.J. Phys. A, 1997,101:1836-1842
    
    [253] C.-R.Wang, Z.-Q. Shi, L.-J. Wan, X. Lu, L. Dunsch, C.-Y. Shu, Y.-L.Tang, H. Shinohara. C64H4: Production, Isolation, and Structural Characterizations of a Stable Unconventional Fulleride. J. Am. Chem. Soc, 2006,128:6605-6610
    
    [254] T. Guo, R. E. Smalley, and G. E. Scuseria. Ab initio theoretical predictions of C28, C28H4, C28F4, (TiC28)H4, and MC28 (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn). J. Chem. Phys., 1993, 99:352-359
    
    [255] M. R. Pederson, N. Laouini. Covalent container compound: Empty, endohedral, and exohedral C28 complexes. Phys. Rev. B, 1993,48:2733-2737
    
    [256] L. H. Lu, K. C. Sun, C. Chen. Theoretical study of fullerene derivatives: C28H4 and C28X4 cluster molecules. Int. J. Quan. Chem., 1998, 67:187-197
    
    [257] Y. N. Makurin, A. A. Sofronov, and A. L. Ivanovskii. Electronic Structure and Conditions for Chemical Stabilization of Fullerene C28. Exohedral Complexes C28M4 (M = H, Cl, Br) Russian Journal of Coordination Chemistry, 2000, 26:464-469
    [258] J. Pattanayak, T. Kar, S. Scheiner. Substitution Patterns in Mono-BN-Fullerenes: Cn (n = 20,24,28, 32, 36, and 40). J. Phys. Chem. A., 2004,108:7681-7685
    
    [259] Y. N. Makurin, A. A. Sofronov, and A. L. Ivanovskii. Electronic structure and chemical stabilization of C28 fullerene. Chem. Phys., 2001,270:293-308
    
    [260] G L. Lu, Y. B. Yuan, K. M. Deng, H. P. Wu, J. L. Yang and X. Wang. Density-functional energetics and frontier orbitals analysis for the derivatives of the nonclassical four-membered ring fullerene C62. Chem. Phys. Lett., 2006, 424:142-145
    
    [261] W. G Xu, Y. Wang, and Q. S. Li. Theoretical study of fullerene C50 and its derivatives. J. Mole. Struct: ThemChem., 2000, 531:119-125
    
    [262] Q. Kong, J. Zhuang, X. Li' R. Cai, L. Zhao, S. Qian, Y. Li, Formation of metallofullerenes by laser ablation of externally doped fullerenes C60Mx (M=Sm, Pt and Ni). Applied Physics A: Materials Science & Processing, 2004, 75:367-374
    
    [263] K. Fukui, T. Yonezawa, H. Shingu. A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys., 1952, 20: 722-728
    
    [264] R. B. Woodward, Roald Hoffmann. Stereochemistry of Electrocyclic Reactions. J. Am. Chem. Soc, 1965, 87:395-397
    
    [265] C. G. Ding, J. L. Yang R. S. Han, and K. L. Wang. Formation mechanism and structural and electronic properties of metal-substituted fullerenes C69M (M=Co, Rh, and Ir). Phys. Rev. A, 2001, 64: 043201-043206
    
    [266] Y. F. Chang, J. P. Zhang, B. Hong, H. Sun, Z. An, and R. S. Wang. D5h C50X10: Saturn-like fullerene derivatives (X=F, Cl, and Br). J. Chem. Phys., 2005, 123:094305-1-094305-5
    
    [267] L. H. Lu, K.C. Sun, C. Chen. Theoretical study of fullerene derivatives: C28H4 and C28X4 cluster molecules. International Journal of Quantum Chemistry, 1998, 67:187-197
    
    [268] L. H. Lu, C. Chen, K.C. Sun. Theoretical study of fullerene derivatives: G40H4 and C40X4 cluster molecules. International Journal of Quantum Chemistry, 1998, 68:273-284
    
    [269] C. Y. Zhang, H. S. Wu, and H.J. Jiao. Aromatic C20F20 cage and its endohedral complexes X@C20F20 (X = H-, F-, Cl-, Br-, H, He). Journal of Molecular Modeling, 2007, 13:499-503
    
    [270] B, Hong, Y.F. Chang, Y.Q. Qiu, H. Sun, Z. Min Su, and R. S. Wang. MP2 theory investigation on the halides of D6hC36:C36Xn (X=F, Cl, Br; n=2,4,6,12). J. Chem. Phys., 2006,124:144108-1-144108-5
    
    [271] N. I. Denisenko, S. I. Troyanov, A. A. Opov, I. V. Kuvychko, B. Zemva, E. Kemnitz, S. H. Strauss, O. V. Boltalina.Th-C60F24. J. Am. Chem. Soc, 2004, 123 126:1618-1619
    
