尖叶拟船叶藓遗传多样性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖叶拟船叶藓(Dolichomitriopsis diversiformis(Mitt.)Nog.)是船叶藓科(Lembophyllaceae)拟船叶藓属中的中国唯一一种植物,对研究拟船叶藓属的系统演化与属间亲缘关系有重要的意义。近几十年来,由于环境污染及生态破坏的日趋加剧,该植物所受到的胁迫越来越严重,分布范围也越来越狭窄,分布区域渐成“岛状”,从而成为我国苔藓植物遭受威胁最严重的类群之一。因此,尖叶拟船叶藓濒危机制和保护策略的研究亟待进行。
     本研究以贵州梵净山为主要研究地,以RAPD为主要分子标记,ITS序列分析和同工酶分析为辅助标记,探讨了拟船叶藓属(Dolichomitriopsis)和猫尾藓属(Isothecium)属间的鉴别和亲缘关系,研究了尖叶拟船叶藓居群间和居群内的遗传多样性及居群的遗传结构,并对尖叶拟船叶藓濒危的机制进行了探讨。初步研究结果如下:
     1.野外踏查发现,尖叶拟船叶藓的生态环境比较独特单一,呈片段化,绝大部分尖叶拟船叶藓种群都附生于树干上,少见土生或石生。
     2.拟船叶藓属和猫尾藓属是船叶藓科中亲缘关系较近的两个属,外形上很相似,野外调查易混淆。通过RAPD扩增和ITS测序,以RAPD标记为主,辅以ITS序列分析,能将两个属很好的区分开来,并能准确的鉴别这两个属的物种。同时,RAPD标记也表明尖叶拟船叶藓居群间有较高的遗传多样性,并且这种多样性与其地理位置无明显相关性,可能受其小生境的影响较大。
     3.RAPD分析表明,尖叶拟船叶藓物种水平的多态性位点百分率(PPB)为87.76%。居群水平的遗传变异程度较低,多态性位点百分率(PPB)为20.52%。每个位点的平均有效等位基因数(A_E)为1.1456。居群水平的基因多样度(H_(Epop))为0.0813,物种水平的基因多样度(H_(Esp))为0.2223,遗传分化系数(G_(st))为0.6329。在总的变异中有63.29%的变异来源于居群间,有36.71%的变异存在于居群内,表明尖叶拟船叶藓居群分化十分明显。数据分析结果说明了尖叶拟船叶藓物种水平的遗传多样性较高,但居群水平的遗传多样性则较低,而且其遗传多样性受小生境的影响较大。其中遗传漂变和环境与基因互作导致的适应性变异可能是影响居群分化的主要原因。
     4.过氧化物同工酶分析结果表明,尖叶拟船叶藓物种水平有较高的遗传多样性,并且受小生境的影响较大,居群间有明显的分化。
     5.尖叶拟船叶藓濒危的因素推测有二:一是独特的栖息环境以及生活环境的片段化;二是尖叶拟船叶藓为雌雄异株种,有明显的雌性偏向,有性繁殖率低,孢子数量少,孢子体败育率低,以无性繁殖为主的繁育特性等导致的种群退化和环境适应性减弱。对于尖叶拟船叶藓的保护,应以就地保护为主,保护其赖以栖息的生活环境,特别是贵州的梵净山,使之不致减少以致灭绝,以迁地保护为辅,以扩大其种群分布范围。
Dolichomitriopsis diversiformis (Mitt.)Nog. is the unique species of Dolichomitriopsis, Lembophyllaceae in China. It is very important to the systematic evolution and identification of relationships of Dolichomitriopsis. Recently, D. diversiformis occur a much more narrow distribution, and islandization, because of environment pollution and ecology degradation. It is believed that D. diversiformis is one of the endangerous moss species. Base on these, endangerous mechanism and protective strategy of them came into being a serious problem.
     In our research, the relationship between Dolichomitriopsis and Isothecium, the inter- and inner-population genetic diversity and hereditary architechure and the endangerous mechanism of D. diversiformis was investigated, by using RAPD and major molecular marker, ITS analysis and isoenzymes analysis as auxiliary factors. Preliminary results showed as follows.
     (1) In ecological investigation, the environment of D. diversiformis occurs phenomenon of fragmentation and specialization. Almost all populations grew on the surface of the tree stems, and land- or rock-attached types did not occur.
