糖皮质激素和细胞因子与海马突触损害的关系及抗炎细胞因子IL-10的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分慢性给予应激水平的糖皮质激素对海马神经元和突触的影响
     为探讨慢性给予应激水平糖皮质激素(glucocorticoid)对大鼠海马的影响,在实验组大鼠饮用水中加入皮质醇,使动物皮质醇吸收量达10mg/kg/day,从而引起与应激动物相同的皮质醇水平,共21天,然后用免疫组织化学和Western blot的方法观察海马Caspase-3、Synaptophysin(Syn)和Neurogranin(Ng)表达的变化。结果显示:①与正常组相比,实验组大鼠海马结构中可见较多的细胞萎缩,海马各CA区和DG区未见或偶见极个别Caspase-3免疫反应阳性细胞,但在下托和压部后皮质中,可见有较多的Caspase-3免疫反应阳性细胞;②与正常组Syn和Ng表达水平(1.2197±0.3443和1.9330±0.3450)相比,实验组大鼠海马结构中Syn和Ng的表达明显减少(P<0.05),其表达水平分别为0.5512±0.0540和1.3375±0.3317。上述结果表明,慢性给予应激水平的糖皮质激素可损伤海马的功能,引起不依赖Caspase-3的海马神经细胞退变、使海马突触数量减少以及改变海马突触效能可能是其作用的部分机制。
     第二部分胸腺缺陷与海马损害的关系研究
     目的:探讨胸腺缺陷与海马损害的关系及其可能作用机制。方法:随机选取10~12周龄、22~24周龄的雄性裸小鼠(Balb/c-nu/nu)各6只作实验组,以同周龄、同数量、同性别的正常Balb/c小鼠作对照组,用ELISA方法检测小鼠血清和海马促炎细胞因子IL-2、IFN-γ、TNF-α的含量和Western blot方法分析海马突触蛋白Synaptophysin(Syn)、Neurogranin(Ng)的表达水平。结果:①10~12周龄实验组小鼠血清促炎细胞因子IFN-γ和TNF-α含量分别为184.98±81.69pg/ml和113.16±6.60pg/ml,显著高于同周龄对照组的71.81±9.76pg/ml(P<0.05)和91.38±6.14(P<0.01);②22~24周龄实验组小鼠海马促炎细胞因子IFN-γ含量(6.97±0.64pg/mg海马组织)显著高于同周龄对照组(5.72±0.31pg/mg海马组织)(P<0.01):③22~24周龄实验组小鼠海马Syn表达水平显著低于同周龄对照组(对照组为0.7044±0.0882,实验组为0.5513±0.1096,P<0.05),并伴有Ng表达水平的升高(对照组为1.3030±0.2607,实验组为1.7484±0.2191,P<0.01)。结论:胸腺缺陷会导致海马功能的损害,其机制可能与其所致的促炎细胞因子水平增高有关。
     第三部分抗炎细胞因子IL-10对糖皮质激素所致海马突触损害的保护作用
     目的探讨GC是否可通过引起促炎细胞因子作用增强来损害海马,以及抗炎细胞因子IL-10对GC所致海马损害的保护作用。方法①在原代培养的海马细胞中给予皮质醇8×10~(-6)mol/L,12h后用RT-PCR的方法观察其对海马细胞促炎细胞因子IFN-γ表达的影响;②构建IL-10真核表达质粒,并将其通过侧脑室插管注射到正通过饮水给予皮质醇(40mg/L,共21d)的Wistar大鼠脑中(80ng/20μl,每间隔4d注射1次,即在第1,5,9,13和17天注射),然后用Western blot的方法观察其对海马突触蛋白Synapsin I和Neurogranin(Ng)表达的影响。结果①皮质醇可引起原代培养的海马细胞促炎细胞因子IFN-γmRNA表达增加:皮质醇组IFN-γmRNA表达水平为0.5940+0.0448(n=4),对照组为0.4237+0.0915(n=4),p<0.05;②侧脑室给予IL-10的实验组大鼠Synapsin I和Ng的表达水平分别为2.0171±0.2527、1.9653+0.0843(n=7),显著高于对照组的1.1440±0.2152、1.5344±0.1763(n=7),p<0.01。结论促炎细胞因子可能参与了糖皮质激素对海马的损害,IL-10对糖皮质激素所致的海马损害有保护作用。
Effects of chronic stressed level of glucocorticoid treatment on neurons and synapses in hippocampus
    To explore the effect of chronic stressesd level of glucocorticoid
    on hippocampus, the rats in treatment group were provided with hydrocortisone (cortisol) 10mg/kg/day in drinking water for 21 days. Then the expressions of Caspase-3, Synaptophysin (Syn) and Neurogranin (Ng) in hippocampus of two groups were observed by immunohistochemistry staining and assayed by Western blot. The results are as follows: ① In the treatment group, many neuronal atrophy was seen in hippocampus, and Caspase-3 immunoreactive positive cells were not seen or just were seen occasionally in CA regions and dentate gyrus, but many Caspase-3 immunoreactive positive cells were seen in subiculum and retrosplenial cortex; ②The results of Western blot showed the expression levels of Syn (0.5512±0.0540) and Ng (1.3375±0.3317) in the treatment group were significantly lower than those of the control group (P<0.05), which were 1.2197±0.3443 and 1.9330±0.3450, respectively. The results indicated that administration with chronic stressesd level of glucocorticoid may damage the functions of hippocampus by resulting in caspase-3-independent degeneration of neurons in hippocampus and changes in synapse efficacy and number in hippocampus. Study on the relationship between deficit in thymus and impaired hippocampus