    [272] S. Y. Xie, F. Gao, X. Lu, R. B. Huang, C. R Wang, X. Zhang, M. L. Liu, S. L. Deng, and L. S. Zheng. Capturing the Labile Fullerene[50] as C50Cl10. Science, 2004, 304:699-703
    
    [273] X. Lu, Z. Chen, W. Thiel, P. v. R. Schleyer, R. Huang, L. Zheng, Properties of Fullerene[50] and D5h Decachlorofullerene[50]: A Computational Study. J. Am. Chem. Soc, 2004,126:14871-14878
    
    [274] M. F. Limonov, Yu. E. Kitaev and A. V. Chugreev, V. P. Smirnov, Yu. S. Grushko, S. G. Kolesnik, and S. N. Kolesnik. Phonons and electron-phonon interaction in halogen-fullerene compounds. Phys. Rev. B, 1998, 57:7586-7594
    
    [275] A. K. Ott, G. A. Rechtsteiner, C. Felix, O. Hampe, M. F. Jarrold, and R. P. Van Duyne, K. Raghavachari. Raman spectra and calculated vibrational frequencies of size-selected C16, C18, and C20 clusters. J. Chem. Phys., 1998,109:9652-9655
    
    [276] DMOL version 960, Biosym Technologies, San Diego, CA, 1996
    
    [277] Q. X. Li, L. F. Yuan, J. L. Yang, J. G. Hou, Q. S. Zhu, J. Chin. Electr. Microsc. Soc, Vibrational spectra of fullerene. 2001,20:550-555
    
    [278] L. Giacomazzi, P. Umari, and A. Pasquarello.Vibrational spectra of vitreous germania from first-principles. Phys. Rev. B, 2006, 74:155208-155213
    
    [279] Y. Q. Cai, L. T. Zhang, Q. F. Zeng, L. F. Cheng, and Y. D. Xu. First-principles study of vibrational and dielectric properties of Si3N4. Phys. Rev. B, 2006, 74:174301-174304
    
    [280] L. M. L. Daku and H. Hagemann. First-principles study of the pressure dependence of the structural and vibrational properties of the ternary metal hydride Ca2RuH6. Phys. Rev. B, 2007, 76:014118-014123
    
    [281] N. Matsuzawa, T. Fukunaga, D. A. Dixon. Electronic structures of 1, 2- and l,4-C60X2n derivatives with n = 1, 2, 4, 6, 8,10, 12, 18, 24, and 30. J. Phys. Chem., 1992, 96:10747-10756
    
    [282] R. Taylor. Fluorinated Fullerenes. Chemistry, 2001, 7:4074-4084
    
    [283] Y. Yang, F. H. Wang, and Y. S. Zhou, L. F. Yuan, J. L. Yang. Density functional calculations of the polarizability and second-order hyperpolarizability of C50Cl10. Phys. Rev. A, 2005, 71:013202-013207
    
    [284] S. J. Zhong and C. W. Liu. Stability of X4Y24q(X = C, Si; Y = B, Al, C, Si, N, P; q =-4 to 4) and C28X4 (X = H, F, Cl, Br, and I). Journal of Molecular Structure: ThemChem., 1997,392:125-136
    [285] R. M. Silverstein, G C. Bassler, and T. C. Morrill, Spectrometric identication of Organic Compounds, 5th ed, Wiley, New York, 1991, p103,
    
    [286] S. N. Ege, D. C. Heath, Organic Chemistry, Lexington, 1984
    
    [287] A. R.Campanelli, A. Domenicano, F. Ramondo, I. Hargittai. Group Electronegativities from Benzene Ring Deformations: A Quantum Chemical Study. J. Phys. Chem. A, 2004,108:4940-4948
    
    [288] X. M. Pan, Z. Fu, B. Hong, L. Zhao, Y.Q. Qiu, Z.M. Su and R.S. Wang. Theoretical studies of the relative stabilities and electronic properties on B endohedral and exohedral fullerenes Synthetic Metals, 2005,152:325-328
    
    [289] P. Masri. Silicon carbide and silicon carbide-based structures: The physics of epitaxy. Surf. Sci. Reports, 2002,48:41-51
    
    [290] S. F. Bent, Attaching Organic Layers to Semiconductor Surfaces, J. Phys. Chem. B, 2002,106:2830-2842.
    