     (2) Polichomitriopsis is near to Isothecium in family of Lembophyllaceae on genetic relationship. Because of similarity on appearance, they are obscure in the field investigation. Based on the RAPD amplification and ITS sequence, the two species in two different genus can be identified. The RAPD results also tell us, inter-population genetic diversity of diversiformis was so high, and the diversity is related to the mini-environment and has litter relationship with geographic site.
     (3) Polymorphism site percent of D. diversiformis is 87.76%. Variation on population level is very low, the polymorphism site percent of population is 20.52%. Number of average effective alliles (A_E) of each site is 1.1456. Gene diversity (H_(Epop)) of population level is 0.0813, and it of species is 0.2223, G_(st) is 0.6329. 63.29% of all the alternations comes from inter-population, others comes from inner-population.
     (4) Results of isoenzymes also suggested the high genetic diversity and that is effected by the mini-environment. Otherwise, the differentiation of population was developed.
     (5) Endangerous factors of D. diversfformis should be two. First, habitat distinctivity and fragmentation cause species endanger. Second, the characteristic of asexual reproduction is the prominent result in D. diversiformis population degeneration. Base on these determination, the protective strategy should be mainly protect the living environment of D. diversiformis, especially the Fanjin Mount in GuiZhou Province, and change residence auxiliary to enlarge the distribution.
引文
[1] 葛颂,洪德元.遗传多样性及其检测方法[M].见:钱迎倩,马克平.生物多样性研究的原理和方法[C].北京:中国科学技术出版社,1994.
    [2] 葛颂.植物群体遗传结构研究的回顾和展望[M].见:李承森(主编),植物科学进展(第1卷).北京:高等教育出版社,1997.
    [3] 许再富.中国植物园植物多样性迁地保护的现状和对策——兼论植物多样性迁地保护的原理和方法[M].见:保护中国的生物多样性.北京:中国环境科学出版社,1997:91~111.
    [4] Raven P H. Plant systematics 1947-1972[J]. Ann Missouri Bot Gard. 1974, 61: 166-178.
    [5] Vickery R K. Biosystematics [M]. In: W E Grant eds. Plant biosystematics. London: Academic Press, 1984: 293-306.
    [6] Crawford D J. Plant molecular systematics: macromolecular approaches [M]. New York: Wiley, 1990.
    [7] Case M A, Mlodozeniee H T, Wallace L E, et al. Conservation genetics and taxonomic status of the rare Kentucky Lady's slipper: Crpripedium kentuckiense (Orchidaceae)[J]. A mer. J. Bot., 1998, 85: 1779-1786.
    [8] Ge, X J, Sun, M, Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrtinaceae) using allozyme and intersimple sequence repeat (ISSR) analysis[J]. Mol. Ecol. 1999, 8: 2061-2061.
    [9] Swensen S M, Allan G J, How M, et al. Genetic Analysis of the endangered island endemic Malacothamnus fasciculatus(Nutt.) Greene var. nesioticus(Rob.) Kearn (Malvaceae)[J]. Conservation Biology, 1995, 9(2): 404-415.
    [10] 祖元刚,张文辉,阎秀峰,等.濒危植物裂叶沙参保护生物学[M].北京:科学出版社,1999.
    [11] 张文辉,祖元刚,马克明.裂叶沙参与泡沙参种群分布格局分形特征的分析[J].植物生态学报,1999,23(1):31-39.
    [12] 尉秋实,王继和,李昌龙,等.不同生境条件下沙冬青种群分布格局与特征的初步研究[J].植物生态学报,2005,29(4):591-598.
    [13] 李晓红,肖宜安,胡文海,等.濒危植物长柄花木生态遗传分化的同工酶分析[J].井冈山学院学报(自然科学),2005,26(3):34-38.
    [14] 潘丽芹,季华,傅强,等.濒危植物荷叶铁线蕨的生态群落调查及生态位分析[J].扬州大学学报(农业与生命科学版),2005,26(4):74-78.
    [15] 王中生,安树青,方炎明.苔藓植物生殖生态学研究[J].生态学报,2003,23(11):2443-2452.
    [16] Frankham, R. Conservation genetics[J]. Annu. Rev. Genet. 1995, 29: 305-327.
    [17] Kruch O. Appuntisullo sviluppo degli organisesssuali esulla fecondazione della Riella clausonis [J]. Les Malpighia, 1891, 4: 403-423.
    [18] 周云龙,沙伟,王长锐,等.中国四种藓类的细胞学观察[J].植物分类学报,1988.26(5):378-380.
