斜纹夜蛾对茚虫威的抗性选育及抗性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜纹夜蛾Spodoptera litura (Fabricius)是一种世界性分布的重要农业害虫,大量农药的频繁使用,使得斜纹夜蛾抗药性问题日益突出。新型杀虫剂茚虫威具有独特的作用机制、卓越的杀虫活性和对非靶标生物低毒的特点,是目前替代有机磷和拟除虫菊酯类杀虫剂的理想品种。本文以斜纹夜蛾为材料,对茚虫威亚致死效应、交互抗性和抗性机制等有关毒理学问题进行了研究和探讨。
     通过浸叶法对斜纹夜蛾的生物测定表明,与溴虫腈和氟虫腈这两种常用药剂相比,茚虫威对斜纹夜蛾三龄幼虫具有更高的生物活性。对几种常用生物测定方法的比较研究发现,通过浸虫法测定的茚虫威毒力最低,而浸叶法、人工饲料混毒法与人工饲料浸毒法的结果相似,表明茚虫威对斜纹夜蛾以胃毒作用为主。
     根据生物测定结果,用对应LC15、LC10和LC5浓度的茚虫威处理斜纹夜蛾三龄幼虫,发现与对照相比,茚虫威处理斜纹夜蛾化蛹率、羽化率和孵化率均明显下降,并且经LC15浓度处理后,成虫寿命以及单雌产卵量皆显著低于对照,表明亚致死浓度茚虫威对斜纹夜蛾当代和下一代的种群增长有一定的抑制作用。研究还发现,亚致死浓度茚虫威处理斜纹夜蛾三龄幼虫后,斜纹夜蛾酯酶和谷胱甘肽-S-转移酶以及多功能氧化酶O-脱甲基活性与对照相比无显著差异,表明亚致死浓度茚虫威对这三种解毒酶活性没有影响。
     经过10代6次室内抗性选育,获得了斜纹夜蛾对茚虫威抗性品系,与选育前相比,斜纹夜蛾对茚虫威敏感性降低15.57倍。抗性风险评估表明,斜纹夜蛾具有对茚虫威产生高水平抗性的风险。对斜纹夜蛾抗茚虫威品系的适合度研究表明,与敏感品系相比,抗性品系在生长发育和繁殖上具有不利性,抗性品系的相对适合度仅为敏感品系的0.73。交互抗性测定发现,与相对敏感品系相比,茚虫威抗性斜纹夜蛾品系对辛硫磷、高效氯氰菊酯和氟虫腈LC50值分别是敏感品系的1.53、2.42和1.52倍,对溴虫腈和灭多威LC50值分别是敏感品系的0.78和0.96倍,表明茚虫威抗性斜纹夜蛾品系对这几种杀虫剂没有产生明显的交互抗性。
     对茚虫威抗性和相对敏感品系斜纹夜蛾三龄幼虫解毒酶的活性测定发现,与相对敏感品系相比,抗性品系酯酶活性提高了2.27倍,但谷胱甘肽-S-转移酶和多功能氧化酶O-脱甲基活性与对照相比无显著差异。进一步对抗性选育期间各代斜纹夜蛾三龄幼虫酯酶活性的测定结果发现,随着抗性指数的上升,酯酶活性逐渐提高,表明斜纹夜蛾对茚虫威的抗性与酯酶相关。
     利用聚合酶链式反应(PCR),通过特异性上游引物和下游引物分别从相对敏感和抗性斜纹夜蛾品系基因组DNA中扩增出了位于钠离子通道基因IIS5-IIS6的341bp DNA片段。序列分析结果表明,与相对敏感品系相比,茚虫威抗性品系斜纹夜蛾钠离子通道基因没有发生突变。
     害虫抗药性是害虫综合治理中最重要的问题之一,而明确害虫抗药性机制则是害虫抗药性治理的基础。本研究表明,斜纹夜蛾具有对茚虫威产生高水平抗性的风险,并且在国内外首次发现斜纹夜蛾对茚虫威的抗性与酯酶相关,这对制定斜纹夜蛾抗性治理策略、延长茚虫威使用寿命以及更好地发挥茚虫威在害虫可持续治理中的作用具有重要的理论意义和实践价值。
The common cutworm, Spodoptera litura (Fabricius), was a worldwide distributed agricultural pest. Frequent application of chemical insecticides against Spodoptera litura had led to the development of pesticide resistance. Indoxacarb was a novel insecticide belonging to the oxadiazine class with unique action mechanism, excellent insecticidal activity and low toxicity to nontarget organisms, it was therefore an ideal candidate to substitute organophosphate and pyrethroid insecticides. In this paper, the toxicological characteristics of indoxacarb against Spodoptera litura had been studied, including sublethal effects, cross-resistance and resistance mechanisms.