    [291] F. B. Stacey. Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects.Surf. Sci., 2002, 500:879-903
    
    [292] C. R. Kinser, M. J. Schmitz, M. C. Hersam. Conductive Atomic Force Microscope Nanopatterning of Hydrogen-Passivated Silicon in Inert Organic Solvents. Nano Lett., 2005, 5:91-95
    
    [293] R. Basu, N. P. Guisinger, M. E. Greene, and M. C. Hersam. Room temperature nanofabrication of atomically registered heteromolecular organosilicon nanostructures using multistep feedback controlled lithography. Appl. Phys. Lett., 2004, 85:2619-2621
    
    [294] R. A. Wolkow. Controlled Molecular Adsorption on Si: Laying a Foundation for Molecular Devices. Annu. Rev. Phys. Chem., 1999, 50:413-419
    
    [295] R. J.Hamers, S. K.Coulter, M. D.Ellison, J. S.Hovis, D. F.Padowitz, M. P.Schwartz, C. M. Greenlief, J. N.Russell. Cycloaddition Chemistry of Organic Molecules with Semiconductor Surfaces. Acc. Chem. Res., 2000, 33:617-624
    
    [296] Y. Okawa, M. Aono. Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. J. Chem. Phys, 2005,115:2317-2322
    
    [297] Paul G. Piva, Gino A. DiLabio, Jason L. Pitters, Janik Zikovsky, Moh'd Rezeq, Stanislav Dogel, Werner A. Hofer, Robert A. Wolkow. Field regulation of single-molecule conductivity by a charged surface atom. Nature, 2005, 435:658-661
    
    [298] J. K. Kang, C. B. Musgrave. A quantum chemical study of the self-directed growth mechanism of styrene and propylene molecular nanowires on the silicon (100) 2×1 surface. J. Chem. Phys., 2002,116:9907-9913
    [299] P. Kruse,; E. R. Johnson, G A.DiLabio, R. A. Wolkow. Patterning of Vinylferrocene on H-Si(100) via Self-Directed Growth of Molecular Lines and STM-Induced Decomposition. Nano Lett., 2002,2:807-810
    
    [300] M. Z. Hossain, H. S. Kato, M. Kawai. Controlled Fabrication of ID Molecular Lines Across the Dimer Rows on the Si(100)-(2 × 1)-H Surface through the Radical Chain Reaction. J. Am. Chem. Soc, 2005,127:15030-15031
    
    [301] G. P. Lopinski, D. D. M. Wayner, R. A. Wolkow. Self-directed growth of molecular nanostructures on silicon. Nature, 2000,406:48-51
    
    [302] G A. DiLabio, P. G Piva, P. Kruse, R. A.Wolkow. Dispersion Interactions Enable the Self-Directed Growth of Linear Alkane Nanostructures Covalently Bound to Silicon. J. Am. Chem. Soc, 2004,126:16048-16050
    
    [303] X. J. Zhang, N. Zhang, H. Schuchmann, C. V. Sonntag. Pulse Radiolysis of 2-Mercaptoethanol in Oxygenated Aqueous Solution. Generation and Reactions of the Thiylperoxyl Radical. J. Phys. Chem., 1994, 98:6541-6547
    
    [304] P. E. Blochl, Projector augmented-wave method. Phys. Rev. B, 1994, 50:17953-17979
    
    [305] G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54:11169-11186
    
    [306] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965,140:A1133-A1138
    
    [307] G Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54:11169-11186
    
    [308] X. Y. Pei, X. P. Yang, and J. M. Dong. Effects of different hydrogen distributions on the magnetic properties of hydrogenated single-walled carbon nanotubes. Phys. Rev. B, 2006,73:195417-195419
    
    [309] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett, 1996, 77:3865-3869
    
    [310] I. Stich, R. Car, M. Parrinello, and S. Baroni. Conjugate gradient minimization of the energy functional: A new method for electronic structure calculation. Phys. Rev. B, 1989, 39:4997-5004
    
    [311] N. Takeuchi, C. T. Chan, and K. M. Ho. Au(111): A theoretical study of the surface reconstruction and the surface electronic structure. Phys. Rev. B, 1991, 43:13899-13906
    [312] G. Nicolay, F. Reinert, and S. Hufner, P. Blaha. Spin-orbit splitting of the L-gap surface state on Au(111) and Ag(111). Phys. Rev. B, 2001,6:33407-33415
    
    [313]M. Krcmar and C.L. Fu. Structural and electronic properties of BaTiO3 Mechanism for surface conduction slabs. Phys. Rev. B, 2003,68:115404-115411
    
    [314] L. A. Errico, G. Fabricius, and M. Renteria, P. de la Presa and M. Forker. Anisotropic Relaxations Introduced by Cd Impurities in Rutile TiO2: First-Principles Calculations and Experimental Support. Phys. Rev. Lett., 2002, 89:055503-055506
    