    [19] 沙伟,曹同,高永超.国产12种苔藓植物的染色体数目[J].植物分类学报,2003,41(3):258-262.
    [20] Paschke M. C. A. & Schmid B.. Relations between population size, allozyme variation, and plant performance in the narrow endemic Cochlearia bavarica[J]. Conserv. Gen. 2002, 3: 131-144.
    [21] Krzalowa M. Isozymes as markers of inter and intraspecific differentiation in hepaties [J]. Bryophytorum Bibliotheca, 1977, 13: 427-434.
    [22] Hofman A. A Preliminary survey of allozyme variation in the genus Plagiothecium (Plagiotheciaceae, Bryopsida)[J]. J Hart Bot Lab, 1988, 64: 143-150.
    [23] Shaw A J, Gutkin M S, Bemstein B R. Systematics of tree mosses (Climacium: Musci): genetic and morphological evidenc[J]. Syst Bot, 1994, 19: 263-272.
    [24] Toshiaki Y, Takahiro H, Kaiji A. Superoxide dismatuse suggests phylogenetic relationships among bryophytes[J]. J. Hattori Bot Lab., 1999, 18: 309-313.
    [25] Liou G Y, Chen C C, Yuan G F, et al. A taxonomic study of the genus Rhizopus by isozyme Patterns[J]. Nova Hedwigia, 2001, 72: 231-239.
    [26] 白占奎,王幼芳,胡人亮.与青藓科相联系的几个属系统位置的研究[M].上海:上海科学技术文献出版社,1998:7-12.
    [27] 吴玉环,王幼芳,胡人亮.应用电泳技术分析薄罗藓科和羽藓科某些属的系统位置[J].植物资源与环境,2000,9(1):39-42.
    [28] 邵邻相,郭水良,陈吉娟.基于SOD和EST同工酶的19种苔藓植物种间关系排列分析[J].植物研究,2001,21:575-577.
    [29] Joan R, Montagnes S, Randall JB, et al. Isozyme variation in the moss Meesia Triquetra [J]. J. Hattori Bot. Lab., 1993, 74: 155-170.
    [30] Wyatt R, Odrzykoski IJ, Koponen T. Mnium orentale ap Nov from Japan is moephologicall and genetically distinct from Mnium hornum in Europe and North America [J]. The Bryologist, 1997, 100(2): 226-235.
    [31] Man Kyu Huh, Su Dong Chung, and Hong Wook Huh. Allozyme variation and population structure of Pyrola japonica in Korea[J]. Bot. Bull. Acad. Sin, 1998, 39: 107-112.
    [32] Boisselier Dubayle M C, et al. Genetic variability in three subspecises of Marchantia polymorpha (Hepaticea): isozymes, RFLP and RAPD markers [J]. Taxon, 1995, 44(3): 363-376.
    [33] Patterson E, SB Bolse and AJ Shaw. Nuclear ribosomal DNS variation in Leucobryum glaucum and L. albidum (Leucobryaceae): a preliminary investigations [J]. The Bryologist, 1998, 101(2): 272-277.
    [34] 王艇,朱建明,苏应娟,等.部分苔藓植物rbcL基因PCR-RFLP分析[J].西北植物学报,2000,20:968-973.
    [35] Velde M, Strate J, Zande L, et al. Isolation and characterization of microsatellites in the moss species Polytrichum for mosum [J]. Molecular Ecol., 2000, 9: 1661-1668.
    [36] Urban Gunnarsson, Kristian Hassel, Lars Soderstrom. Genetic Structure of the Endangered Peat Moss Sphagnum angermanicum in Sweden: A Result of Historic or Contemporary Processes?[J]. Bryologist, 2005, 108(2): 194-203.
    [37] Kristian Hassel, Sigurd M. Sastad, Urban Gunnarsson, and Lars Soderstrom. Genetic variation and structure in the expanding moss Pogonatum dentatum (Polytrichaceae) in its area of origin and in a recently colonized area [J]. American Journal of Botany. 2005, 92: 1684-1690.
    [38] Ashton N W. Bryophyte molecular phylogenetic studies [J]. J. Hattori Bot. Lab., 1994, 76: 42-57.
    [39] Skotnicki M L, Ninham JA, Selkirk P M. High level of RAPD diversity in the moss Bryum argenteum in Austrillia, New Zealand and Antarctica [J]. The Bryologist, 1998, 101(3): 412-421.