     Toxicity of insecticides including indoxacarb against Spodoptera litura were tested at the laboratory using leaf dipping method, and the indoxacarb showed the highest insecticidal activity when compared with chlorfennapyr and fipronil, which were commonly used in the control of Spodoptera litura at present. Furthermore, indoxacarb showed lower insecticidal activity when exposed to Spodoptera litura by larvae dipping method, while similar toxicity against Spodoptera litura was found using leaf dipping, artificial diet incorporation and artificial diet dipping methods, suggesting that indoxacarb is more effective as a stomach poison than as a contact insecticide.
     Based on the bioassay results, 3rd instar larvae of Spodoptera litura were treated with indoxacarb at concentrations corresponding to LC15、LC10 and LC5 by artificial diet dipping methods. Lower pupation rate, eclosion rate and egg hatchability were observed when compared with control, and adult longevity and eggs laid per female decreased significantly when exposed to indoxacarb at LC15 concentrations. These results indicated that indoxacarb at sublethal concentrations had a negative effect on population development of Spodoptera litura. Furthermore, the activities of esterase ( EST) , glutathione S-transferase ( GST) and mixed function oxidase ( MFO) were compared between indoxacarb treated larvae and control, and no significant difference was observed, suggested that indoxacarb at sublethal concentrations had no obvious effect on activities of these three detoxification enzymes.
     After selection with indoxacarb 6 times during 10 generations, a resistant strain of S. litura was achieved with resistance ratio of 15.57 compared with unselected parent strain, suggesting that S. litura had high capability of developing resistance to indoxacarb, as was confirmed by resistance risk assessment. Developmental and reproductive disadvantages in resistant strain were observed when compared with susceptible strain, and the resistant strain exhibited a fitness value of 0.73 relative to the susceptible strain. Bioassay showed that the LC50 values of phoxim, betacypermethrin, fipronil were 1.53, 2.42 and 1.52 folds higher in resistant strain than that in susceptible stain, respectively, while the LC50 values of chlorfennapyr and methomyl were 0.78 and 0.96 folds lower in resistant strain than that in susceptible strain, suggesting that indoxacarb-resistant Spodoptera litura had little cross-resistance to these tested insecticides.
     The activities of detoxification enzymes were analyzed in both resistant and susceptible strains. The results showed that the activity of esterase increased by 2.27-fold compared with the susceptible strain, while the activities of mixed function oxidase and glutathione S-transferase had no significant difference. Furthermore, positive correlation was observed between esterase activity in 3rd larvae of every selected generation and resistance factor. These results suggested that the esterase played an important role in the resistance development of Spodoptera litura to indoxacarb.
     DNA fragments of 341 bp in length in the IIS5–IIS6 region of sodium channel para-orthologous gene in both resistant and susceptible strain were amplified with a pair of specific forward primer and reverse primer by using PCR method. The result showed that there was no sodium channel mutation in the resistant strain compared with the susceptible strain.
     The pest resistance was one of the most important problems in integrated pest management (IPM), and understanding the resistance mechanisms was the basis of insect resistance management (IRM). The present study showed that S. litura had high capability of developing resistance to indoxacarb, and esterase played an important role in the resistance development of Spodoptera litura to indoxacarb. These results will be helpful in establishing the scientific resistance management strategies, prolonging the lifetime of indoxacarb, and making full use of indoxacarb in sustainable pests management.
引文
[1] Etman A M, Hooper G H S. Developmental and reproductive biology of Spodoptera litura F. (Lepidoptera: Noctuidae). Aust. Entomol. Soc., 1979, 18: 363-372.
    [2] Matsuura H, Naito A. Studies on the cold-hardiness and overwintering of Spodoptera litura F. (Lepidoptera: Noctuidae): VI Possible overwintering areas predicted from meteorological data in Japan. Appl. Entomol. Zool., 1997, 32: 167-177.
    [3]仵均祥,沈宝成,何成毅.1996年西安市草坪斜纹夜蛾大发生原因初探.植物保护,998(5): 31-32.
    [4]施文,姚卫平,刘道贵,等.沿江江南斜纹夜蛾暴发原因分析及防治对策.安徽农学通报,2003,9(6): 106-107.
    [5]张惠琴,俞爱英,陈冬莲,等.2003年仙居县斜纹夜蛾大发生.植保技术导刊,2004,24(2):45.
    [6] Kranthi K R, Jadhav D R, Wanjari R R, et a1. Russell D A, Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bull. Entomol. Res., 2001, 91: 37-46.
    [7] Kranthi K R, Jadhav D R, S. Kranthi, et a1. Insecticide resistance in five major insect pests of cotton in India. Crop Prot., 2002, 21: 449-460.
    [8] Murugesan K, Dhingra S. Variability in resistance pattern of various groups of insecticides evaluated against Spodoptera litura (Fabricius) during a period spanning over three decades. J. Entomol. Res., 1995, 19: 313-319.
    [9] Ahmad Mushtaq, Iqbal Arif M, Ahmad Munir. Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Prot., 2007, 26: 809–817.
