贵州中西部地区洞穴沉积物元素比值对气候和环境变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对贵州中西部地区的郑家洞、石将军洞和织金洞三个洞穴水样和碳酸钙沉积物样品的地球化学特征的分析,重点研究了石将军洞的两根鹅管的微量元素变化特征和元素比值(Mg/Ca,Sr/Ca,Mg/Sr)。得出三个洞穴的洞穴水Mg/Sr比平均值分别为1278±411、1155±207、14.0±2.7,安顺洞穴的水样富Mg贫Sr,与织金洞的相反,一方面可能与围岩组成的差别有关,另一方面可能与洞穴地表的植被和土壤覆盖有关。通过织金洞洞穴水和现代碳酸钙沉积物中Sr/Ca比值,计算出K_(Sr)值为0.04~0.134,平均值为0.073±0.035;K_(Mg)平均值为0.021±0.010,这些结果对今后利用石笋Mg/Sr比值作为古气候代用指标的研究提供基础数据。
     石将军洞鹅管SJJ-5,SJJ-6的Mg,Sr含量变化呈反相关关系,Ba,Sr含量呈正相关关系,Fe,Mn的含量变化一致,Mg/Ca、Mg/Sr比值变化受Mg含量的控制,Sr/Ca比值受到鹅管中Sr含量的影响。两根鹅管中的Mg/Sr比值都出现了突变,且变幅比较大,这种变化可能不是由于温度的变化造成的,有可能是由于外界地表土壤和植被的变化所致。鹅管SJJ-5,SJJ-6的Mg/Sr比值与δ~(13)C,δ~(18)O的变化呈相反关系,δ~(18)O偏轻即降水量增加时期,δ~(13)C也随之偏轻,Mg/Sr比值增加,可能该时期为暖湿气候,反之则为冷干型气候。根据元素比值和δ~(13)C,δ~(18)O的变化特征,推测SJJ-5沉积时期的气候为暖湿、冷干交替出现;SJJ-6的,δ~(18)O、δ~(13)C值逐渐偏重,说明该鹅管沉积时期的降水量从老到新逐渐减少,从而导致地表植被也随着发生了较大的变化,同时Mg/Sr比值呈逐步减小的特征,说明Mg/Sr比值能响应外界环境变化。
     两根鹅管的Mg/Ca、Sr/Ca和Mg/Sr比值与从该洞穴采集的石笋顶部沉积物的相近,可见它们沉积时段具有相似性。鹅管SJJ-5与现代洞穴滴水的Mg/Ca,Sr/Ca比值计算的K_(Mg)、K_(Sr)平均值分别为0.00547±0.00629,1.751±0.271,鹅管SJJ-6的K_(Mg)、K_(Sr)平均值分别是0.00202±0.00304,1.731±0.173。两根鹅管的K_(Sr)值与现代沉积物的K_(Sr)值相差甚远,但与石将军洞石笋顶部沉积物的K_(Sr)值非常接近,说明石将军洞内采集的样品都不是现代沉积物。
     通过分析贵州中西部地区洞穴堆积物以及水系的地球化学元素含量及Mg/Ca,Sr/Ca,Mg/Sr比值,计算出石将军洞洞穴沉积物的K_(Mg)、K_(Sr)值,并把石将军洞洞穴沉积物元素比值与δ~(13)C,δ~(18)O的变化进行比较,可以看出贵州中西部地区的地表环境如气候,植被等都发生了比较大的变化,这些变化在洞穴沉积物的元素比值中得到很好的反映,因此洞穴沉积物的元素比值可以作为研究贵州中西部地区古环境演变的重要指标。
We have collected water and carbonate samples from Zhengjia, Shijiangjun and Zhijin caves in central western Guizhou province. The samples have been analyzed for elements including K~+, Na~+, Ca~(2+), Mg~(2+), Si~(2+), Ba~(2+), Fe~(3+) and Mn~(2+). We have analyzed the variation of trace elements concentration and Mg/Ca, Sr/Ca, Mg/Sr ratios of two soda straws (SJJ-5, SJJ-6) from Shijiangjun cave. The average Mg/Sr ratios of the cave waters in Zhengjia, Shijiangjun and Zhijin Caves are 1278±411, 1155±207 and 14.0±2.7, respectively. The geochemical feature of cave waters from Zhengjia and Shijiangjun Caves is enriched in Mg~(2+) and depleted in Si~(2+); whereas waters from Zhijin Cave depleted in Mg~(2+) and enriched in Sr~(2+). This feature indicates that not only the bed rocks compositions but also vegetation and soil coverage above the caves affect the Mg/Sr ratios of the cave water. Based on the measurements of Mg/Ca and Sr/Ca ratios in both waters and modern carbonates from Zhijin Cave, we have calculated the co-precipitation coefficient constants for Mg/Ca and Sr/Ca between calcite and water. The K_(Sr) value changes from 0.04 to 0.134, averaging 0.073±0.035. The average K_(Mg) ratio is 0.021±0.010. The values provide us the fundamental data for using Mg/Sr ratio as a proxy of paleoclimate reconstruction.