    [40] Korpelainen, Z. Genetic variation in three specises of epiphytic Octoblepharum (Leucobryaceae)[J]. Nova Hedwigia, 1999, 68(3-4): 281-290.
    [41] So, M L, et al. Description of Plagiochola deteta sp. nov. (Hepaticae) from East Asia based on morphological and RAPD evidence [J]. Nova Hedwigia, 2000, 71 (3-4): 387-393.
    [42] Selkirk P M, Skotnicki M, Adam K D. Genetic variation in Antarctic populations of the moss Sarconeurum glaciale [J]. Polar Biology, 1997, 18: 344-350.
    [43] Skotnicki M L, Selkirk P M, Beard C. RAPD profiling of genetic diversity in two populations of the moss Ceratodon purpureus in Victoria Land, Antarctica [J]. Polar Biology, 1998, 19: 172-176.
    [44] Skotnicki M L, Selkirk PM, Ninham J A. RAPD analysis of genetic variation and dispersal of the moss Bryum pseudotriquetrum from southern Victoria Land, Antarctica [J]. Polar Biology, 1998, 20(2): 121-126.
    [45] Dale TM, Skotnicki ML, Adam KD, et al. Genetic diversity in the moss Hennediella heimii in Miers Valley, southern Victoria Land, Antarctica [J]. Polar Biology, 1999, 21: 228-233.
    [46] Skotnicki ML, Selkirk PM, Ninham JA. RAPD analysis of genetic variation and dispersal of the moss Bryum argenteum in Ross Island and Victoria Land, Antarctica [J]. Polar Biology, 1999, 21: 417-422.
    [47] Skomicki M L, Ninham J A, Selkirk P M. Genetic diversity and dispersal of the moss Sarconeurum glaciale on Ross Island, East Antarctica[J]. Molecular Ecology, 1999, 8(5): 753-762.
    [48] Stenoien H K, Flatberg K I. Genetic variability in the rare Norwegian peat moss Sphagnum troendelagicum [J]. The Bryophytes, 2000, 103(4): 794-801.
    [49] Hans Kristen Stenoien, Kjell I. Flatberg. Genetic Variability in the Rare Norwegian Peat Moss Sphagnum troendelagicum[J]. Bryologist, 2000, 103 (4): 794-801.
    [50] 侯义龙,曹同.中国东北15种藓类植物RAPD分析及其分类学意义[J].植物研究,2004,24(4):477-481.
    [51] QUANDT D, HUTTUNEN S H, STREIMANN J P F, et al. Molecular phylogenetics of the Meteoriaceae s. str.: Focusing on the genera Meteorium and Papillaria[J]. Molec. Phylogenet. Evol, 2004b, 32: 435-461.
    [52] Huttunen, Sanna & Ignatov, Michael S. Phylogeny of the Brachytheciaceae (Bryophyta) based on morphology and sequence level data[J]. Cladistics, 2004, 20(2): 151-183.
    [53] 刘冰,姜业芳,李菁,等.贵州梵净山森林树干附生尖叶拟船叶藓分布格局研究[J].云南植物研究,2006,28(2):169~174.
    [54] 刘世彪,陈军,李菁,等.光照和温度对尖叶拟船叶藓孢子萌发及原丝体发育的影响[J].西北植物学报,2003,23(1):101-106.
    [55] 王菊凤,李鹄鸣,李菁,等.尖叶拟船叶藓的77K荧光光谱及对强光照的短期适应[J].生命科学研究,2004,8(1):46-51.
    [56] 李佑稷,李菁,陈军,等.不同含水量下尖叶拟船叶藓光合速率对光温的响应及其模型[J].应用生态学报,2004,15(3):391-395.
    [57] 周忠发,秦青春,谢湛明.基于“3S”的梵净山自然保护区植被分布探讨[J].测绘与空间地理信息,2006,29(3):4-6.
    [58] 陈邦杰.中国藓类植物属志(下册)[M].北京:科学出版社,1978:103-107.
    [59] 陈军,朱杰英,陈功锡,等.尖叶拟船叶藓居群叶形态变异的初步研究[J].生命科学研究,2002,6(4):367-370.
    [60] 刘冰,姜业芳,黄璜,等.尖叶拟船叶藓的生境和生殖系统研究[J].湖南农业大学学报(自然科学版),2006,32(2):124-127.
    [61] Wu Pang-cheng. The East Asiatic genera and endemic genera of the Bryopytes in China[J]. Bryobrothera, 1992, 1: 99-117.
