以芳基硫酚为原料的C-S键生成反应方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫元素是自然界中重要的元素之一,含硫有机化合物在医药、农药、材料等领域有着广泛的应用。C-S键的构筑是有机化学重要研究内容和持续关注的热点之一,发展原料易得、条件温和的C-S键生成反应是有机合成化学的研究重点。近年来,许多新型、高效、高选择性的C-S键构筑方法被报道出来。本论文以苯硫酚及其衍生物为研究对象,开展了芳基硫酚和环己酮、芳香酮、苯乙炔及其衍生物的C-S键生成反应研究。主要研究内容如下:
     1、研究了碘催化下芳基硫酚和环己酮及其衍生物的C-S键生成反应,合成了一系列的2-芳基硫醚基苯酚,产率良好。在该反应中,环己酮经过C-S键生成、脱氢、芳构化等过程作为芳基酚来源。该反应体系以碘为催化剂、以氧气作绿色的氢接受剂,反应中没有使用任何金属化合物,副产物只有水,该方法为合成2-芳基硫醚基苯酚提供了一种高效、环境友好的新途径。另外,还发展了芳基磺酰肼和环己酮合成2-芳基硫醚基苯酚的C-S键生成反应。该反应中,使用了化学当量的碘作为添加物,在类似的条件下得到2-芳基硫醚基苯酚,产率较好。
     2、发展了邻氨基苯硫酚类化合物和环己酮及其衍生物生成吩噻嗪的C-S键生成反应,环己酮经过缩合、成环、氧化脱氢、芳构化等步骤作为芳基的来源。催化剂量的苄基砜基苯和碘化钾同时使用可以显著提高反应产率,不需要使用过渡金属催化剂,氧气作为绿色的氧化剂。该方法为合成吩噻嗪及其衍生物提供了一种简单、绿色的新途径。
     3、以2-氨基苯硫酚和苯乙酮及其衍生物为原料通过C-S键生成反应合成了一系列的2-芳基苯并噻唑。该反应以氧气作为氧化剂,反应过程中不需要使用任何金属催化剂,DMSO在反应中起到了至关重要的作用。功能基团例如:甲基、甲氧基、氟、氯、溴和硝基等在反应中都能够稳定存在。该方法以廉价、稳定的芳基酮为原料,可以为2-芳基苯并噻唑的合成提供一条新的途径。
     4、报道了一种由芳基硫醚和炔类化合物合成反马氏烯基硫醚的新方法,该方法不需要过渡金属催化剂。以廉价易得的无水磷酸钾作为碱,以NMP为溶剂,高选择性地得到Z式烯基硫醚。E式烯硫醚可以在无溶剂的条件下合成,反应的立体选择性较相应的Z式烯基硫醚低。
Sulfur is one of the most important elements in nature. Sulfur-containing organiccompounds play important roles in the pharmaceuticals, agricultural chemicals andmaterials science. The C-S bond formation is one of the most exciting research topicsin organic chemistry and has been attracted sustained attention. The construction ofC-S bond under mild reaction conditions from cheap and readily avilable materials isbecoming focus of study. Many efficient methods for the C-S bond formation havebeen developed in the past decades. We investigated a variety of C-S bond formationreactions involving arylthiols, which can be reacted with aryl ketones,cyclohexanones and acetylenes. Detailed research was described as follows:
     1. A series of2-arylsulfanylphenols were synthesized by iodine-catalyzedtransformation based on C-S bond formation from benzenethiols and cyclohexanones.The C-S bond formation, dehydrogenation and tautomerization were realized inone-pot without any metal-catalyst and cyclohexanones were used as phenol source.Catalytic amount of iodine was used as catalyst and molecule oxygen was used ashydrogen acceptor in this transformation. This method can afford an efficient andenvironmentally benign approach for2-arylsulfanylphenols from readily availablematerials. In addition,2-arylsulfanylphenols were also could be prepared frombenzenesulfonohydrazides and cyclohexanones using stoichiometric amounts ofiodine as additive under similar conditions in good yields.