    [10]吴世昌,顾言真,王冬生.斜纹夜蛾的抗药性及其防治.上海农业学报,1995,11(2):39-45.
    [11] Armes N J, Wightman J A, Jadhav D R, et a1. Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pestic. Sci., 1997, 50: 240-248.
    [12] Huang S, Xu J, Han Z. Baseline toxicity data of insectieides against the cotton cutworm Spodoptera litura (Fabricius) and a comparison of resistance monitoring methods. Int. J.Pest. Manag., 2006, 52(3): 209-213.
    [13] Ranakrishnan N, Saxena V S, Dhingra S. Insecticide resistance in the population of Spodoptera litura (Fab.) in Andhra Pradesh. Pesticides, 1984 18: 23–27.
    [14] Ahmad M, Sayyed A H, Crickmore N, et a1. Genetics and mechanism of resistance to deltamethrin in a field population of Spodoptera litura (Lepidoptera: Noctuidae). Pest Manag. Sci., 2007, 63: 1002-1010.
    [15]黄水金,李伟红,江金林.南昌地区斜纹夜蛾种群的抗性水平及与两种解毒酶的关系.江西农业学报,2007,19(4):53-55.
    [16] Sayyed A H, Ahmad M, Saleem M A. Cross-Resistance and Genetics of Resistance to Indoxacarb in Spodoptera litura (Lepidoptera: Noctuidae). Insectic. J. Econ. Entomol., 2008, 101 (2): 472-479.
    [17]唐振华.昆虫抗药性.北京:农业出版社,1993,302-335.
    [18] Ahmad M, McCaffery A R. Penetration and metabolism of transcypermethrin in a susceptible and a pyrethroid-resistant strain of Helicoverpa armigera. Pestic. Biochem. Physiol., 1999, 65: 6–14.
    [19] Yu S J, Nguren S N. Insecticide susceptibility and detoxication enzyme activities in permethrin-selected diamondback moths. Pestic. Biochem. Physiol., 1996, 56: 69–77.
    [20] Soderlund D M, Knipple D C. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol., 2003, 33: 563–577.
    [21] Williamson M, Martinez-Torres D, Hick C A, et a1. Identification of mutations in the house fly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet., 1996, 252: 51–60.
    [22] Ffrench-Constant R H, Steichen J C, Rocheleau T A, et a1. A single-amino acid substitution in aγ-aminobutyric acid subtype a receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations. Proc. Natl. Acad. Sci. USA, 1993, 90: 1957–1961.
    [23] Mutero A, Pralavorio M, Bride J M, et a1. Resistance associated point mutation in insecticide-insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA, 1994, 91: 5922-5926.
    [24] Li F, Han Z. Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. Insect Biochem. Mol. Biol., 2004, 34: 397–405.
    [25] Enayati A A, Ranson H, Hemingway J. Insect glutathione transferases and insecticideresistance. Insect Mol. Biol., 2005, 14: 3–8.
    [26] Scott J G. Cytochromes P450 and insecticide resistance. Insect Biochem. Mol. Biol., 1999, 29: 757–777.
    [27] Hemingway J, Karunaratne S.H. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med. Vet. Entomol., 1998, 12:1–12.
    [28] Ishaaya I. Insect detoxifying enzymes: their importance in pesticide synergism and resistance. Arch. Insect Biochem. Physiol., 1993, 22: 263–276.
    [29] Kim Y G, Cho J R, Lee J N, et a1. Insecticide resistance in the tobacco cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). J. Asia Pacific. Entomol., 1998, 1: 115–122.
    [30] Cho J R, Kim Y J, Kim J J, et a1. Electrophoretic pattern of larval esterases in field and laboratory selected strains of the tobacco cutworm, Spodoptera litura (Fabricius). J. Asia Pacific. Entomol., 1999, 2: 39–44.
    [31] Huang S, Han Z. Mechanisms for multiple resistances in field populations of common cutworm, Spodoptera litura (Fabricius) in China. Pestic. Biochem. Physiol., 2007, 87: 14–22.
    [32] Wing K D, Sacher M, Kagaya Y, et al. Bioactivation and mode of action of the oxadiazine indoxacarb in insects. Crop Prot., 2000, 19: 537–45.
    [33]刘长令.新型高效杀虫剂茚虫威.农药,2003,42(2):42-44.
    [34]丁宁,孟庆伟,赵伟杰,等.噁二嗪类杀虫剂茚虫威的研究进展.农药学学报,2005,7(2):97-103.
    [35]张纯胄,林定鹏,王诚,等.“安打”对小菜蛾、斜纹夜蛾的毒力及药效试验.华东昆虫学报,2003,12(1):101-104.
    [36] Wing K D, Schnee M E, Sacher M, et a1. A novel oxadiazine insecticide is bioactivated in lepidopteran larvae. Arch. Insect Biochem. Physiol., 1998, 37: 91–103.