    [62] 国家环保局.中国生物多样性国情研究报告[M].北京:中国环境科学出版社,1998.
    [63] 陈功锡,李菁,陈军,等.贵州梵净山尖叶拟船叶藓Dolichomitriopsis diversiformis(Mitt.)Nog.群落生态环境特征初探[J].贵州科学,2001,19(4):81-84.
    [64] CLARK M.植物分子生物学—实验手册[M].北京:高等教育出版社,1998. 1-50.
    [65] 梁琛,张建海.几个群体遗传学分析软件的使用[J].农业网络信息,2005,7:55-78.
    [66] 保曙琳,丁小余,常俊,等.长江中下游地区菱属植物的DNA分子鉴别[J].中草药,2004,35(8):926-930.
    [67] 罗立明,胡鸿钧,李夜光,等.东海原甲藻的分子鉴定[J].海洋学报,2006,28(1):127-131.
    [68] 葛颂.酶电泳资料和系统与进化植物学研究综述[J].武汉植物研究,1994,12(1):71-82.
    [69] Kazan K, Muehlbauer F J. Allozyme variation and phylogeny in annual species of Cicer (Leguminosae)[J]. PI. Syst, Evol, 1991, 175: 11-21.
    [70] Gregory S. Derda, Robert Wyatt. Levels of Genetic Variation and Its Partitioning in the Wide-Ranging Moss Polytrichum commune[J]. Systematic Botany, 1999, 24(4): 512-528.
    [71] A. Jonathan Shaw, Robert E. Schneider. Genetic Biogeography of the Rare "Copper Moss," Mielichhoferia elongata (Bryaceae)[J]. American Journal of Botany, 1995, 82(1): 8-17.
    [72] Widen B, Svensson L. Conservation of genetic varia-tion in plants: the importance of population size and gene flow[M]. In: Ecological Principles of Nature Con-servation: Application in the Temperate and Boreal Environments (ed. Hansson L), New York: Elsevier Science Publishers, 1992: 113-116.
    [73] Slatkin M. Gene flow and geographic structure of natural populations[J]. Science, 1987, 236: 87-92.
    [74] Ellstrand NC. Gene flow by pollen: implications for plant conservation genetics[J]. Oikos, 1992, 63: 77-86.
    [75] Li B (李斌), Gu WC (顾万春). Mating system and genetic diversity proportion in Pinus bungeana[J]. Forest Research (林业科学研究), 2004, 17: 19-25.
    [76] Slatkin M. Gene flow in natural populations[J]. Annuals Review of Ecology and Systematics, 1985, 16: 393-430.
    [77] Fischer M, Matthies D. RAPD variation in relation to population size and plant fitness in the rare Genti-anella germanica (Gentianaceae). American Journal of Botany, 1998, 85: 811-819.
    [78] Turkington R, Harper JL. The growth, distribution and neighbour relationships of Trifolium repens in a permanent pasture. Ⅳ. Fine scale biotic differentia-tion[J]. Journal of Ecology, 1979, 67: 245-254.
    [79] 何田华,饶广远,尤瑞麟.濒危植物木根麦冬的保护生物学研究[J].自然科学进展,1999,9(10):874-879.
    [80] Shrestha S M, Shrestha S, Tsuda F, et al. Genetic changes in hepatitis E virus of subtype la in patients with sporadic acute hepatitis E in Kathmandu, Nepal, from 1997 to 2002[J]. J Gen Virol. 2004, 85 (Pt 1): 97-104.
    [81] 王中仁著.植物等位酶分析[M].北京:科学出版社,1996.
    [82] 叶林奇.11种蕨类植物过氧化物酶同工酶比较[J].涪陵师范学院学报,2005,21(5):104-106.
    [83] 陈传军,沈益新,周建国.南农选系草地早熟禾POD同工酶的酶谱特征及与其它品种的差异[J].中国草地,2005,27(2):36-42.
    [84] 祖元刚,张文辉,阎秀峰等.濒危植物裂叶沙参保护生物学[M].北京:科学出版社,1999.
    [85] Falk D A, Holsinger K E. Genetics and conservation of rare plants[M]. New York: Oxford University Press, 1991.
    [86] Schemske D W, Husband B C, Ruckelshaus M H et al. Evaluating approaches to the conservation of rare and endangered plants[J]. Ecology, 1994, 75: 584-606.
