喜马拉雅旱獭(Marmota Himalayana)微卫星位点的筛选与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以青藏铁路沿线喜马拉雅旱獭为材料,从肌肉组织中提取基因组DNA。由喜马拉雅旱獭近缘种文献及Genebank中筛选出多态性信息含量高的近缘种微卫星序列,以其相应的18对引物对基因组DNA进行扩增。这18个近缘种微卫星序列为AF259372、AF259373、AF259374、AF259375、AF259376、AY197780,AY197781、AY197782,AY197783、AY197784、AY197785、AY702707、AY702708、AY702709、AY702710、AY702711、AY702712及SS-Bible。将扩增出来的序列回收,经pBS-T载体连接,转化入大肠杆菌DH5α菌株,以(CA)。寡聚核苷酸引物和PUC19质粒多克隆位点两侧的M13primersM3和RV引物分别配对,PCR法筛选含微卫星序列的阳性克隆并进行测序。通过对几百个已鉴定为重组阳性克隆的筛选,获得21个含有微卫星的重组阳性克隆。将首次得到的21个喜马拉雅旱獭微卫星序列在GenBank注册,序列号为DQ888321~DQ888327,EF125660~EF125666,EF520117~EF125122。在21个微卫星序列中完美型14个,占67%;非完美型3个,占14%;复合型4个,占19%。利用BLAST序列分析软件对GenBank数据库进行检索,没有发现同源性一致的相应微卫星序列,表明本文得到的喜马拉雅旱獭微卫星序列都是首次发现的。此外,喜马拉雅旱獭微卫星的重复次数主要集中在20次以下,而20次以上的少见。
     从这21个微卫星序列中选取重复区域长、侧翼序列好的座位使用Oligo6.0和Primer 5.0软件设计微卫星序列引物,共设计出5对不含茎环和二级结构的引物,长度在20bp左右。将5对引物进一步经过3%琼脂糖凝胶电泳检验筛选,其中4对引物具有多态性,4对引物为JA5F/JA5R,JA9F/JA9R,JD3F/JD3R,JD9F/JD9R。用这4对引物对沱沱河、海西洲、安多和乌兰四地的喜马拉雅旱獭种群进行遗传多样性分析,海西洲喜马拉雅旱獭种群遗传多样性最高,其次为乌兰、沱沱河和安多地理种群。聚类分析发现,沱沱河与安多两地种群的遗传距离相对较小,但是总体而言四个种群之间遗传差异较小。本实验首次建立了喜马拉雅旱獭的微卫星分子标记,为进一步开展喜马拉雅旱獭及其近缘种群的分子生物学研究奠定了基础。
Relative species' microsatellite primers were used to find out microsatellite loci in Himalayan Marmot. The 18 microsatellite sequences of relative species areAF259372、AF259373、AF259374、AF259375、AF259376、AY197780、AY197781、AY197782、AY197783、AY197784、AY197785、AY702707、AY702708、AY702709、AY702710、AY702711、AY702712 and SS-Bible. After gene application, connection and translation, hundreds of clones were screened with PCR technique for recombinant positive clones containing microsatellite sequences. The primers used in PCR were M13 Primers M3/M13 Primers RV which located at both sides of multiple clone site of pBS-T and microsatellite primers (CA)8 designed according to core repeats motifs of microsatellite. 21 microsatellite loci were found. GenBank accession numbers of these microsatellite sequences are DQ888321-DQ888327, EF125660-EF125666, EF520117-EF520122. Among these microsatellite loci there are 14 perfect ones in 67%; 3 imperfect ones in 14%; 4 compound ones in 19%.Repeat number of most microsatellites varies from 3 to 20, few microsatellites exceed 20.