    objective: To explore the effects of deficit in thymus on the hippocampus. Methods: Six 10~12 weeks and six 22~24 weeks of age of male nude mice (Balb/c-nu/nu mice) and the same age and the same number of male healthy mice (normal Balb/c mice) were randomly selected as experimental groups or control groups. Then the contents of proinflammatory cytokines IL-2, IFN-γ and TNF-α in serum and the hippocampus of both groups were measured by ELISA method and the expression levels of Synaptophysin (Syn) and Neurogranin (Ng) in the hippocampus of both groups were analyzed by Western blot method. Results: ① The contents of proinflammatory cytokine IFN-γ (184.98±81.69pg/ml) and TNF-α(113.16±6.60pg/ml) of serum in experimental group of 10~12 weeks of age were higher significantly than those in control group of the same age, which were 71.81±9.76pg/ml (P<0.05) and 91.38±6.14 pg/ml (P<0.01), respectively. (2) The contents of proinflammatory cytokine IFN-γ of the hippocampus in experimental group of 22~24 weeks of age (6.97±0.64pg/mg hippocampus, wet weight) was higher significantly than that in control group of the same age (5.72±0.31pg/mg hippocampus, wet weight, P<0.01); ③ the expression level of Syn was lower significantly in experimental group of 22~24 weeks of age (0.5513±0.1096) than that in control group of the same age (0.7044±0.0882, P<0.05), while the expression level of Ng was higher significantly in experimental group of 22~24 weeks of age (1.7484±0.2191) than that in control group of the same age (1.3030±0.2607, P<0.01). Conclusion: Deficit in thymus may affect the functions of the hippocampus adversely by increasing the contents of proinflammatory cytokines. IL-10 may prevent damage of synapse in hippocampus caused by glucocorticoid
    Objective: to investigate whether IL-10 may prevent damage of synapse in the hippocampus caused by glucocoticoids (GCs), and reveal the potential mechanism of GCs effect adversely on the hippocampus by enhancing pro-inflammatory cytokines. Methods: ①Primary hippocampal neurons cultured were divided into control group and group treated with cortisol 8×10~(-6) mol/L, and then the expression levels of IFN-γ mRNA of both groups were analyzed by RT-PCR method. ②After pIRES-hrGFP-2a -IL-10 eukaryotic expression Plasmid was constructed, the plasmid was injected into the right lateral ventricle of each rat (80ng in 20μl) by intracerebroventricular cannuia five times at 4-day intervals (i.e., on day 1, 5, 9, 13 and 17) while the rats were administered with cortisol dissolved in drinking water (40mg/L) at the same time for 21 days (i.e., from day 1 to 21). For the control group, empty vector instead of the expression plasmid pIRES-hrGFP-2a-IL-10 was injected to the same place. Then the expression levels of Synapsin I and Neurogranin (Ng) in the hippocampus of both groups were assayed by Western blot method. Results: ① IFN-γ mRNA expression level of primary hippocampal cell cultures in the experimental group treated with cortisol (0.5940±0.0448, n=4) was significantly higher than that in the control