    [87] 张晗,沙伟,高永超.苔藓植物遗传多样性研究现状[J].生态学杂志,2004,23(4):122-126.
    [88] Iwatsuki Z. The epiphytic bryophyte communities in Japan [J]. Journal of Hattori Botanical Laboratory, 1960, 22: 159-350.
    [89] Schmitt CK, Slack NG. Host specificity of epiphytic lichens and bryophytes: a comparison of the Adirondack Mountains (New York) and the Southern Blue Ridge Mountains (North Carolina) [J]. The Bryologist, 1990, 93: 257-274.
    [90] Guo SL, Cao T. Studies on community distributive patterns of ephiphytic bryophytes in forest ecosystems in Changbai Mountain [J]. Acta Phytoecol Sin, 2000a, 24(4): 442-450.
    [91] Mishler B D. Reproductive ecology of Bryophytes[M]. In: Lovett J D, Lovett L D, eds. Plant reproductive ecology: patterns and strategies. New York: Oxford University Press, 1988: 285-306.
    [92] Longton R E, Schuster R M. Reproductive biology[M]. In: Schuster R M ed. New manual of Btyology. Nichinan, Japan: Hattori Botanical Laboratory, 1983.
    [93] Stark L R, Castetter R C. A gradient analysis of bryophyte population in a desert mountain range[J]. Memoirs of the New York Botanical Gard, 1987, 45: 186-197.
    [94] Wyatt R, Andeson L E. Breeding systems in bryophytes[M]. In: Dyer A F, Duckett J G eds. The experimental biology of bryophytes. London: Academic Press, 1984: 39-64.
    [95] Tiffney B H, Niklas K J. Clonal growth in land plants; A palebotanical perspective[M]. In: Jackson J B, Buss L Weds. Population biology and evolution of clonal organisms. New Haven: Yale University Press, 1985: 35-66.
    [96] Longton R E. Sexual reproductive in bryophytes in relation to physical factors of the environment[M]. In: Chopra R N and Bhatla S C eds. Bryophyte development: physiology and biochemistry. Florida: CRC Press, 1990:139-166.
    [97] Stark L R, M ishler B D, M cLetchie D N. The cost of realized sexual reproduction: Assessing patterns of reproductive allocation and sporophyte aboration in a desert moss[J]. American Journal of Botany, 2000, 87 (11): 1599-1608.
    [98] Bowker M A, Stark L R, McLetchie D N, et al. Sex expression, skewed sex ratios, and m- icrohabitat distribution in the dioecious desert moss Syntrichia caninervis (Pottiaceae) [J]. American Journal of Botany, 2000, 87 (4): 517-526.
    [99] Wyatt, R. Population genetics of bryophytes in relation to their reproductive biology[J]. Journal of the Hattori Botanical Laboratory, 1994, 76:147-157.
    [100] Wyatt R. Population ecology of bryophytes [J]. Journal of Hattori Botanical Laboratory. 1982,52:179-198.
    [101] Jia Y. Reproductive characteristic of Bryophytes[M]. In: Wu P C eds. Bryological Biology, Introduction and Diverse Branches. Beijing: Science Press, 1998: 210-232.
    [102] Mishler B D, Oliver M J. Gametophytic phenology of Tortula ruralis, a desiccation-tolerant moss in the Organ Mountains of southern New Mexico. Bryologist, 1991, 94:143-153.
    [103] McLetchie D N. Sperm limitation and genetic effects on fecundity in the dioecious liverwort Sphaerocarpos texanus[J]. Sexual plant reproduction, 1996, 9: 87-92.
    [104] Rohrer J. Sporophyte production and sexuality of mosses in two northern Michigan habitats[J]. Bryologist, 1982, 85: 394-400.
    [105] Newton A E, Mishle(?) B D. The evolutionary significance of asexual reproduction in moss[J]. Journal of the Hattori Botanical Laboratory, 1994,76: 127-145.
    [106] Fang Y M. Plant reproductive ecology[M]. Jinan: Shangdong University Press, 1996:199- 212.
    [107] Stephenson A G, W insor J A. Lotus corniculatus regulates offspring quality through selective fruit abortion[J]. Evolution, 1986,40:453-458.
    [108] BrownA D H. and Briggs J D. Sampling strategies for genetic variation in ex situ collections of endangered plant species[M]. In: D A Falk & K E Holsinge eds. Genetics and Conservation of Rare Plants. New York: Oxford Univ. Press, 1991: 99-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700