     Four microsatellite sequences were selected for designing oligonucleotide primers,using Oligo 6.0 and Primer 5.0 software.After extensive optimization, 4 pairs of primers gave satisfactory results and were polymorphism. Genetic polymorphism of Himalayan Marmot in Tuotuo River , Haixizhou, Wulan and Anduo were studied with these primers .The result indicate that genetic variation of Haixizhou population were highest, then were Wulan population, Tuotuo River and Anduo population. Cluster analysis showed that there were differences between four population, but differences between four populations were small. This experiment has made the foundation for further reserch of Himalayan Marmot in molecular ecology.
引文
[1] 王淑纯,宋延富.鼠疫研究进展.北京:中国环境科学出版社,1988:214.
    [2] 张安宁,马世宽,秦万龙.张掖地区动物鼠疫地理分布和流行特征的调查研究[J].中国地方病防治杂志,2000,15(5):300.
    [3] 张安宁,马世宽,王鸿英.西水地区旱獭鼠疫流行时某些指标间的相互关系[J].地方病通报,2001,16(3):20~22.
    [4] 张安宁,谭多兴,马得忠.张掖地区喜马拉雅旱獭鼠疫自然疫源地动物鼠疫防治概况[J].中国地方病防治杂志,2003,18,(2):105~106.
    [5] 张安宁,王鸿英,秦万龙.甘肃张掖地区1982-2000年动物鼠疫流行研究[J].地方病通报,2002,17(3):34~36.
    [6] 张安宁,刘麟,张玉贞.东祁连山某部喜马拉雅旱獭蚤类数量观察[J].中国地方病防治杂志,2002,17(6):369~371.
    [7] 纪树立,张海峻,刘云鹏等.我国鼠疫菌分型及其生态学、流行病学意义[C].鼠疫论文专刊,1983,1.
    [8] 方喜业主编.中国鼠疫自然疫源地.北京:人民卫生出版社,1990:52.
    [9] 张荣广,吴得强,邓开泽等.甘肃省1959-1988人间鼠疫流行病学特征及控制措施的研究[J].地方病通报,1994,9(4):22~26.
    [10] 王兆芬,于守鸿,祁芝珍.青海省同德县喜马拉雅旱獭鼠疫血清流行病调查报告[J].地方病通报,1991,6(2):91~92.
    [11] 叶于聪,陈钦铭.喜马拉雅旱獭和大白鼠的心肌结构及功能的比较研究[J].兽类学报,1990,10(3):197~202.
    [12] 陈钦铭.不同年龄喜马拉雅旱獭肾上腺皮质超微结构与功能的比较研究[J].兽类学报,1993,13(2):92~96.
    [13] 贾荣莉.低氧适应动物喜马拉雅旱獭的组织学观察[J].四川动物与兽类科学,2001,2(28):120.
    [14] 陈钦铭,叶于聪,夏寅明.对不同年龄喜马拉雅旱獭大脑皮质结构与血液气体测定的比较研究[J].兽类学报,1992,12(1):25~30.
    [15] 王懋钦,尹敬如,李芳,王文清,杨玉玺.喜马拉雅旱獭核型研究[J].兽类学报,1989,9(3):161~167.
    [16] 尹敬如,朱慧君.喜马拉雅旱獭G带核型研究[J].青海医学院学报,1996,17(4):223~225.
    [17] 卢银平,王宝菊,黄红平.中国旱獭干扰素α家族家族基因在真核细胞和原核细胞中的表达[J].中华肝脏病杂志 2006,14(2):124~128.
    [18] 卢银平,王宝菊,黄红平等.中国旱獭干扰素α家族基因的克隆及序列分析[J].中华微生物学和免疫学杂志2006,26(3):269~273.
    [19] A. Da Silva, G.. Luikart, D. Allaine, et al. Isolation and characterization of microsatellites in European alpine marmots(Marmota marmota) [M]. Molecular Ecology Notes(2003)3, 189~190.
    [20] C. J. Kyle, T. J. Karels, B. Clark, et al. Isolation and characterization of microsatellites markers in hoary marmots(Marmota caligata)[M]. Molecular Ecology Notes(2004)4, 749~751.