group (0.4237±0.0915, n=4), p <0.05; (2) The expression levels of Synapsin I protein (2.0171±0.2527) and Neurogranin protein (1.9653 ±0.0843) in the experimental group (n=7) treated with plasmid pIRES -hrGFP-2a-IL-10 were markedly higher than those in the control group treated with empty plasmid pIRES-hrGFP-2a, which were 1.1440±0.2152 and 1.5344±0.1763, respectively (n=7), p<0.01. Conclusion: GCs may effect adversely on the hippocampus by enhancing pro-inflammatory cytokines, and anti-inflammatory cytokine IL-10 may prevent damage of synapse in the hippocampus caused by GCs.
引文
1. Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002; 3(6): 453-62.
    2. Alfonso J, Pollevick GD, Van Der Hart MG, et al. Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. Eur J Neurosci. 2004; 19(3): 659-66
    3. Stadelmann C, Deckwerth TL, Srinivasan A, et al. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease. Evidence for apoptotic cell death. Am J Pathol. 1999; 155(5): 1459-66.
    4. Lucassen PJ, Vollmarm-Honsdorf GK, Gleisberg M, et al. Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew. Eur J Neurosci. 2001 Jul; 14(1): 161-6.
    5. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2001 Aug;2(8): 589-98.
    6. Nicotera P. Apoptosis and age-related disorders: role of caspase-dependent and caspase-independent pathways. Toxicol Lett. 2002 Feb 28;127(1-3): 189-95.
    7. Valtorta F, Pennuto M, Bonanomi D, et al. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays. 2004; 26(4): 445-53.
    8. Smith TD, Adams MM, Gallagher M, et al. Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci. 2000; 20(17): 6587-93.
    9.罗焕敏。海马结构——从形态、功能到可塑性、衰老性变化。神经解剖学杂志。1996:12(2):177—184.
    10. Li HY, Li JF, Lu GW. Neurogranin: a brain-specific protein.Sheng Li Ke Xue Jin Zhan. 2003; 34(2): 111-5
    1.徐叔云等主编。药理实验方法学。北京:人民卫生出版社,2001年第3版, P1464-1466。
    2. Nishiyama N. Thymectomy-induced deterioration of learning and memory. Cell Mol Biol (Noisy-le-grand). 2001; 47(1): 161-5.
    3. Song C. The effect of thymectomy and IL-1 on memory: implications for the relationship between immunity and depression. Brain Behav Immun. 2002;16(5): 557-68.
    4.罗元明,刘彦信,郑德先。衰老相关的T细胞生物学研究进展。中华老年医学杂志2003;22(5):319—320
    5. Sredni-Kenigsbuch D. TH1/TH2 cytokines in the central nervous system. Int J Neurosci. 2002; 112(6): 665-703.
    6. Pugh CR, Fleshner M, Watkins LR, et al. The immune system and memory consolidation: A role for the cytokine IL-β. Neurosci Biobehav Rev 2001; 25: 29-41.
    7. Godbout JP, Johnson RW. Interleukin-6 in the aging brain. J Neuroimmunol. 2004; 147(1-2): 141-4.
    8. Ye SM, Johnson RW. An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulation. 2001; 9(4): 183-92.
    9. Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF. mRNA up-regulation of MHC Ⅱ and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging. 2005 May 9; [Epub ahead of prim]
    10. Maher FO, Clarke RM, Kelly A, Nally RE, Lynch MA. Interaction between interferon gamma and insulin-like growth factor-1 in hippocampus impacts on the - ability of rats to sustain long-term potentiation. J Neurochem. 2006 Feb 8; [Epub ahead of print]
    