     2. The construction of C-S bond reaction for phenothiazine formation wasreported from cyclohexanones and2-aminobenzenethiols. Cyclohexanones were usedas aryl source by condensation, tautomerization, cyclization and dehydrogenationtransformation. The combination use of catalytic amount of benzyl phenyl sulfone andKI significantly improved the reaction yields using molecular oxygen as hydrogenacceptor in the absence of transition-metals. It will provide a novel, convenient andenvironmentally benign method for the synthesis of phenothiazines.
     3. A facile synthesis of2-aryl benzothiazoles via C-S bond formation reactionusing molecular oxygen as oxidant under metal-free conditions have beensuccessfully developed. DMSO played an important role in this transformation.Functional groups such as methyl, methoxy, fluoro, chloro, bromo and nitro were allwell tolerated under the optimized reaction conditions. Since aryl ketones are cheap,readily available starting materials, this method afforded an efficient alternative route for the rapid synthesis of2-aryl benzothiazoles.
     4. An efficient anti-Markovnikov hydrothiolation from acetylenes and arylthiolsunder transition-metal-free conditions is described. The choice of base and solventsignificantly affected the reaction selectivity. When potassium phosphate was used asbase in NMP, the Z-vinyl sulfides were formed in good yields and high regio-andstereoselectivity. Whereas E-vinyl sulfides were the major products when the reactionwas carried out in neat without any additive in good yields.
引文
[1]陈惠方.植物活性成分辞典.第三册[M].北京:中国医药科技出版社,2001.
    [2](a) Bernardi F, Csizmadia I G, Mangini A. Organic sulfur chemistry. Theoretical andexperimental advances,19, Amsterdam: Elsevier,1985;(b) Block E, Reactions oforganosulfur compounds, New York: Academic Press,1978;(c) Patai S, Rappoport Z. Thechemistry of organicselenium and tellurium compounds,1–2, New York: Wiley,1986–1987;(d) Wirth T. OrganoseleniumChemistry: modern developments in organic synthesis,Berlin and New York: Springer Verlag,2000;(e) Ager D J. Silicon-containing carbonylequivalents[J]. Chem. Soc. Rev.1982,11:493-522;(f) McReynolds M D, Dougherty J M,Hanson P R. Synthesis of phosphorus and sulfur heterocycles via ring-closing olefinmetathesis[J]. Chem. Rev.2004,104:2239-2258;(g) Zyk N V, Beloglazkina E K, Belova MA, Dubinina N S. Methods for the synthesis of vinyl sulfides[J]. Russ. Chem. Rev.2003,72:769-786;(h) Sizov A Y, Kovregin A N, Ermolov A F. Fluorine-containing alkyl(aryl) vinylsulfides[J]. Russ. Chem. Rev.2003,72:357-374;(i) Lauterbach C, Fabian J. Densityfunctional derived structures and molecular properties of nickel dithiolenes and relatedcomplexes[J]. Eur. J. Inorg. Chem.1999,1995-2004;(j) Hope E G, Levason W. Recentdevelopments in the coordination chemistry of selenoether and telluroether ligands[J]. Coord.Chem. Rev.1993,122:109-170;(k) Clemenson P I. The chemistry and solid state propertiesof nickel, palladium and platinum bis(maleonitriledithiolate) compounds[J]. Coord. Chem.Rev.1990,106:171-203;(l) Yu C J, Chong Y, Kayyem J F, et al. Soluble ferroceneconjugates for incorporation into self-assembled monolayers[J]. J. Org. Chem.1999,64:2070-2079.
    [3](a) Lapkowski M, Plewa S, Stolarczyk A, et al. Electrochemical synthesis of polymers withalternate phenothiazine and bithiophene units [J]. Electrochimica Acta,2008,53(5):2545–2552;(b) Rajakumar P, Kanagalatha R. Synthesis and optoelectrochemical properties ofnovel phenoth iazinophanes [J]. Tetrahedron Letters,2007,48(48):8496–8500;(c) Cho NS, Park J H, Lee S K, et al. Saturated and efficient red light-emitting fluorene-based alternating polymers containing phenothiazine derivatives[J]. Macromolecules,2006,39(1):177-183.