    [21] Goossens. B, Chikhi. L, Taberlet P, et al. Microsatellite analysis of genetic variation among and within Alpine marmot populations in the French Alps[M]. Molecular Ecology, 2001, 10: 41~52.
    [22] S. Hanslik and Krukenhauset. Microsatellite loci for two European sciurid species(Marmota marmota, Spermophilus citellus)[M]. Molecular Ecology Notes(2004), 4: 749~751.
    [23] Goossens. B, Graziani. L, Waits LP, et al. Extra-pair paternity in the monogamous Alpine marmot reveald by nuclear DNA microsatellite analysis[J]. Behavioral Ecology Sociobiology, 43, 281-288.
    [24] 施立明,贾旭,胡志昂.1993遗传多样性[A]见:陈灵芝主编中国的生物多样性现状及其保护对策[C].北京:科学出版社31~113.
    [25] 葛颂,洪德元.1994遗传多样性及其检测方法[A].见:钱迎倩,马克平主编生物多样性研究的原理与方法[C].北京:中国科学技术出版社,122~140.
    [26] 葛颂.第二章遗传多样性[A].见:主编保护生物学.
    [27] 施立明1990遗传多样性及其保存生物科学信息2:158~164.
    [28] Hamrick, J. L. Isozymes and the analysis of genetic structure in plant populations. 1989. In: Soltis, D. E., Soltis, P. S. eds. Isozymes in Plant Biology, Portland: Dioseorides Press, 87~105.
    [29] Grant V. The Evolutionary Process: A Critical Study of Evolutionary Theory (2nd ed.)[M]. New York: Columbia University Press. 1991, 1~480.
    [30] Ayala FJ, Kiger JA. Modem Geneties(2nded.)[M]. MenloPark: BenjaminCummings, 1984.
    [31] Endle JA. Genetic heterogeneity and ecology[A]. In: Berry R J eds. Genes in Ecology(first published in 1992)[C].Oxford: Blackwell Scientific Publications, 1994.
    [32] 孟安明,齐顺章,宫桂芬.四个探针产生的家禽DNA指纹图谱[J].生化与生物物理进展,1993,20(2):139~142.
    [33] 张亚平,王文,宿兵等大熊猫微卫星DNA的筛选及其应用[J].动物学研究,1995,16(4):301~306.
    [34] 黄磊,王义权.扬子鳄种群的微卫星DNA多态及其遗传多样性保护对策分析[J].遗传学报,2004,31(2):143~150.
    [35] 兰宏,张文艳,王文,宿兵,施立明.滇金丝猴的随机扩增多太DNA与遗传多样性分析[J].中国科学(C辑),1996,26(3):244~24.
    [36] 贾斌,陈杰,赵茹茜,秋江,根强,陈杰.新疆8个绵羊品种遗传多样性和系统发生关系的微卫星分析.[J].遗传学报,2006.30(9):847~854.
    [37] 宿兵,P.Kressirer,K.Monda,王文,蒋学龙,王应祥,D.S.Woodruff,张亚平.中国黑冠长臂猿的遗传多样性及分子系统学研究—非损伤取样DNA序列分析[J].中国科学(C辑),1996,26(5):414~418.
    [38] 宿兵,施立明,何光昕,张安居,宋云芳,钟顺隆,费立松.大熊猫遗传多样性的蛋白电泳研究[J].科学通报,1994,39(8):742~745.
    [39] 涂正超,张亚平.中国地方黄牛的遗传多样性[J].生物多样性,1997,5(2):90~94.
    [40] 王文,吴春花,宿兵,兰宏,张亚平.我国西南地区珍稀濒危动物的进化和保护遗传学研究[J].大自然探索,1995,14(54):28~32.
    [41 Miesfeld R, Krystal M, Arnheim N. A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is found between the human delta and beta globin genes[J]. Nucleic Acids Res. 1981, 9(22): 5931~5947.