    
    11. Valtorta F, Pennuto M, Bonanomi D, et al. Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis? Bioessays. 2004;26(4):445-53.
    
    12. Smith TD, Adams MM, Gallagher M, et al. Circuit-specific alterations in hippocampal synaptophysin immunoreactivity predict spatial learning impairment in aged rats. J Neurosci. 2000;20(17):6587-93.
    
    13. Li HY, Li JF, Lu GW. Neurogranin: a brain-specific protein.Sheng Li Ke Xue Jin Zhan.2003;34(2):111-5
    
    14. Kim IJ, Beck HN, Lein PJ, Higgins D. Interferon gamma induces retrograde dendritic retraction and inhibits synapse formation. J Neurosci. 2002;22(11):4530-9.
    
    15. Brask J, Kristensson K, Hill RH. Exposure to interferon-gamma during synaptogenesis increases inhibitory activity after a latent period in cultured rat hippocampal neurons. Eur J Neurosci. 2004; 19(12):3193-201
    1. McEwen BS. Possible mechanisms for atrophy of the human hippocampus. Mol Psychiatry. 1997; 2(3): 255-62.
    2. Sapolsky RM, Krey LC, McEwen BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986 Aug; 7(3): 284-301.
    3. Miller DB, O'Callaghan JP. Effects of aging and stress on hippocampal structure and function. Metabolism. 2003; 52(10 Suppl 2): 17-21.
    4. Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci. 2002;3(6):453-62.
    5: Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev. 2005;4(2):141-94.
    
    6. Sandi C. Stress, cognitive impairment and cell adhesion molecules. Nat Rev Neurosci. 2004;5(12):917-30.
    
    7. Kim YK, Maes M. The role of the cytokine network in psychological stress. Acta Neuropsychiatrica. 2003; 15 (3), 148-155.
    
    8. Hayley S, Poulter MO, Merali Z, Anisman H. The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience.2005;135(3):659-78.
    
    9. Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(2):201-17.
    
    10. Lupien SJ, Fiocco A, Wan N, Maheu F, Lord C, Schramek T, Tu MT. Stress hormones and human memory function across the lifespan. Psychoneuroendocrinology. 2005;30(3):225-42.
    
    11. Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF. mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging. 2005 May 9; [Epub ahead of print]
    
    12. Godbout JP, Johnson RW. Interleukin-6 in the aging brain. J Neuroimmunol. 2004;147(1-2):141-4.
    
    13. Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005 Mar;26(3):349-54.
    
    14. Zhou X, Schmidtke P, Zepp F, Meyer CU. Boosting interleukin-10 production: therapeutic effects and mechanisms. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5(4):465-75.
    
    15. Alfonso J, Pollevick GD, Van Der Hart MG, et al. Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. Eur J Neurosci. 2004; 19(3):659-66
    
    16. Grillo CA, Piroli GG, Wood GE, Reznikov LR, McEwen BS, Reagan LP. - Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience. 2005;136(2):477-86.
    
    
    17. Pavlides C, Nivon LG, McEwen BS. Effects of chronic stress on hippocampal long-term potentiation. Hippocampus. 2002;12(2):245-57.
    
    18. Ferreira A, Rapoport M. The synapsins: beyond the regulation of neurotransmitter release. Cell Mol Life Sci. 2002 Apr;59(4):589-95.
    
    19. Kushner SA, Elgersma Y, Murphy GG, Jaarsma D, van Woerden GM, Hojjati MR, Cui Y, LeBoutillier JC, Marrone DF, Choi ES, De Zeeuw CI, Petit TL, Pozzo-Miller L, Silva AJ. Modulation of presynaptic plasticity and learning by the H-ras/extracellular signal-regulated kinase/synapsin I signaling pathway. J Neurosci. 2005;25(42):9721-34.
    