    [4](a) Beletskaya I P, Ananikov V P. Transition-metal-catalyzed C-S, C-Se, and C-Te bondformation via cross-coupling and atom-economic addition reactions[J]. Chem. Rev.2011,111:1596–1636;(b) Liu H, Jiang X. Transfer of sulfur: from simple to diverse[J]. Chemistry–An Asian Journal, DOI:10.1002/asia.201300636;(c) Wang L, He W, Yu Z.Transition-metal mediated carbon–sulfur bond activation and transformations[J]. Chem. Soc.Rev.,2013,42:599-621.
    [5](a) Fernández-Rodríguez M A, Shen Q, Hartwig J F. Highly efficient andfunctional-group-tolerant catalysts for the palladium-catalyzed coupling of aryl chlorideswith thiols[J]. Chem. Eur. J.,2006,12:7782-7796;(b) Fernández-Rodríguez M A, Shen Q L,Hartwig J F. A general and long-lived catalyst for the palladium-catalyzed coupling of arylhalides with thiols[J]. J. Am. Chem. Soc.,2006,128:2180-2181;(c) Barbieri R S, Bellato CR, Dias A K C, et al. Effect of substitution of [Pd(PPh3)4] by related compounds as catalystsin reactions of organic syntheses [J]. Catal. Lett.,2006,109:171-174.
    [6](a) Chen Y J, Chen H H.1,1,1-Tris(hydroxymethyl)ethane as a new, efficient, and versatiletripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols,and phenols[J]. Org. Lett.,2006,8:5609-5612;(b) Rout L, Sen T K, Punniyamurthy T.Efficient CuO-nanoparticle-catalyzed C-S cross-coupling of thiols with iodobenzene[J].Angew. Chem., Int. Ed.,2007,46:5583-5586;(c) Larsson P F, Correa A, Carril M, et al.Copper-catalyzed cross-couplings with part-per-million catalyst loadings[J]. Angew. Chem.,Int. Ed.,2009,48:5691-5693;(d) Jiang Y W, Qin Y X, Xie S W,et al. A general and efficientapproach to aryl thiols: cuI-catalyzed coupling of aryl iodides with sulfur and subsequentreduction[J]. Org. Lett.,2009,11:5250-5253;(e) Chen C K, Chen Y W, Lin C H, et al.Synthesis of CuO on mesoporous silica and its applications for coupling reactions of thiolswith aryl iodides[J]. Chem. Commun.,2010,46:282-284;(f) Dai C, Xu Z, Huang F, et al.Lewis acid-catalyzed, copper(II)-mediated synthesis of heteroaryl thioethers under base-freeconditions[J]. J. Org. Chem.,2012,77:4414-4419.
    [7](a) Zhang Y, Ngeow K N, Ying J Y. The first N-heterocyclic carbene-based nickel catalyst forC S coupling[J]. Org. Lett.,2007,9:3495-3498;(b) Saxena A, Kumar A, Mozumdar S.Ni-nanoparticles: A mild chemo-selective catalyst for synthesis of thioethers[J]. Appl. Catal.,A,2007,317:210-215.
    [8] Wong Y C, Jayanth T T, Cheng C H. Cobalt-catalyzed aryl sulfur bond formation[J]. Org.Lett.,2006,8:5613-5616.
    [9](a) Reddy V P, Swapna K, Kumar A V, et al. Indium-catalyzed C S cross-coupling of arylhalides with thiols[J]. J. Org. Chem.,2009,74:3189-3191;(b) Reddy V P, Kumar A V,Swapna K, et al. Nano indium oxide as a recyclable catalyst for C S cross-coupling of thiolswith aryl halides under ligand free conditions[J]. Org. Lett.,2009,11:1697-1700.
    [10](a) Correa A, Carril M, Bolm C. Iron-catalyzed S-arylation of thiols with aryl iodides[J].Angew. Chem., Int. Ed.,2008,47:2880-2883;(b) Correa A, Garcia O, Bolm C.Iron-catalysed carbon–heteroatom and heteroatom–heteroatom bond forming processes[J].Chem. Soc. Rev.,2008,37:1108.