     There is opposition relationship of Mg and Sr concentration, positive relationship between Ba and Sr concentration, Fe and Mn concentration of soda straw SJJ-5, SJJ-6. The changing of Mg/Ca and Mg/Sr ratio are controlled by the concentration of Mg. The concentration of Sr affects Sr/Ca ratio. Mg/Sr ratio changed obviously during some period. We think that it is not affected by the change of temperature. It may be affected by variation of the soil and vegetation above the cave. The relationship of Mg/Sr ratio andδ~(13)C orδ~(18)O is oppositive. We conclude that the climate was warm and humid when Mg/Sr ratio increased andδ~(18)O decreased. Based on the variation of Mg/Ca, Sr/Ca, Mg/Sr ratios, we surmise the climate was warm and humid, cold and dry in turn when soda straw SJJ-5 was depositing.δ~(18)O andδ~(18)C increased so that we imagine the precipitation decreased gradually since the deposition of SJJ-6 soda-straw. It induced the vegetation above the cave reducing and the soil on the surface being swept. The process reflected in the variation of Mg/Sr ratio and it decreased gradually. We conclude that Mg/Sr ratio of soda straw can reflect the environment changing outside of the cave.
     Mg/Ca、Sr/Ca and Mg/Sr ratios of the soda straws are similar with those of carbonate samples which are from the top of stalagmites in Shijiangjun cave. It is explained that they deposited at the same phase. The average ratio of K_(Mg) and K_(Sr) is 0.00547±0.00629 and 1.751±0.271 in SJJ-5 soda straw, respectively. The average ratio of K_(Mg) and K_(Sr) of SJJ-6 soda straw is 0.00202±0.00304, 1.731±0.173, respectively. K_(Sr) ratios of SJJ-5 and SJJ-6 soda straw are much more than those of modern deposition from the top of stalagmite from Zhijin cave, while they are close to the K_(Sr) ratios of deposition from the top of stalagmite from Shijiangjun cave. We consider that the speleothem samples collected from Shijiangjun cave are not depositing today.
     We have argued the geochemical features and Mg/Ca, Sr/Ca, Mg/Sr ratio of the samples from cave water and speleothem in central western Guizhou, calculated K_(Mg)、K_(Sr) ratio of the deposition from Shijiangjun cave and compared Mg/Ca, Sr/Ca, Mg/Sr ratio withδ~(13)C,δ~(18)O. We conclude that the climate and vegetation at central western Guizhou province changed largely and trace element ratio can reflect and record the environment change. The ratios including Mg/Ca, Sr/Ca, Mg/Sr are important indexes to study paleoenvironment evolution at at central western Guizhou province.
引文
Avigour, A., Magaritz, M., Issar, A., Dodson, M.H., 1990. Srisotope study of vein and cave calcites from Southern Israel.Chem. Geol. 82, 69-81.
    Ayalon, A., Bar-Matthews, M, Kaufman, A., 1999. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel. The Holocene 9, 715-722.
    Baker, A., Smart, P., Edwards, R.L., Richards, D.A., 1993. Annual growth banding in a cave stalagmite. Nature 364, 518-520.
    Bar-Matthews, M., Ayalon, A., Matthews, A., Sass, E., Halicz, L.,1996. Carbon and oxygen isotope study of the active water-carbonate system in a karst Mediterranean cave: implications for palaeoclimate research in semiarid regions. Geochim. Cosmochim. Acta 60, 337-347.