    20. Chin LS, Li L, Ferreira A, Kosik KS, Greengard P. Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc Natl Acad Sci U S A. 1995;92(20):9230-4.
    
    21. Sousa N, Lukoyanov NY, Madeira MD, Almeida OFX, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neuritis and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 2000;97(2):253-266.
    
    22. Magarinos AM, Verdugo JM, McEwen BS. Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci U S A. 1997;94(25):14002-8.
    
    23. Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, Frasch AC. Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and anti depressant treatments. Biol Psychiatry. 2006;59(3):244-51.
    
    24. Miyakawa T, Yared E, Pak JH, Huang FL, Huang KP, Crawley JN. Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus. 2001; 11 (6):763-75.
    
    25. Wu J, Li J, Huang KP, Huang FL. Attenuation of protein kinase C and cAMP-dependent protein kinase signal transduction in the neurogranin knockout mouse. J Biol Chem. 2002;277(22): 19498-505.
    
    26. Wu J, Huang KP, Huang FL. Participation of NMDA-mediated phosphorylation and oxidation of neurogranin in the regulation of Ca2+- and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus. J Neurochem. 2003;86(6): 1524-33.
    
    27. Huang KP, Huang FL, Jager T, Li J, Reymann KG, Balschun D. Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. J Neurosci. 2004;24(47): 10660-9.
    
    28. Mons N, Enderlin V, Jaffard R, Higueret P. Selective age-related changes in the PKC-sensitive, calmodulin-binding protein, neurogranin, in the mouse brain. J Neurochem. 2001;79(4):859-67.
    
    
    29. Krazem A, Mons N, Higueret P, Jaffard R. Chronic ethanol consumption restores the age-related decrease in neurogranin mRNA level in the hippocampus of mice. Neurosci Lett. 2003;338(1):62-6.
    
    30. Plata-Salaman C, Turrin N. Cytokine interactions and cytokine balance in the brain: relevance to neurology and psychiatry. Mol Psychiatry. 1999;4(4):302-6.
    
    31. MacPherson A, Dinkel K, Sapolsky R. Glucocorticoids worsen excitotoxin-induced expression of pro-inflammatory cytokines in hippocampal cultures. Exp Neurol. 2005;194(2):376-83.
    
    32. Kim IJ, Beck HN, Lein PJ, Higgins D. Interferon gamma induces retrograde dendritic retraction and inhibits synapse formation. J Neurosci. 2002;22(11):4530-9.
    
    33. Brask J, Kristensson K, Hill RH. Exposure to interferon-gamma during synaptogenesis increases inhibitory activity after a latent period in cultured rat hippocampal neurons.Eur J Neurosci.2004;19(12):3193-201
    1. Chen YA, Scheller RH. SNARE-mediated membrane fusion.Nat Rev Mol Cell Biol. 2001; 2(2): 98-106.
    
    2. Chen YA, Scales SJ, Scheller RH. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron. 2001; 30(1): 161-70.
    
    3.Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, SudhofTC, Neher E, Verhage M. Munc 18-1 promotes large dense-core vesicle docking. Neuron. 2001; 31(4): 581-91.
    
    4. Yang B, Steegmaier M, Gonzalez LC Jr, Scheller RH. nSec1 binds a closed conformation of syntaxinl A. J Cell Biol. 2000; 148(2) 247-52.
    
    5. Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Sudhof TC. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science. 2000; 287(5454): 864-9.
    
    6. Leenders AG, Lopes da Silva FH, Ghijsen WE, VerhageM. Rab3a is involved in transport of synaptic vesicles to the active zone in mouse brain nerve terminals. Mol Biol Cell. 2001; 12(10): 3095-102.
    