    [37] Silver K S, Soderlund D M. Action of pyrazoline-type insecticides at neuronal target. Pestic. Biochem. Physiol., 2005, 81: 136-143.
    [38] Zhao X, Nagata K, Marszalec W, et a1. Effects of the oxadiazine insectide indoxacarb, DPXMP062, on neuronal nicotinic acetylcholine receptors in mammalian neurons. Neurotoxicology, 1999, 20: 561-570.
    [39] Zhao X, Ikeda T, Yeh J Z, et a1. Voltage dependent block of sodium channels in mammalian neurons by the oxadiazine insecticide indoxacarb and its metabolite DCJW. Neurotoxicology, 2002, 24: 83-96.
    [40] Tsurubuchi Y, Kono Y. Modulation of sodium channels by the oxadiazine insecticide indoxacarb and its N-decarbomethoxylated metabolite in rat dorsal root ganglion neurons. Pest Manag. Sci., 2003, 59: 999–1006.
    [41] Silver K S, Soderlund D M. Differential sensitivity of rat voltage-sensitive sodium channel isoforms to pyrazoline-type insecticides. Toxicol. Appl. Pharmacol., 2006,214: 209-217.
    [42] Lapied B, Grolleau F, Sattelle D B. Indoxacarb, an oxadiazine insecticide, blocks insect neuronal sodium channels. Br. J. Pharmacol., 2001, 132: 587–595.
    [43] Zhao X, Ikeda T, Salgado V L, et al. Block of two subtypes of sodium channels in cockroach neurons by indoxacarb insecticides. Neurotoxicology, 2005, 26: 455–465.
    [44] Song W, Liu Z, Dong K. Molecular basis of differential sensitivity of insect sodium channels to DCJW, a bioactive metabolite of the oxadiazine insecticide indoxacarb. Neurotoxicol, 2006, 27: 237-244.
    [45] Zhao J Z, Collins H L, Li Y X, et al. Monitoring of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad, indoxacarb, and emamectin benzoate. J. Econ. Entomol., 2006,99: 176-181
    [46] Shono T, Zhang L, Scott J G. Indoxacarb resistance in the house fly, Musca domestica. Pestic. Biochem. Physiol., 2004, 80: 106-112.
    [47] Sayyed A H, Wright D J. Genetics and evidence for an esterase-associated mechanism of resistance to indoxacarb in a field population of diamondback moth (Lepidoptera: Plutellidae). Pest Manag. Sci., 2006, 62: 1045-1051.
    [48] Yu S J, McCord E Jr. Lack of cross-resistance to indoxacarb in insecticide-resistant Spodoptera frugiperda (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Yponomeutidae). Pest Manag. Sci., 2007, 63: 63-67.
    [49] Cestele S, Catterall W A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochem., 2000, 82: 883–892.
    [50] Wang S Y, Wang G K. Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. Cell Signal., 2003, 15: 151–159.
    [51] Narahashi T. Molecular and cellular approaches to neurotoxicology: past, present and future.In: Lunt GG (ed) Neurotox 88: molecular basis of drug and pesticide action. Elsevier, New York, 1988, pp, 563–582.
    [52] Wing K D, Andaloro JT, McCann S F, et a1. Indoxacarb and the sodium channel blocker insecticides: chemistry, physiology and biology in insects. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive insect science. Insect control, vol 6. Elsevier B.V., Amsterdam, 2005, pp, 30–53.
    [53] O'Reilly A O, Khambay B P, Williamson M S, et a1. Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochem. J., 2006, 396(2): 255-263.
    [54] Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 2000, 26: 13–25.
    [55] Yu F H, Catterall W A. Overview of the voltage-gated sodium channel family. Genome Biol., 2003, 4: 2071–2077.
    [56] Goldin A L. Resurgence of sodium channel research. Annu. Rev. Physiol., 2001, 63: 871–894.
    [57] Goldin A L. Mechanisms of sodium channel inactivation. Curr. Opin. Neurobiol., 2003, 13: 284–290.
    [58] Goldin A L, Barchi R L, Caldwell J H, et a1. Nomenclature of voltage-gated sodium channels. Neuron, 2000, 28: 365–368.
    [59] Catterall W A, Goldin A L, Waxman S G. International Union of Pharmacology. XXXIX Compendium of voltage-gated ion channels: sodium channels. Pharmacol. Rev., 2003, 55: 575–578.
    [60] Goldin A L. Diversity of mammalian voltage-gated sodium channels. Ann. NY. Acad. Sci., 1999, 868: 38–50.
    [61] Dib-Hajj S D, Black J A, Cummins T R, et a1. NaN/Nav1.9: a sodium channel with unique properties. Trends. Neurosci., 2002, 25: 253–259.