    [315] R. Laskowski, G. K. H. Madsen, P. Blaha, and K. Schwarz. Mgnetic structure and electric-field gradients of uranium dioxide: An ab initio study. Phys. Rev. B, 2004, 69:140408-140411
    
    [316] G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59:1758-1775
    
    [317] P. Kruger and J. Pollmann Ab initio calculations of Si, As, S, Se, and Cl adsorption on Si(001) surfaces. Phys. Rev. B, 1993,47:1898-1910
    
    [318] J. Ciston, L. D. Marks, R. Feidenhans'l, O. Bunk, G. Falkenberg, and E. M. Lauridsen. Experimental surface charge density of the Si(100)-2×1H surface Phys. Rev. B, 2006, 74:085401-085405
    
    [319] A. H. Romero, C. Sbraccia, P. L. Silvestrelli. Adsorption of 3-pyrroline on Si(100) from first principles. J. Chem. Phys., 2004, 120:9745-9751
    
    [320] J. V. Droogenbroeck, K. Tersago, C. V. Alsenoy, and F. Blockhuys. A systematic study of the effect of correlation, DFT functional and basis set on the structure of Roesky's ketone. Chem. Phys. Lett., 2004, 399:516-521
    
    [321] M. Cakmak and G. P. Srivastava. Adsorption of partially and fully dissociated H2S molecules on the Si(001) and Ge(001) surfaces. Phys. Rev. B, 1999, 60:5497-5505
    
    [322] H. Orita and N. Itoh. Adsorption of thiophene on Ni(100), Cu(100), and Pd(100) surfaces: ab initio periodic density functional study. Surf. Sci., 2004, 550:177-184
    
    [323] C. Hobbs, L. Kantorovich and J. D. Gale. An ab initio study of C60 adsorption on the Si(0 0 1) surface. Surf. Sci., 2005, 591:45-55
    
    [324] M. Preuss, W. G Schmidt, F. Bechstedt. Methyl Chloride Adsorption on Si(001) Electronic Structure. J. Phys. Chem. B, 2004,108:7809-7813
    
    [325] M. Hortamani, H. Wu, P. Kratzer, and M. Scheffler. Epitaxy of Mn on Si(001): Adsorption, surface diffusion, and magnetic properties studied by density-functional theory. Phys. Rev. B, 2006, 74:205305-205314
    [326] M. P. Schwartz, M. D. Ellison, S. K. Coulter, J. S. Hovis, R. J. Hamers. Interaction of π -Conjugated Organic Molecules with n-Bonded Semiconductor Surfaces: Structure, Selectivity, and Mechanistic Implications. J. Am. Chem. Soc, 2000,122:8529-8538
    
    [327] R. Shaltaf, E. Mete, and Ellialtolu. Cs adsorption on Si(001) surface: An ab initio study. Phys. Rev. B, 2005,72:205415-20542
    
    [328] J. Ciston, L. D. Marks, R. Feidenhans'l, O. Bunk, G. Falkenberg, and E. M. Lauridsen. Experimental surface charge density of the Si(100)-2×1H surface. Phys. Rev. B, 2006, 74:085401-085405
    
    [329] M. P. Sony, P. Puschnig, D. Nabok, and C. Ambrosch-Draxl. Importance of Van Der Waals Interaction for Organic Molecule-Metal Junctions: Adsorption of Thiophene on Cu(l 10) as a Prototype. Phys. Rev. Lett., 2007,99:176401-176405
    
    [330] T. A. Baker, C. M. Friend, and E. Kaxiras. Nature of Cl Bonding on the Au(111) Surface: Evidence of a Mainly Covalent Interaction. J. Am. Chem. Soc, 2008, 130:3720-3721
    
    [331] G. Bussi, A. Ruini, and E. Molinari, M. J. Caldas, P. Puschnig and C. Ambrosch-Draxl. Interchain interaction and Davydov splitting in polythiophene crystals: An ab initio approach. Appl. Phys. Lett., 2002, 80:4118-4120
    
    [332] Y. C. Cheng, R. J. Siibey. D. A. D. S. Filho, J. P. Calbert, J. L. Bredas.Three-dimensional band structure and bandlike mobility in oligoacene single crystals: A theoretical investigation. J. Chem. Phys., 2003,118:3764-3769
    
    [333] M. L. Tiago, J. E. Northrup, and S. G. Louie. Ab initio calculation of the electronic and optical properties of solid pentacene. Phys. Rev. B, 2003,67:115212-115217
    
    [334] K. Hummer and C. Ambrosch-DraxlElectronic properties of oligoacenes from first principlesPhys. Rev. B, 2005, 72:205205-205214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700