    [11](a) Schlosser K M, Krasutsky A P, Hamilton H W, et al. A highly efficient procedure for3-sulfenylation of indole-2-carboxylates[J]. Org. Lett.,2004,6:819-821;(b) Lewisacid-catalyzed, copper(II)-mediated synthesis of heteroaryl thioethers under base-freeconditions[J]. J. Org. Chem.,2012,77:4414-4419;(c) Ranjit S, Lee R, Heryadi D,et al.Copper-mediated C–H activation/C–S cross-coupling of heterocycles with thiols[J]. J. Org.Chem.,2011,76:8999-9007.
    [12](a) Zhang S, Qian P, Zhang M, et al. Copper-catalyzed thiolation of the di-ortrimethoxybenzene Arene C H bond with disulfides[J]. J. Org. Chem.,2010,75:6732-6735;(b) Zou L H, Reball J, Mottweiler J, et al. Transition metal-free direct C–H bond thiolation of1,3,4-oxadiazoles and related heteroarenes[J]. Chem. Commun.,2012,48:11307-11309;(c)Sang P, Chen Z K, Zou J W, et al. K2CO3promoted direct sulfenylation of indoles: a facileapproach towards3-sulfenylindoles[J]. Green Chem.,2013,15:2096-2100;(d) Huang D Y,Chen J X, Dan W X, et al. A metal-free sulfenylation and bromosulfenylation of indoles:controllable synthesis of3-arylthioindoles and2-bromo-3-arylthioindoles [J]. Adv. Synth.Catal.,2012,354:2123-2128;(e) Ge W L, Wei Y Y. Iodine-catalyzed oxidative system for3-sulfenylation of indoles with disulfides using DMSO as oxidant under ambient conditionsin dimethyl carbonate[J]. Green Chem.,2012,14:2066-2070.
    [13] Wu Q, Zhao D B, Qin X R, et al. Synthesis of di(hetero)aryl sulfides by directly usingarylsulfonyl chlorides as a sulfur source[J]. Chem. Commun.,2011,47:9188-9190.
    [14] Yang F L, Tian S K. Iodine-catalyzed regioselective sulfenylation of indoles with sulfonylhydrazides[J]. Angew. Chem., Int. Ed.,2013,52:4929-4932.
    [15] Smith G, Mikkelsen G, Eskildsen J, et al. The synthesis and SAR of2-arylsulfanylphenyl-1-oxyalkylamino acids as GlyT-1inhibitors[J]. Bio. Med. Chem. Lett.,2006,16:3981-3984.
    [16](a) Feng Y, Wang H, Sun F, et al. A highly efficient and widely functional-group-tolerantcatalyst system for copper(I)-catalyzed S-arylation of thiols with aryl halides[J]. Tetrahedron,2009,65:9737-9741;(b) Bate C G, Gujadhur R K, Venkataraman D. A general method forthe formation of aryl sulfur bonds using Copper(I) catalysts[J]. Org. Lett.,2002,4:2803-2806.
    [17] Xu X B, Liu J, Zhang J J, et al. Nickel-mediated inter-and intramolecular C–S coupling ofthiols and thioacetates with aryl iodides at room temperature[J]. Org. Lett.,2013,15:550-553.
    [18] Swapna K, Murthy S N, Jyothi M T, et al. Nano-CuFe2O4as a magnetically separable andreusable catalyst for the synthesis of diaryl/aryl alkyl sulfides via cross-coupling processunder ligand-free conditions[J]. Org. Biomol. Chem.,2011,9:5989-5996.
    [19] Prasad C D, Balkrishna S J, Kumar A, et al. Transition-metal-free synthesis of unsymmetricaldiaryl chalcogenides from arenes and diaryl dichalcogenides[J]. J. Org. Chem.,2013,78:1434-1443.
    [20] Trost B M, Rigby J H. Dehydrogenative sulfenylation of cyclohexanones[J]. TetrahedronLett.,1978,19:1667-1670.