    [62] Salkoff L, Butler A, Wei A, et a1. Genomic organization and deduced amino acid sequence of a putative sodium channel gene in Drosophila. Science, 1987, 237: 744–748.
    [63] Liu Z, Chung I, Dong K. Alternative splicing of the BSC1 gene generates tissue-specific isoforms in the German cockroach. Insect Biochem. Mol. Biol., 2001, 31: 703–713.
    [64] Littleton J T, Ganetzky B. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron, 2000, 26: 35–43.
    [65] Zhou W, Chung I, Liu Z, et a1. A voltage-gated calcium-selected channel encoded by a sodium channel-like gene. Neuron, 2004, 42: 101–112.
    [66] Kulkarni N H, Yamamoto A H, Robinson K O, et a1. The DSC1 channel, encoded by the smi60E locus, contributes to odor-guided behavior in Drosophila melanogaster. Genetics, 2002, 161: 1507–1516.
    [67] Loughney K, Kreber R, Ganetzky B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell, 1989, 58: 1143–1154.
    [68] Feng G, Deak P, Chopra M, et a1. Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell, 1995, 82: 1001–1011.
    [69] Warmke J W, Reenan R A G, Wang P, et a1. Functional expression of Drosophila para sodium channels: Modulation by the membrane protein tipE and toxin Pharmacology. J. Gen. Physiol., 1997, 110: 119–133.
    [70] Soderlund DM, Knipple DC. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem. Mol. Biol., 2003, 33: 563–577.
    [71] Ingles P J, Adams P M, Knipple D C, et a1. Characterization of voltage-sensitive sodium channel gene coding sequences from insecticides-susceptible and knockdown-resistant house fly strains. Insect Biochem. Mol. Biol., 1996, 26: 319–326.
    [72] Dong K. A single amino acid change in the Para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochem. Mol. Biol., 1997, 27: 93–100.
    [73] Wang R, Huang Z Y, Dong K. Molecular characterizationof an arachnid sodium channel gene from the varroa mite (Varroa destructor). Insect Biochem. Mol. Biol., 2003, 33: 733–739.
    [74] Tan J, Liu Z, Nomura Y, et a1. Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J. Neurosci., 2002, 22: 5300–5309.
    [75] Song W, Liu Z, Tan J, et a1. RNA editing generates tissue-specific sodium channels with distinct gating properties. J. Biol. Chem., 2004, 279: 2554–2561.
    [76] Lee S H, Yoon K S, Williamson M S, et a1. Molecular analysis of kdr-like resistance in permethrin-resistant strains of head lice, Pediculus. capitis. Pestic. Biochem. Physiol., 2000, 66: 130–143.
    [77] Derst C, Walther C, Veh RW, et a1. Four novel sequences in Drosophila melanogaster homologous to the auxiliary Para sodium channel. Biochem. Biophys. Res. Commun., 2006, 339: 938–948.
    [78] Thackeray J R, Ganetzky B. Developmentally regulated alternative splicing generates a complex array of Drosophila para sodium channel isoforms. J. Neurosci., 1994, 14: 2569–2578.
    [79] Thackeray J R, Ganetzky B. Conserved alternative splicing patterns and splicing signals in the Drosophila sodium channel gene para. Genetics, 1995, 141: 203–214.
    [80] O’Dowd D K, Gee J R, Smith M A. Sodium current density correlates with expression of specific alternatively spliced sodium channel mRNAs in single neurons. J. Neurosci., 1995, 15: 4005–4012.
    [81] Lee S H, Ingles P J, Knipple D C, et a1. Developmental regulation of alternative exon usage in the house fly Vssc1 sodium channel gene. Invert. Neurosci., 2002, 4: 125–133.
    [82] Tan J, Liu Z, Tsai T D, et a1. Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin. Insect Biochem. Mol. Biol., 2002, 32: 445–454.
    [83] Plummer N W, McBurney M W, Meisler M H. Alternative splicing of the sodium channel SCN8A predicts a truncated two-domain protein in fetal brain and non-neuronal cells. J. Biol. Chem., 1997, 272: 24008–24015
    [84] Bass B L. RNA editing. Oxford University Press, Oxford, 2001.
    [85] Palladino M J, Keegan L P, O’Connell M A, et a1. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell, 2000, 102: 437–449.
    [86] Hanrahan C J, Palladino M J, Ganetzky B, et a1. RNA editing of the Drosophila para Na+ channel transcript: evolutionary conservation and developmental regulation. Genetics, 2000, 155:1149–1160.
    [87] Reenan R A, Nanrahan C J, Ganetzky B. The mle(napts) RNA helicase mutation in Drosophila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing. Neuron, 2000, 25: 139–149.
    [88] Liu Z, Song W, Dong K. Persistent tetrodotoxin-sensitive sodiumcurrent resulting from U-to-C RNA editing of an insect sodium channel. Proc. Natl. Acad. Sci. USA, 2004, 101:11862–11867.