    Bottrell, S.H., Atkinson, T.C., 1992. Tracer study of flow and storage in the unsaturated zone of a karstic limestone aquifer. In: Ho" tzl, I.J. Fairchild et al. / Earth-Science Reviews 75 (2006) 105-153 145 H., Werner, A. (Eds.), Tracer Hydrology. Rotterdam, Balkema, pp. 207-211.
    Brook, G.A., Rafter, M.A., Railsback, L.B., Shee, S.-W., Lundberg, J., 1999. A high-resolution proxy record of rainfall and ENSO since AS 1550 from layering in stalagmites from Anjohibe Cave, Madagascar. The Holocene 9,695-705.
    Burton, E.A., Walter, L.M., 1991. The effects of PCO2 and temperature on magnesium incorporation in calcite in seawater and MgCl-CaCl solutions. Geochim. Cosmochim. Acta 55,777-785
    Chave K E, Deffeyes K S, Weyl P K. et al. Observations on the solubility of skeletal carbonates in aqueous solution. Science, 1962, 137: 33-34
    Denniston, F.R., Gonza'lez, L.A., Asmerom, Y., Baker, R.G., Reagan, M.K., Bettis, E.A., 1999. Evidence for increased cool season moisture during the middle Holocene. Geology 27, 815-818.
    Dorale, J.A., Edwards, R.L., Ito, E., Gonza'lez, L.A., 1998. Climate and vegetation history of the midcontinent from 75 to 25 ka: a speleothem record from Crevice Cave, Missouri, USA. Science 282, 1871-1874.
    Dreybroda W. Chemical kinetics, speleothem growth and climate. Boreas, 1999,28: 347-356.
    Fairchild I. J., Borsato A., Tooth A. F., et al. Controls on trace element Sr-Mg compositions of carbonate cave waters: implications for speleothem climatic records. [J] Chem. Geology. 2000.166,255-269.
    Finch A.A, Shaw P.A, Holmgren K,et al. Corroborated rainfall records from aragonitic stalagmites[J]. Earth and Planetary Science Letters,vol.215, 2003:265-273.
    Fuchtbauer H., and Hardie, L. A. Experimentally determined homogeneous distribution coefficients for precipitated magnesium calcites: application to marine carbonate cements. Abstr. Geol. Soc. Am., Annual Meeting, Denver, Colo. 1976.
    Gascoyne, M. Trace element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. [J] Jour. Hydrol. 1983. 61: 213-222.
    Gascoyne, M, 1992. Palaeoclimate determination from cave calcite deposits. Quat. Sci. Rev. 11, 609-632.
    Genty, D., Plagnes, V., Causse, C, Cattani, O., Stievenard, M., Falourd, S., Blamart, D., Ouahdi, R., Van-Exter, S., 2002. Fossil water in large stalagmite voids as a tool for paleoprecipitation stable isotope composition reconstitution and paleotemperature calculation. Chemical Geology 184, 83-95.
    Goede, A., and Vogel, J. C. Trace element variations and dating of a late Pleistocene Tasmanian speleothem. [J] Palaeogeogr. Palaeoclimat. Palaeoecol. 1991. 88:121-131.
    Grootes, P.M., 1993. Interpreting continental oxygen isotope records. In: Swart, P.K., Lohmann, K.C., McKenzie, J., Savin,Z. S. Eds., Climate Change in Continental Isotope Records. Geophysical Monograph, vol. 78, American Geophysical
    Hellstrom, J.C., McCulloch, M.T., 2000. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth and Planetary Science Letters 179, 287-297.
    Hendy, C.H., Wilson, A.T., 1968. Paleoclimatic data from speleothems. Nature 219,48-50.
    Holland H. D., Kirsipu T. V., Huebner J. S., and Oxburgh U. M. On some aspects of the chemical evolution of cave waters. [J] J. of Geo logy. 1964,72:36-67.
    Huang Y. M., Fairchild I. J. Partitioning of Sr and Mg into calciteunder karst-analogue experimental conditions. [J]Geochim. Cosmochim Acta. 2001. 65(1): 47-62
    Huang Y. M., Fairchild I. J., Borsato A., et al. Seasonal variationsin Sr, Mg and P in modern speleothems Grotta di Ernesto.[J] Italy. Chem. Geology. 2001.175: 429-448..