    [21] Xu R, Wan J P, Mao H, et al. Facile synthesis of2-(phenylthio)phenols byCopper(I)-catalyzed tandem transformation of C S coupling/C H functionalization[J]. J.Am. Chem. Soc.,2010,132:15531-15533.
    [22](a) Benati L, Montevecchi P C. Neighboring sulfide group in thermal decomposition ofaryldiazonium salts[J]. J. Org. Chem.,1977,42:2025–2028;(b) Hilbert G E, Johnson T B.A study of the germicidal activity of diaryl-sulfide phenols[J]. J. Am. Chem. Soc.,1929,51:1526-1536.
    [23] Samoshin V V, Kudryavtsev K V. Novel reaction: brominative aromatization of2-alkyl(aryl)thio cyclohexanones[J]. Tetrahedron Lett.,1994,35:7413-7414;
    [24] Boyd D R, Blacker J, Byrne B, et al, Acid-catalysed aromatisation ofbenzene cis-1,2-dihydrodiols: a carbocation transition state poorly stablised by resonance[J].J. Chem. Soc., Chem. Commun.,1994:313-314.
    [25](a) Korth C, May B C H, Cohen F E, et al. Acridine and phenothiazine derivatives aspharm-acotherapeutics for prion disease [J]. PNAS,2001,98(17):9836–9841;(b) MichaletsE L, Williams C R, Drug interactions with cisapride clinical implications [J]. ClinicalPharmacokinetics,2000,39(1):49-75.
    [26] Luo H Q, Liu S P, Liu Z F, et al. Resonance rayleigh scattering spectra for studying theinteraction of heparin with some basic phenothiazine dyes and their analytical applications [J].Analytica Chemical,2001,449:261-270.
    [27]郭霞,刘燕,郭荣.吩噻嗪在正十二烷基硫酸钠/苯甲醇/水微乳液中的定位[J].物理化学学报.2001,17(11):982-985.
    [28]王辉,吴祖望,李春诚等.抗氧剂3,7-二(1,1,3,3-四甲基-丁基)-吩噻嗪的合成[J].大连理工大学学报,2006,46(5):655-660.
    [29]封继康,高晓顺,肖长永等.吩噻嗪侧环取代衍生物的二阶非线性光学性质的ZINDO-DOS研究[J].高等学校化学学报,1996,17(8):1263-1268
    [30]蒋云涛,张擎等.吩噻嗪及其衍生物的合成和应用[J].染料与染色,2010,47(3):35-41.
    [31] Sharma S, Kaur H, Khuller G K. Cell cycle effects of the phenothiazines: trifluoperazine andcholorpromazine in candida albicans [J]. FEMS Microbiology Letters.2001,199:185-190.
    [32](a) Horn A S, Snyder S H. Chlorpromazine and dopamine: conformational similarities thatcorrelate with the antischizoph renicActivity of phenothiazine drugs [J]. PNAS,1971,68(10):2325-2328;(b) Wu S N, Gao R, Xing Q H, et al. Association of DFID2polymorphisms and chlorpromazine-induced extrapyramidal syndrome in Chineseschizophrenic patients [J]. Acta Pharmacologicas inica.2006,27(8):966-970.
    [33]俞宝田,孙秋宁,姜国调,美喹他嗪治疗荨麻疹临床报告[J].岭南皮肤性病科杂志,2000,7(2):17-19.
    [34] Aszalos A. Phenothiazines in treatment of HIV In fection [J]. Acta MicrobiologicaetImmunologica Hungarica.2003,50(1):43-53.
    [35] Korth C, May B C H, Cohen F E, et al. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease[J]. PNAS,2001,98(17):9836-9841.
    [36] Salomon F. M. N-substituted thioalkyl phenothiazines[P]. US4785095,1988-11-15.
    [37] Lapkowski M, Plewa S, Stolarczyk A, et al. Electrochemical synthesis of polymers withalternate phenothiazine and bithiophene units[J]. Electrochimica Acta,2008,53(5):2545-2552.