    7. Martelli AM, Baldini G, Tabellini G, Koticha D, Bareggi R, Baldini G. Rab3A and Rab3D control the total granule number and the fraction of granules docked at the plasma membrane in PC 12 cells. Traffic. 2000; 1(12): 976-86.
    
    8. Ernst JA, Brunger AT. High resolution structure, stability, and synaptotagmin binding of a truncated neuronal SNARE complex. J Biol Chem. 2003; 278(10): 8630-6.
    
    9. Shin OH, Rhee JS, Tang J, Sugita S, Rosenmund C, SudhofTC. Sr2+ binding to the Ca2+ binding site of the synaptotagmin 1 C2B domain triggers fast exocytosis without stimulating SNARE interactions. Neuron. 2003; 37(1): 99-108.
    
    10. HauckeV, Wenk MR, Chapman ER, FarsadK, De Camilli P. Dual interaction of synaptotagmin with mu2-and alpha-adaptin facilitates clathrin-coated pit nucleation. EMBO J. 2000; 19(22): 6011-9.
    11. Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci. 2004; 27: 509-47.
    12. Morgan JR, Augustine GJ, Lafer EM. Synaptic vesicle endocytosis: the races, places, and molecular faces. Neuromolecular Med. 2002; 2(2): 101-14.
    13. Galli T, Haucke V. Teaching resources. Calcium-triggered exocytosis and clathrin-mediated endocytosis of synaptic vesicles. Sci STKE. 2005; 2005(267): tr1.
    14.成令忠,钟翠平,蔡文琴主编,现代组织学.上海:上海科学技术文献出版社,2003年5月
    15. de Bartolomeis A, Fiore Go Postsynaptic density scaffolding proteins at excitatory synapse and disorders of synaptic plasticity: implications for human behavior pathologies. Int Rev Neurobiol. 2004; 59: 221-54.
    16. Baron MK, Boeckers TM, Vaida B, Faham S, Gingery M, Sawaya MR, Salyer D, Gundelfinger ED, Bowie JU. An architectural framework that may lie at the core of the postsynaptic density. Science. 2006; 311(5760): 531-5.
    17. Rumbaugh G, Adams JP, Kim JH, Huganir RL. Inaugural Article: SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc Natl Acad Sci U S A. 2006; 103(12): 4344-51.
    18. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. CurrOpinNeurobiol. 2004; 14(3): 311-7.
    19. Petersen JD, Chen X, Vinade L, Dosemeci A, Lisman JE, Reese TS. Distribution ofpostsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase Ⅱ at the PSD. J Neurosci. 2003; 23(35): 11270-8.
    20. Colbran RJ, Brown AM. Calcium/calmodulin-dependent protein kinase Ⅱ and synaptic plasticity. Curr Opin Neurobiol. 2004; 14(3): 318-27.
    21. Robison AJ, Bass MA, Jiao Y, MacMillan LB, Carmody LC, Bartlett RK, Colbran RJ. Multivalent interactions of calcium/calmodulin-dependent protein kinase Ⅱ with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2. J Biol Chem. 2005; 280(42): 35329-36.
    22. Colbran RJ. Targeting of calcium/calmodulin-dependent protein kinase II. Biochem J.2004; 378(Pt1): 1-16.
    23.Ouyang Y, Rosenstein A, Kreiman G, Schuman EM, Kennedy MB. Tetanic stimulation leads to increased accumulation of Ca(2+)/calmodulin-dependent protein kinase II via dendritic protein synthesis in hippocampal neurons. J Neurosci. 1999; 19(18): 7823-33.
    24. Giovannini MG, Blitzer RD, Wong T, Asoma K, Tsokas P, Morrison JH, Iyengar R, Landau EM. Mitogen-activated protein kinase regulates early phosphorylation and delayed expression of Ca2+/calmodulin-dependent protein kinase II in long-term potentiation. J Neurosci. 2001; 21(18): 7053-62.
    25.Thiagarajan TC, Piedras-Renteria ES, Tsien RW. alpha-and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron. 2002; 36(6): 1103-14.
    