    James J M. Minor, trace, and ultra trace constituents of speleothems. PAGES, 1997,236-237
    Katz A., Sess E., Starinsky A., and Holland H. D. Strontium behavior in the aragonite-calcite transformation: An experimental study at 40-98℃. [J] Geochim. Cosmochim. Acta. 1972. 36: 481-508
    Katz, A. The interaction of magnesium with calcite during crystal growth at 25-90℃ and one atmosphere. [J] Geochim. Cosmochim. Acta. 1973. 37: 1563-1586.
    Kinsman D. J. J., and Holland H. K. The co-precipitation of cations with CaCO_3-Ⅳ. The co-precipitation of Sr~(2+) with aragonite between 16℃and 96℃. [J]Geochim. Cosmochim. Acta. 1969. 33: 1-17.
    Ku T. L., Li H. C. Speoleothems as high-resolution paleoenvironment archives: Records from northeastern China. [J]Proc Indian Acad Sci(Earth Planet Sci), 1998, 107: 321-330
    Kuczumow A, Genty D, Chevallier P,et al. Annual resolution analysis of a SW-France stalagmite by X-ray synchrotron microprobe analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 58,2003:851-865.
    Labeyrie, J., Duplessy, J.C., Delibrias, G., Letolle, R., 1967.Etude des temperatures des climats anciens par la mesure de Toxygene-18, du carbone-13 et du carbone-14 dans les concretions des cavernes. Radioactive dating and methods of low level counting. IAEA, 153-160.
    Lauritzen, S.-E., 1995. High-resolution paleotemperature proxy record for the last interglaciation based on Norwegian speleothems. Quat. Res. 43,133-146.
    Li H. C, Ku T. L., You C. F., et al. ~(87)Sr/~(86)Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago. [J] Geochim. Cosmochim. Acta. 2005. 69(16): 3933-3947
    Lorens, R.B., 1981. Sr, Cd, Mn and Co distribution coefficients incalcite as a function of calcite precipitation rate. Geochim. Cosmochim. Acta 45, 553-561.
    Malone M. J., and Baker P. A. Temperature dependence of the strontium distribution coefficient in calcite: An experimental study from 40 to 200℃ and application to natural diagnetic calcites. [J]J. of Sedimentary Research. 1999.69:216-233
    McDermott, F., Frisia, S., Huang, Y.-M., Longinelli, A., Spiro, B., Heaton, T.H.E, Hawkesworth, C.J., Borsato, A., Keppens, I.J., Eddy, I.J., Fairchild, I.J., van der Borg, K., Verheyden, S., Selmo, E., 1999. Holocene climate variability in Europe: evidence from d18O, textural and extension-rate variations in three speleothems. Quat. Sci. Rev. 18,1021-1038.
    Mclntire W L. Trace element partition coefficients-a review of theory and applications to geology. Geochimica et Cosmochimica Acta. 1963, 27: 1209-1264
    McMillan, E., Fairchild, I.J., Frisia, S., Borsato, A., McDermott, F., 2005. Annual trace element cycles in calcite-aragonite speleothems: evidence of drought in the western Mediterranean 1200-1100 yr BP. Journal of Quaternary Science 20,423-433.
    Morse, J.W., Arvidson, R.S., 2002. The dissolution kinetics of major sedimentary carbonate minerals. Earth-Science Reviews 58, 51-84.
    Mucci, A., Morse, J.W., 1983. The incorporation of Mg2q and Sr2q into calcite overgrowths, influences of growth rate and solution composition. Geochim. Cosmochim. Acta 47, 217-233.
    Perrin, J., Jeannin, P.-V., Zwahlen, F., 2003. Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland. Journal of Hydrology 279, 106-124.
    Pingitore N. E., and Eastman M. P. The coprecipitation of Sr~(2+)with calcite at 25°C and 1 atmosphere.[J]Geochim. Cosmochim. Acta. 1986.50:2195-2203.
    Pingitore, N. E. Jr., Eastman, M.P., 1986. The coprecipitation of Sr~(2+)with calcite at 258C and 1 atmosphere. Geochim. Cosmochim. Acta 50, 2195-2203.
    Roberts, M.S., Smart, P. L., Baker, A., 1998. Annual trace element variations in a Holocene speleothem. Earth Planet. Sci. Lett.154, 237-246.
    Schwarcz, H. P., 1986. Geochronology and isotopic geochemistryZ. of speleothems. In: Fritz, P., Fontes, J.C. Eds., Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam, pp. 271-303.