    [42] Hamada H, Petrino MG, Kakunaga T. Molecular structure and evolutionary origin of human cardiac muscle actin gene[J]. Proc Natl Acad Sci USA. 1982, 79(19): 5901~5905.
    [43] Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes[J]. Nucleic Acids Res. 1984, 12(10): 4127~4138.
    [44] Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. Am J Hum Genet. 1989, 44(3): 397~401.
    [45] Sarkar G, Paynton C, Sommer S.S. Segments containing alternating purine and pyrimidine dinucleotides: patterns of polymorphism in humans and prevalence throughout phylogeny[J]. Nucl. Acids Res, 1991,19: 631~636.
    [46] LagercrantzU, EllegrenH, AnderssonL. The abundance of various polymoriphic microsatellites motifs differ between plants and vertebrates [J]. NuclAcidRes, 1993, 21: 1111~1115.
    [47] Weber J L, Wong C. Mutation of human short tandem repeats[J]. Hum Mol Genet, 1993, 2 (8): 1123~1128.
    [48] WeberJL,MayPE. AbundantclassofhumanDNApolymorphismwhichcanbetyp edusingpolymerasechainreaction [J]. Am JHum Gen et, 1989,44:388-396.
    [49] WeberJL.Informativeness of human (dC-dA)n(dg-dT)n polymorphisms[J]. Genomics, 1990, 7: 524~530.
    [50] Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S,McCouch S. L) frenquency, length variation, transposon associations,and genetic marker potential[J].Genome Res., 2001, 11: 1441~1452.
    [51] Travis CG, Ryan SO, Wolfgang S, et al. Microsatellite DNA loci for genetic studies of Cranes[J]. Proc north Am Crane Workshop, 1997,7: 36~45.
    [52] Wang Z, Weber JL, Zhong G, Tanksley SD. Survey of plant short tandem DNA repeats[J]. Theor Appl Genet, 1994,88:1~6.
    [53] 安瑞生,谭声江,陈晓峰.微卫星DNA在分子遗传标记研究中的应用[J].昆虫知识,2002,39(3):165~172.
    [54] 方盛国.大山雀两亚种基因指纹图的比较研究[J].生物多样性,1996,4(4):207~210.
    [55] 高军,任军,陈克飞,黄路生,Bertram Brenig.猪PAC克隆的微卫星DNA分离研究[J].遗传,2003,25(6):660~662.
    [56] 黄磊,王义权.扬子鳄种群的微卫星DNA多态及其遗传多样性保护对策分析[J].遗传学报,2004,31(2):143~150.
    [57] 杨官品,M.A.Saghai Maroof等.水稻一多拷贝微卫星DNA多态性分析[J].遗传,1998,20(2):27~30.
    [58] Levinson G, Gutman GA. Slipped stand mispairing: a major mechamism for DNA sequence evolution[J]. Mol Biol Evol, 1987, 4: 203~221.
    [59] 张云武,张亚平.微卫星及其应用[J].动物学研究,2001,22(4):315-320.
    [60] Amos W, Sawcer SJ, Feades RW, et al. Microsatellites show mutational bias and heterozygote instability[J]. Nature Genetics, 1996, 13: 390~391.
    [61] Primmer CR, Ellegren H, Saino N, et al. Directional evolution in germline microsatellite mutations[J]. Nature Genetics, 1996, 13: 391~393.
    [62] Rubinsztein DC, Amos W, Leggo J, et al. Microsatellite evolution evidence for directionality and variation in rate between species[J]. Nature Genetics, 1995, 10: 337~343.
    [63] Schlotterer C. Evolutionary dynamics of microsatellite DNA[J]. Chromosoma, 2000, 109: 365~371.
    [64] Schlotterer C, Tautz D. Slippage synthesis of simple sequence DNA[J]. Nucl Acid Res, 1992, 20: 211~215.
    [65] Wierdle M, Dominska M, Petes T D. Microsatellite instability inyeast: dependence on the length of the microsatellite[J]. Genetics, 1997, 146(3): 769~779.