    [38] Cho N S, Park J H, Lee S K, et al. Saturated and efficient red light-emitting fluorene-based alternating polymers containing phenothiazine derivatives[J]. Macromolecules,2006,39(1):177-183.
    [39] Rajakumar P, Kanagalatha R. Synthesis and optoelectrochemical properties of novel phenothiazinophanes[J]. Tetrahedron Letters,2007,48(48):8496-8500.
    [40] Harry L Y.3-Chloro-10-dialkylaminoalkylphenothiazines[J]. J. Am. Chem. Soc.,1957,77:2270-2272.
    [41] Knoevenge E. Berdie katalytischen wirkungendesjods [J]. Prakt. Chem.1913,89:1-50
    [42] Mitchell J.e tal. Refining of phenothiazine[P]. US2415363,1947-02-04.
    [43](a) Yale H.3-Chloro-10-dialkylaminoalkylphenothiazines,[J]. J. Am. Chem. Soc.1955,77:2270-2272;(b) Corral C, Lissavetzky J, Quintanilla G. Synthesis of10-aminophenothiazinesand derivatives[J]. J. Heterocycl. Chem.1978,15:1137-1140;
    [44](a) Gschwend H W, Rodriguez H R. Org. React.1979,26:47;(b) Sailer M, Franz A W,Müller T J. Synthesis and electronic properties of monodisperse oligophenothiazines[J]. J.Chem. Eur.2008,14:2602-2614;(c) Hauck M, Sch nhaber J, Zucchero A J, et al.Phenothiazine cruciforms: synthesis and metallochromic properties[J]. J. Org. Chem.2007,72:6714-6725;(d) Lai R Y, Kong X, Jenekhe S A, et al. Synthesis, cyclicvoltammetric studies, and electrogenerated chemiluminescence of a newphenylquinoline-biphenothiazine donor acceptor molecule[J]. J. Am. Chem. Soc.2003,125:12631-12639.(e) Hrutford B F and Bunnett J F. A general principle for the synthesis ofheterocyclic and homocyclic compounds[J]. J. Am. Chem. Soc.1958,80:2021-2022;(f)Davis F A, Wetzel R B, Devon T J, et al. Chemistry of the sulfur--nitrogen bond. I. Thermalreactions of nitrobenzenesulfenanilides[J]. J. Org. Chem.1971,36:799-803;(g) Tao C Z,Zhao N, Yang S, et al. Ligand-free Copper-catalyzed synthesis of diaryl thioethers from arylhalides and thioacetamide[J]. Synlett.2011,134.
    [45] Dahl T, Torn e C W, Bang-Anderson B, et al. Palladium-catalyzed three-component approachto promazine with formation of one carbon–sulfur and two carbon–nitrogen bonds[J].Angew. Chem. Int. Ed.2008,47:1726-1728.
    [46] Ma D W, Geng Q, Zhang H, et al. Assembly of substituted phenothiazines by a sequentiallycontrolled CuI/L-proline-catalyzed cascade C-S and C-N bond formation[J]. Angew. Chem.Int. Ed.2010,49:1291-1294.
    [47] Beresneva T, Abele E. Novel copper-catalyzed rearrangement of2-aminobenzothiazoles tophenothiazines[J]. Chemistry of Heterocyclic Compounds,2012,48:1420-1422.
    [48] Dai C, Sun X F, Tu X, et al. Novel copper-catalyzed rearrangement of2-aminobenzothiazolesto phenothiazines[J]. Chem. Commun.2012,48:5367-5369.
    [49] Trivedi A R. A new synthetic approach and biological evaluation of novel phenothiazinesbearing tert-butyl group[J]. Journal of Sulfur Chemistry.2009,30:590-595.