    26. Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003; 6(3): 231-42. Erratum in: Nat Neurosci. 2006; 9(3): 453.
    
    27. Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 2002; 25(11): 578-88.
    
    28. PoncerJC, EstebanJA, MalinowR. Multiple mechanisms for the potentiation of AMPA receptor-mediated transmission by alpha-Ca2+/calmodulin-dependent protein kinase II. J Neurosci. 2002; 22(11): 4406-11.
    
    29. Jourdain P, Fukunaga K, Muller D. Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J Neurosci. 2003; 23(33): 10645-9.
    
    30. Pearson G, Robinson F, Beers Gibson T, Xu BE, KarandikarM, BermanK, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001; 22(2): 153-83.
    
    31. English JD, Sweatt JD. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem. 1997; 272(31): 19103-6.
    
    32. Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci. 2004; 5(3): 173-83.
    
    33. Blum S, Moore AN, Adams F, Dash PK. A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. J Neurosci. 1999; 19(9): 3535-44.
    
    34. Selcher JC, Atkins CM, Trzaskos JM, Paylor R, Sweatt JD. A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem. 1999; 6(5): 478-90.
    
    35. Zhu JJ, Qin Y, Zhao M, Van Aelst L , Malinow R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell. 2002; 110(4): 443-55.
    
    36. Wu GY, Deisseroth K, Tsien RW. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat Neurosci. 2001; 4(2): 151-8.
    
    37. Davis S, Vanhoutte P, Pages C, Caboche J, Laroche S. The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci. 2000; 20(12): 4563-72.
    
    38. WuGY, DeisserothK, TsienRW. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 2001; 98(5): 2808-13.
    
    39. DeakM, Clifton AD, Lucocq LM, Alessi DR. Mitogen-and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBOJ. 1998; 17(15): 4426-41.
    
    40. Bolshakov VY, Carboni L, Cobb MH, Siegelbaum SA, Belardetti F. Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses. Nat Neurosci. 2000; 3(11): 1107-12.
    
    41. Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol. 2003; 71(6): 401-37.
    
    42. Colledge M, Dean RA, Scott GK, Langeberg LK, Huganir RL, Scott JD. Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron. 2000; 27(1): 107-19.
    
    43.Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD. Regulation of NMD A receptors by an associated phosphatase-kinase signaling complex. Science. 1999; 285(5424): 93-6.
    
    44. Bozdagi O, Shan W, Tanaka H, Benson DL, HuntleyGW. Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron. 2000; 28(1): 245-59.
    
    45. Skeberdis VA, Chevaleyre V, Lau CG, Goldberg JH, Pettit DL, Suadicani SO, Lin Y, Bennett MV, Yuste R, Castillo PE, Zukin RS. Protein kinase A regulates calcium permeability of NMD A receptors. Nat Neurosci. 2006; 9(4): 501-510.
    
    46. Duffy SN, Craddock KJ, Abel T, Nguyen PV. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn Mem. 2001; 8(1): 26-34.
    
    47. Karege F, Lambercy C, Schwald M, Steimer T, Cisse M. Differential changes of cAMP-dependent protein kinase activity and 3H-cAMP binding sites in rat hippocampus during maturation and aging. Neurosci Lett. 2001; 315(1-2): 89-92.
    
    48. Karege F, Schwald M, Lambercy C, Murama JJ, Cisse M, Malafosse A. A non-radioactive assay for the cAMP-dependent protein kinase activity in rat brain homogenates and age-related changes in hippocampus and cortex. Brain Res. 2001; 903(1-2): 86-93.
    
    49. Stanton PK, HeinemarmU, MullerW. FM1-43 imaging reveals cGMP-dependent long-term depression of presynaptic transmitter release. J Neurosci. 2001; 21(19): RC167.
    50. Huang L, Killbride J, Rowan MJ, Anwyl R. Activation of mGluRII induces LTD via activation of protein kinase A and protein kinase C in the dentate gyrus of the hippocampus in vitro. Neuropharmacology. 1999; 38(1): 73-83.
    