    [89] Byerly L, Leung H. Ionic currents of Drosophila neurons in embryonic cultures. J. Neurosci., 1988, 8: 4379–4393.
    [90] Saito M, Wu C F. Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell division-arrested embryonic neuroblasts. J. Neurosci., 1991, 11: 2135–2150.
    [91] Saito M, Wu C F. Ionic channels in cultured Drosophila neurons. In: Pichon Y (ed) Comparative molecular neurobiology. Birkhauser Verlag, Basel, 1993, pp, 366–389.
    [92] Schafer S, Rosenboom H, Menzel R. Ionic currents of Kenyon cells from the mushroom body of the honeybee. J. Neurosci., 1994, 14: 4600–4612.
    [93] Le Corronc H, Hue B, Pitman R M. Ionic mechanisms underlying depolarizing response of an identified insect motor neuron to short periods of hypoxia. J. Neurophysiol., 1999,81: 307–318.
    [94] Lapied B, Malecot C O, Pelhate M. Patch-clamp study of the properties of the sodium current in cockroach single isolated adult aminergic neurons. J. Exp. Biol., 1990, 151: 387–404.
    [95] Wicher D, Walther C, Wicher C. Non-synaptic ion channels in insects—basic properties of currents and their modulation in neurons and skeletal muscles. Prog. Neurobiol., 2001, 64: 431–525.
    [96] Grolleau F, Lapied B. Dorsal unpaired median neurons in the insect central nervous system: towards a better understanding of the ionic mechanisms underlying spontaneous electrical activity. J. Exp. Biol., 2000, 203: 1633–1648.
    [97] Defaix A, Lapied B. Role of a novel maintained low voltage-activated inward current permeable to sodium and calcium in pacemaking of insect neurosecretory neurons. Invert. Neurosci., 2005, 5: 135–146.
    [98] Seeburg P H. RNA helicase participates in the editing game. Neuron, 2000, 25: 261–263.
    [99] Soderlund D M, Bloomquist J R. Molecular mechanisms of insecticide resistance. In: Roush RT, Tabashnik BE (eds) Pesticide resistance in arthropods. Chapman and Hall, New York, 1990, pp, 58–96.
    [100] Soderlund D. Sodium channels. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive insect science. Pharmacology, vol 5. Elsevier B.V., Amsterdam, 2005, pp, 1–24
    [101] Dong k. Insect sodium channels and insecticide resistance. Invert. Neurosci., 2007, 7: 17–30.
    [102] Williamson M S, Martinez-Torres D, Hick C A, et a1. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol. Gen. Genet., 1996, 252:51–60.
    [103] Miyazaki M, Ohyama K, Dunlap D Y, et a1. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol. Gen. Genet., 1996, 252:61–68.
    [104] Dong K, Valles S M, Scharf M E, et a1. The knockdown resistance (kdr) mutation in pyrethroid resistant German cockroaches. Pestic. Biochem. Physiol., 1998, 60:195–204.
    [105] Schuler T H, Martinez-Torres D, Thompson A J, et a1. Toxicological, electrophysiological and molecular characterization of knockdown resistance to pyrethroid insecticides in the diamond-back moth, Plutella xylostella (L.). Pestic. Biochem. Physiol., 1998, l59: 169–182.
    [106] Martinez-Torres D, Foster S P, Field L M, et a1. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Mol. Biol., 1999, 8:339–346.
    [107] Martinez-Torres D, Chandre F, Williamson MS, et a1. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s. s. Insect Mol. Bio., 1998, 7:179–184.
    [108] Ranson H, Jensen B. Vulule J M, et a1. Identification of a point mutation in the voltagegated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol. Biol., 2000, 9: 491–497.
    [109] Martinez-Torres D, Chevillon C, Brun-Barale A, et a1. Voltage-dependent Na+ channels in pyrethroid resistant Culex pipiens L mosquitoes. Pest Sci., 1999, 55:1012–1020.
    [110] Xu Q, Liu H, Zhang L, et a1. Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance. Pest Manag. Sci., 2005, 61: 1096–1102.
    [111] Guerrero F D, Jamroz R C, Kammlah D, et a1. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: identification of kdr and super-kdr point mutations. Insect Biochem. Mol. Biol., 1997, 27: 745–755.
    [112] Lee S H, Dunn J B, Clark J M, et a1. Molecular analysis of kdr-like resistance in a permethrin-resistant strain of Colorado potato beetle. Pestic. Biochem. Physiol., 1999, 63:63–75.
    [113] Forcioli D, Frey D, Frey J E. High nucleotide diversity in the para-like voltage-sensitive sodium channel gene sequence in the western flower thrips (Thysanoptera: Thripidae). J. Econ. Entomol., 2002, 95: 838–848.
    [114] Brun-Barale A, Bouvier J C, Pauron D, et a1. Involvement of a sodium channel mutation in pyrethroid resistance in Cydia pomonella L, and development of a diagnostic test. Pest Manag. Sci., 2005, 61: 549–554.