    [66] Lee JS, Hanford MG, Genova JL, et al. Relative stadsbilities of dinucleotide repeats in cultured mannalian cells[J]. Hum. Mol. Genet., 1999, 8: 2567~2572.
    [67] Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. L)frenquency, length variation, transposon associations, and genetic marker potential[J]. Genome Res, 2001, 11: 1441~1452.
    [68] Jin L, Zhong Y, Chakraborty R. The exact numbers of possible microsatellites motifs[J]. Am J Hum Genet, 1994, 55: 582~583.
    [69] Kamau L, Mukabana W R, Hawley W A, Lehmann T, et al. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci[J]. Insect Mol. Biol., 1999, 8: 287~297.
    [70] Gacy AM, Goellner G, Juranic N, Macura S, Mc Murray CT. Trinucleotide repeats that expand in human disease form hairpin structures in vitro[J]. Cell, 1995, 81(4): 533~540.
    [71] Moore H, Greenwell PW, Liu CP, Amheim N, Petes TD. Tripletre repeats form secondary structures that escape DNA repair in yeast[J]. Proc. Natl. Acad. Sci. USA, 1999, 96(4): 1504~1509.
    [72 Serikawa T, Kuramoto T, Hilbert P, et al. Rat gene mapping using PCR-analyzed microsatellites[J]. Genetics, 1992, 131(3): 701~721.
    [73] Stallings RL. Evolution and distribution of(GT)n repetitive sequences in mammalian genomes[J]. Genomes, 1991, 10: 807~815.
    [74] 徐鹏,周令华,田丽萍,相建海.从中国对虾ESTs中筛选微卫星标记的研究[J].水产学报,2003,27(3)213~218.
    [75] 李斌,夏庆友,鲁成,周泽扬.蜜蜂EST中的微卫星分析[J].遗传学报,2004,31(10):1089~1094.
    [76] JonE. W. Lyall, Graeme M. Brown, Robert A. Furlong, et al. A method for creating chromosome-specific plasmid libraries enriched in clone containing(CA)n microsatellite repeat sequences directly from flow-sorted chromosomes.[M]. Nucleic Acids Research(1993), Vol.21, No.19 4641~4642.
    [77] A. B. Florin and N. Gyllestrand. Isolation and characterization of polymorphic microsatellite markers in the blowflies Lucilia illustris and lucilia sericata[M]. Molecular Ecology Notes(2002)2, 113~116.
    [78] M. Isaksson and Tegelstrom. Characterization of polymorphic microsallite markers in a captive population of the eagle owl(Bubo bubo) used for supportive breeding[M]. Molecular Ecology Notes(2002)2, 91~93.
    [79] Bruno Baron, Christophe Poirier, Dominique Simon-Chazottes, et al. A new strategy useful for rapid identification of microsatellites from DNA libraries with large size inserts.[M]. Nuleic Acid Research, Vol.20, No.14: 3665~3669.
    [80] Karen E. Chambers, Ulrich H Reichard, Asja Moller, et al. Cross-Species Amplification of Human Microsatellite Marker Using Noninvasive Samples From White-Handed Gibbons(Hylobates lar)[J]. American Journal of Primatology(2004), 64: 19~27.
    [81] Hayden MJ, SharpPJ. Sequence-tagged microsatellite profiling(STMP): a rapid technique for developing SSR markers[J]. Nucleic Acids Research, 2001, Vol.29, No.8: 43.
    [82] 晏鹏,吴孝兵,史燕,张方.微卫星多态性检测技术及其在保护遗传学中的应用[J].应用生态学报,003,14(3):461~464.
    [83] Ruyter-Spira CP, Koning de D J, Groenen M A M, et al. Developing microsatellites markers from cDNA: a tool for adding expressed sequence tags to the genetic linkage map of the chicken[J]. Animal Genetics, 1998, 29: 85~90.