    51. Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron. 2002; 35(4): 605-23.
    
    52. Kohara K, Ogura A, Akagawa K, Yamaguchi K. Increase in number of functional release sites by cyclic AMP-dependent protein kinase in cultured neurons isolated from hippocampal dentate gyrus. Neurosci Res. 2001; 41(1): 79-88.
    
    53. Blitzer RD, Iyengar R, Landau EM. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity. Biol Psychiatry. 2005: 57(2): 113-9.
    
    54. Petersen JD, Chen X, VinadeL, Dosemeci A, LismanJE, Reese TS. Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J Neurosci. 2003; 23(35): 11270-8.
    
    55. Chung HJ, Huang YH, LauLF, HuganirRL. Regulation of the NMD A receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZligand. J Neurosci. 2004; 24(45): 10248-59.
    
    56. Roche KW, StandleyS, McCallumJ, Dune LyC, EhlersMD, Wenthold RJ. Molecular determinants of NMDA receptor internalization. Nat Neurosci. 2001 : 4(8): 794-802.
    
    57. Jugloff DG, Khanna R, Schlichter LC, Jones OT. Internalization of the Kv 1.4 potassium channel is suppressed by clustering interactions with PSD-95. J Biol Chem. 2000; 275(2): 1357-64.
    
    58.Hu LA, Tang Y, Miller WE, Cong M , LauAG, LefkowitzRJ, Hall RA. beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J Biol Chem. 2000; 275(49): 38659-66.
    
    59. Dean C, Scholl FG, ChoihJ, DeMaria S, Berger J, IsacoffE, Scheiffele P. Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci. 2003; 6(7): 708-16.
    
    60. Li Z, Sheng M. Some assembly required: the development of neuronal synapses. Nat Rev Mol Cell Biol. 2003; 4(11): 833-41.
    
    61. Nehring RB, Wischmeyer E, Doring F, Veh RW, Sheng M, Karschin A. Neuronal inwardly rectifying K(+) channels differentially couple to PDZ proteins of the PSD-95/SAP90 family. J Neurosci. 2000; 20(1): 156-62.
    
    62.AartsM, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, Tymianski M. Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science. 2002; 298(5594): 846-50.
    
    63. Oh JS, Manzerra P, Kennedy MB. Regulation of the neuron-specific Ras GTPase-activating protein, synGAP, by Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2004; 279(17): 17980-8.
    
    64. Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, Strathdee DJ, O'Carroll CM, Martin SJ, Morris RG, O'Dell TJ, Grant SG. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci. 2002; 22(22): 9721-32.
    
    65. Tavalin SJ, Colledge M, Hell JW, Langeberg LK, Huganir RL, Scott JD. Regulation of GluRl by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J Neurosci. 2002; 22(8): 3044-51.
    
    66. Kalia LV, Salter MW. Interactions between Src family protein tyrosine kinases and PSD-95. Neuropharmacology. 2003; 45(6): 720-8.
    
    67. Penzes P, Beeser A, ChernoffJ, Schiller MR, Eipper BA, Mains RE, Huganir RL. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron. 2003; 37(2): 263-74.
    
    68. Ehrlich I, Malinow R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity. J Neurosci. 2004; 24(4): 916-27.
    69. Stein V, House DR, Bredt DS, Nicoll RA. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J Neurosci. 2003; 23(13): 5503-6.
    
    70.Tao YX, Rumbaugh G, Wang GD, Petralia RS, Zhao C, Kauer FW, Tao F, Zhuo M, Wenthold RJ, Raja SN, Huganir RL, Bredt DS, Johns RA. Impaired NMDA receptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J Neurosci. 2003; 23(17): 6703-12.
    
    71. Parker MJ, Zhao S, Bredt DS, Sanes JR, Feng G. PSD93 regulates synaptic stability at neuronal cholinergic synapses. J Neurosci. 2004; 24(2): 378-88.
    
    72. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci. 2004; 5(10): 771-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700