    Sophie Verheyden, Eddy Keppens, Ian J. Fairchild, Frank McDermott, Dominique Weis, 2000, Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: implications for paleoclimate reconstructions. Chemical Geology. 169, 131-144.
    Talma, A. S., Vogel, J.C., 1992. Later Quaternary paleotemperature derived from a speleothem from Cango Caves, Cape Province, South Africa. Quat. Res. 37, 203-213.
    Tooth, A. F., Fairchild, I.J., 2003. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. Journal of Hydrology 273, 51-68.
    Treble P, Shelley J.M.G, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modem (1911-1992) speleothem with instrumental climate data from southwest Australia[J]. Earth and Planetary Science Letters, vol. 216, 2003:141-153.
    Union, Washington, DC, pp. 36-47.
    Verheyden, S., Keppens, E., Fairchild, I.J., McDermott, F., Weis, D., 1998. Palaeoclimate reconstructions from geochemistry and isotope geochemistry study of speleothems. Goldschmidt Conf. Toulouse. Miner. Mag. 62A, 1593-1594.
    Wang Y. J., Cheng H., Edwards R. L., et al. The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. [J] Science, 2005, 308:854-857
    Williams, P., 1983. The role of the subcutaneous zone in karst hydrology. Journal of Hydrology 61,45-67.
    Yuan D., Cheng H., Edwards R. L., et al. Timing, duration and transitions of the last interglacial Asian monsoon. [J] Science. 2004. 304: 575-578.
    蔡演军,彭子成,安芷生等.贵州七星洞全新世石笋的氧同位素记录及其指示的季风气候变化.[J]科学通报,2001,46(16):1398-1402
    陈萍,方念乔,浮游有孔虫壳体Mg/Ca值——SST的替代性指标,中国地质大学学报,2004, 29(6):697~702
    何尧启,汪永进,孔兴功等.贵州董哥洞近1000a来高分辨率洞穴石笋δ ~(18)O记录.[J]科学通报,2005,50(11):1113-1118
    胡超涌,湖北清江洞穴石笋沉积记录与长江中游近2万年以来的古气候研究,博士学位论文. 武汉:中国地质大学,2002.31-33
    李彬,袁道先,洞穴次生化学沉积物中Mg、Sr、Ca及其比值的环境指代意义,[J]中国岩溶, 2000,19(2):115-122
    李阳兵,谭秋,王世杰,喀斯特石漠化研究现状、问题分析与基本构架,中国水土保持科学, 2005,3(3):27-34
    林玉石,张美良,程海等.贵州荔波第四纪晚近期石笋地质年表与气候事件.[J]地学前缘.2003, 10(2):341-350
    马志邦,李红春,距今3 ka来京东地区的古温度变化:石笋Mg/5r记录,[J]科学通报,2000, 47(23):1829-1834
    彭子成,张兆峰,蔡演军等.贵州七星洞晚更新世晚期石笋的古气候环境记录.[J]第四纪研究. 2002,22(3):273-282
    覃嘉铭,林玉石,张美良等.末次冰期东亚季风气候的变迁:贵州都匀七星洞石笋的δ~(18)O记录.[J]中国岩溶.2003,22(3):167-173
    覃嘉铭,袁道先,程海,贵州荔波董歌洞D3石笋碳氧稳定同位素及微量元素记录的环境变化. [J]地球学报,2004,25(6):625-632
    新疆环境保护科学研究所和中国科学院土壤背景值协作组,新疆吐鲁番、天池土壤元素背景值研究,四川科学技术出版社,成都,第1页,第13页,1989。
    熊康宁,黎平,周忠发,等,喀斯特石漠化的遥感—GIS典型研究.北京,地质出版社:18~24
    袁道先,蔡桂鸿,岩溶环境学,重庆:重庆出版社,1988:136
    张美良,林玉石,覃嘉铭等.黔南洞穴石笋古气候变化记录及终止点II的确定.[J]中国科学(D辑).2002,32(11):943-951
    章程,袁道先,洞穴滴石石笋与陆地古环境记录研究进展,地球科学进展,2001,16(3): 347-354
    郑永春,王世杰,贵州山区石灰土侵蚀及石漠化的地质原因分析,长江流域资源与环境,2002, 11(5): 461~465

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700