    [115] Bass C, Schroeder I, Turberg A, et a1. Identification of mutations associated with pyrethroid resistance in the para-type sodium channel of the cat flea, Ctenocephalides felis. Insect Biochem. Mol. Biol., 2004, 34: 1305–1313.
    [116] Park Y, Taylor M F. A novel mutation L1029H in sodium channel hscp associated with pyrethroid resistance form Heliothis virescens (Lepidoptera: Noctuidae). Insect Biochem. Mol. Biol., 1997, 27: 9–13
    [117] Smith R D, Goldin A L. Phosphorylation at a single site in the rat brain sodium channel is necessary and sufficient for current reduction by protein kinase A. J. Neurosci., 1997, 17: 6086–6093.
    [118] Zhao Y, Park Y, Adams M E. Functional and evolutionary consequences of pyrethroid resistance mutations in S6 transmembrane segments of a voltage-gated sodium channel. Biochem. Biophys. Res. Commun., 2000, 278: 516–521.
    [119] Vais H, Williamson M S, Goodson S J, et a1. Activation of Drosophila sodium channels promotes modification by deltamethrin: reductions in affinity caused by knock-down resistance mutations. J. Gen. Physiol., 2000, 115: 305–318.
    [120] Liu Z, Tan J, Valles S M, et a1. Synergistic interaction between two cockroach sodium channel mutations and a tobacco budworm sodium channel mutation in reducing channel sensitivity to a pyrethroid insecticide. Insect Biochem. Mol. Biol., 2002, 32: 397–404.
    [121] Miyazaki M, Ohyama K, Dunlap D Y, et a1. Cloning and sequencing of the para-type sodium channel gene from susceptible and kdr-resistant German cockroaches (Blattella germanica) and house fly (Musca domestica). Mol. Gen. Genet., 1996, 252: 61–68.
    [122] Lee S H, Smith T J, Knipple D C, et a1. Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes. Insect Biochem. Mol. Biol., 1999, 29:185–194.
    [123] Vais H, Williamson M S, Devonshire A L, et a1. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Manag. Sci., 2001, 57: 877–888.
    [124] Liu Z, Valles S M, Dong K. Novel point mutations in the German cockroach para sodium channel gene are associated with knockdown resistance (kdr) to pyrethroid insecticides. Insect Biochem. Mol. Biol., 2000, 30: 991–997.
    [125] Lee S H, Gao J R, Yoon K S, et a1. Sodium channel mutations associated with knockdown resistance in the human head louse, Pediculus capitis (De Geer). Pestic. Biochem. Physiol., 2003, 75: 79–91.
    [126] Tomita T, Yaguchi N, Mihara M, et a1. Molecular analysis of a para sodium channel gene from pyrethroid-resistant head lice, Pediculus humanus capitis (Anoplura: Pediculidae). J. Med. Entomol., 2003, 40: 468–474.
    [127] Yoon K S. Detection and mechanism of pediculicide resistance in the human head louse, Pediculus capitis. PhD Thesis. University of Massachusetts, 2006, pp, 134–137.
    [128] Park Y, Taylor M F, Feyereisen R. A valine421 to methionine mutation in IS6 of the hscp voltage-gated sodium channel associated with pyrethroid resistance in Heliothis virescens. Biochem. Biophys. Res. Commun., 1997, 239: 688–691.
    [129] Lee S H, Soderlund D M. The V410M mutation associated with pyrethroid resistance in Heliothis virescens reduces the pyrethroid sensitivity of housefly sodium channels expressed in Xenopus oocytes. Insect Biochem. Mol. Biol., 2001, 31: 19–29.
    [130] He H, Chen A C, Davey R B, et a1. Identification of a point mutation in the para-type sodium channel gene from a pyrethroid-resistant cattle tick. Biochem. Biophys. Res. Commun., 1999, 261: 558–561.
    [131] Tan J, Liu Z, Wang R, et a1. Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding. Mol. Pharmacol., 2005, 67: 513–522.
    [132] Wang R, Liu Z, Dong K, et a1. Novel mutations in a sodium channel gene are associated with fluvalinate resistance in the varroa mite, Varroa destroctor. J. Apic. Res., 2002, 40: 17–25.
    [133] Santiago G P, Otero-Colina G, Sanchez D M, et a1. Comparing effects of three acaricides on Varroa jacobsoni (Acari: Varroidae) and Apis mellifera (Hymeoptera: Apidae) using twoapplication techniques. Florida Entomol., 2000, 83: 468–476.
    [134] Liu Z, Tan J, Huang Z Y, et a1. Effect of a pyrethroidresistance-associated sodium channel mutation from varroa mites on cockroach sodium channel sensitivity to a pyrethroid insecticide. Insect Biochem. Mol. Biol., 2006, 36: 885–889.