    [84] Westmenal, Kresovichs. The potential for crosstaxa simple sequence repeat(SSR) amplification between Arabidopsist haliana L. and crop brassicas[J]. TheorApplGenet, 1998, 96: 272~281.
    [85] BrownpTanksleysd. Characterization and genetic map pingof simple repeat sequences in the tomato genome[J]. MolGenGenet, 1996, 250: 39~49.
    [86] ZHAOX, Kochertg. Characterization and genetic map pingo fashort highly repeated interspersed DNA sequence fromrice(Orizasativa) [J]. Mol Gen Genet, 1992, 231: 353~359.
    [87] 张于光,李迪强,饶力群,肖启明,刘丹.东北虎微卫星DNA遗传标 记的筛选及在亲子鉴定中的应用[J].动物学报,2003,49(1):118~123.
    [88] Kamau L, Mukabana W R, Hawley W A, Lehmann T, et al. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci[J]. Insect Mol. Biol, 1999, 8: 287~297.
    [89] MacHugh DE, Loftus RT, Bradley DG, et al. Microsatellite DNA variation within and among European cattle breeds[J]. ProcRSocLondB, 1994, 256: 25~31.
    [90] Saitbekova N, Gaillard C, Oberex-Ruff G, et al. Genetic diversity in Swiss goat breeds based on microsatellites analysis[J]. Animal Genetics, 1999, 30: 36-41.
    [91] Zajc I, Sampson J. Utility of canine microsatellites in revealing the relationship of pure bred dogs[J]. The Journal of Heredity, 1999, 90(1): 104~107.
    [92] 张细权,吕雪梅,杨玉华等.用微卫星多态性和RAPD分析广东地方鸡种的群体遗传变异[J].遗传学报,1998,25:(2)112~119.
    [93] Zhivotovsky LA, Bennett L, Bowcock AM, Feldman MW. Human population expansion and microsatellite variation[J]. Mol Biol Evol, 2000, 17(5): 757~767.
    [94] Foster E A, Jobling M A, Taylor P G, Donnelly P, de Knijff P, Mieremet R, Zerjal T, Tyler2Smith C. Jefferson fathered slave slast child[J]. Nature, 1998, 396(6706): 27~28.
    [95] 张亚平,王文,宿兵等大熊猫微卫星DNA的筛选及其应用[J].动物学研究,1995,16(4):301~306.
    [96] 何鑫,朱鼎良,韩战营,刘晓明,王固亮,初少莉,张伟忠,周怀发,茅守玉,庄启南,赵彦,黄薇.用微卫星DNA基因分型技术进行双生子卵型鉴定[J].中华医学遗传学杂志,2001,18(6):421~425.
    [97] Ellegren H, Johansson M, Sandberk K et al. Cloning of highly polymorphic microsatellite in the horse[J]. Anim Genetics, 1992, 23: 133~142.
    [98] Norin M, Haeffner F, Achour A, Norin T, Hult K. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa[J]. Protein Sci. 1994 Sep, 3(9): 1493~503.
    [99] McCouch S R, Teytelman L, Xu Y B, et al. Developmentand mapping of 2240 new SSR markers for rice(Oryzasativa L.)[J]. DNA Research, 2002, 9: 199~207.
    [100] ChenX, TemnykhS, XuY, etal. Developmentofamicrosatelliteframworkmapprovidinggenome-widecoverageinrice(OryzasativaL.) [J]. TheorApplGenet, 1997, 95: 553~567.
    [101] 杨国忠,任文陟,张嘉保.微卫星DNA标记及其在牛遗传育种研究中的应用[J].黑龙江动物繁殖,2004,12(1):13.
    [102] Ashley CT, Warren ST. Trinucleotide repeats expansion and human disease[J]. Annu Rev Genet, 1995, 29: 703~28.
    [103] Maddox J. Triplet repeat genes raise question[J]. Nature, 1994, 368(647): 685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700