    [135]朱丽梅,倪钰萍,曹晓宇,等.斜纹夜蛾的人工饲养技术.昆虫知识,2001,38(3):227-228.
    [136] Ismail F, Wright D J. Cross-resistance between acylurea insect growth regulators in a strain of Plutella xylostella (Lepidoptera: Yponomeutidae) from Malaysia. Pestic. Sci., 1991, 33: 359-370.
    [137]李国清,慕莉莉,严焯辉,等.B.t.与敌百虫、氰戊菊酯对棉铃虫的联合作用.农药,2000,39(2):23-25.
    [138] Harold J A, Ottea J A. Toxicological significance of enzyme activities in profenofos-resistant tobacco budworms, Heliothis virescens (F.). Pestic. Biochem. Physiol., 1997, 58: 23-33.
    [139] Scharf M E, Neal J J, Bennett G W. Changes of insecticide resistance levels and detoxication enzymes following insecticide selection in the german cockroach, Blattella germanica (L). Pestic. Biochem. Physiol., 1998, 59: 67-79
    [140] Shang C C, Soderlund D M. Monooxygenase activity of tobacco budworm. (Heliothis virescens H.) larvae: Tissue distribution and optimal assay conditions for the gut activity. Comp. Biochem. Physiol., 1984, 59: 67-79.
    [141] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein unitizing the principle of protein dye binding. Anal. Biochem., 1976, 72: 248.
    [142]王小艺,沈佐锐.亚致死剂量杀虫剂对异色瓢虫捕食作用的影响.生态学报,2002,22(12):2278-2284.
    [143]郝赤,李会仙,魏波,等.氰戊菊酯和甲氰菊酯对棉铃虫的亚致死效应.现代农药,2005,4(5):39-42.
    [144]姜卫华,韩召军,张国华.氟虫腈对二化螟抗、感种群的亚致死效应.南京农业大学学报,2004,27(2):51-54.
    [145]黄诚华,姚洪渭,叶恭银,等.氟虫腈亚致死剂量处理对二化螟和大螟幼虫体内解毒酶系活力的影响.中国水稻科学,2006,20(4):447-450.
    [146] Rumpf S,Hetzel F,Frampton C. Lacewings (Neuroptera:Hemerobiidae and Chrysopidae)and integrated pest management: enzyme activity as biomarker of sublethal insecticide exposure. J. Econo. Entomol., 1997, 90(1): 102-108.
    [147]梁沛,夏冰,石泰,等.阿维菌素和高效氯氰菊酯亚致死剂量对小菜蛾谷胱甘肽-S-转移酶的影响.中国农业大学学报,2003,8(3):65-68.
    [148] Plapp F W. Biochemical genetics of insecticide resistance. Annu. Rev. Entomol., 1976, 21: 179.
    [149]盂香清,芮昌辉,赵建周,等.抗三氟氯氰菊酯棉铃虫种群相对适合度研究.植物保护,1998,24(6):12-14.
    [150]唐振华,吴士雄.昆虫抗药性的遗传与进化.上海:上海科学技术文献出版社,2000.
    [151] Tabashnik B E. Resistance risk assessment: realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae),tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol., 1992, 85:1551-1559.
    [152]黄水金,江金林,韩召军.斜纹夜蛾抗溴氰菊酯品系的相对适合度和抗性遗传方式研究.江西农业大学学报,2007,29(1):24-29.
    [153]欧晓明,王永江,乔广行.斜纹夜蛾抗性品系选育及其在肟醚类杀虫剂活性评价中的应用.江西农业学报,2003,15(4):31-35.
    [154]韩启发,庄佩君,唐振华.抗杀螟硫磷二化螟的抗性遗传力研究.昆虫学报,1995,38(4):402-405.
    [155]贾变桃,沈晋良,刘永杰.甜菜夜蛾对虫酰肼的抗药性监测及抗性风险评估.棉花学报,2006,18(3):164-169.
    [156] Georghiou G P, Taylor C E. Genetic and biological influences in the evolution of insecticide resistance. J. Ecom. Entomol., 1977, 70: 309-313.
    [157]任晓霞,韩召军,王荫长,等.棉铃虫对久效磷抗性和敏感品系的生物适合度.南京农业大学学报,2001,24(2):41-44.
    [158] Roush R T, McKenzie J A. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol., 1987, 32: 361-380.
    [159] Forrester N W, Cahill M, Bird L J, et a1. Management of pyrethroid and endosufan resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. Bull. Entomol. Res. Sup., 1993, 1: 36-43.
    [160]慕卫,吴孔明,张文吉,等.抗高效氯氟氰菊酯甜菜夜蛾近等基因系的交互抗性和种群适合度.中国农业科学,2005,38 (10):2007-2013.
    [161]王建军,韩召军,王荫长.击倒抗性和钠离子通道.昆虫学报,2002,45(3):391-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700