    [50](a) Chen C, Chen Y J. Liquid-phase synthesis of2-substituted benzimidazoles, benzoxazolesand benzothiazoles[J]. Tetrahedron Lett.2004,45:113–115;(b) Siddiqui N, Rana A, KhanS A, et al. Synthesis of benzothiazole semicarbazones as novel anticonvulsants—The role ofhydrophobic domain[J]. Bioorg. Med. Chem. Lett.2007,17:4178–4182.(c) Lion C J,Matthews C S, Wells G. et al. Antitumour properties of fluorinatedbenzothiazole-substituted hydroxycyclohexa-2,5-dienones (‘quinols’)[J]. Bioorg. Med.Chem. Lett.2006,16:5005–5008.
    [51](a) Saeed S, Rashid N, Jones P G, Synthesis, characterization and biological evaluation ofsome thiourea derivatives bearing benzothiazole moiety as potential antimicrobial andanticancer agents[J]. European Journal of Medicinal Chemistry,2010,45(4):1323-1331;(b)Franchini C, Muraglia M, Corbo F, et al. Synthesis and biological evaluation of2-mercapto-1,3-benzothiazole derivatives with potential antimicrobial activity [J]. Archivder Pharmazie,2009,342(10):605–613;(c) Youssef A M, Noaman E, Synthesis andevaluation of some novel benzothiazole derivatives as potential antieaneer and antimicrobialagents [J]. Arzneimittel-Forschung,2007,57(8):547-553;(d) Kueukbay H, Cetinkaya E,Durmaz R. Sythesis and antimierobial activity of substituted benzimidazole,benzothiazoleand imidazole derivatives [J]. Arzneimittel-Forschung,1995,45(12):1331-1334.
    [52](a) Ban M, Taguehi H, Katsushima T, et al. Novel antiallergic and anti-inflammatoryagents.Part I: Sythesis and Pharmacology of glyeolic amide derivatives [J].Bioorganie&medieinal chemistry,1998,6(7):1069-1076;(b) Palagiano F, Arenare L, DeCaPrariis P, et al. Sythesis and SAR study of imidazo[2,1-b]benzothiazole acids and somerelated compounds with anti-inflammatory and analgesie activities[J]. Fannaco,1996,51(7)483-491;(c) Hori N, Tsukamoto G, Imamura A, et al. Novel disease-modifyingantirheumatic drugs.1. Synthesis and antiarthritic activity of2-(4-methylphenyl)benzothiazoles[J]. Chemieal&Phannaeeutical bulletin,1992,40(9):2387-2390;(d) Abignente E, De Caprariis P, Sacchi A, et al. Research on heterocycliccompounds. XIV-Imidazothiazole and imidazobenzothiazole derivatives: sythesis andanti-inflammatory activity[J].11Farmaco: edizione seientifica,1983,38(8):534-545.
    [53] Bradshaw T. D, Chua M S, Browne H L, et al. In vitro evaluation of amino acid prodrugs ofnovel antitumour2-(4-amino-3-methylphenyl)benzothiazoles[J]. British joumal of caneer,2002,86(8):1348-1354.
    [54](a) Siddiqui N. and Ahsan W. Benzothiazole incorporated barbituric acid derivatives:synthesis and anticonvulsant screening[J]. Archiv der Pharmazie2009,342(8):462-468;(b)Chopade R S, Bahekar R H, Khedekar P B. Synthesis and anticonvulsant activity of3-(6-Substituted-benzothiazol-2-yl)-6-phenyl-[1,3]-xazinane-2-thiones[J].2002,335(8):381-388;(c) Mizoule J, Meldrum B, Mazadier M, et al.2-Amino-6-trifluoromethoxybenzothiazole, a possible antagonist of excitatory amino acidneurotransmission-1antieonvulsant properties[J]. Neurophannacology,1985,24(8):767-773.
    [55] Repicky A, Jantova S, Cipak L, Apoptosis induced by2-acetyl-3-(6-methoxybenzothiazo)-2-yl-amino-acrylonitrile in human leukemia cellsinvolves ROS-mitochondrial mediated death signaling and activation of p38MAPK[J].Cancer Letters,2009,277(l):55-63.
    [56] Carboni S, Bosehert U, Gaillard P, et al. AS601245,a c-jun NH2-terminal kinase (JNK)inhibitor, reduces axon/dendrite damage and cognitive deficits after global cerebralischaemia in gerbils[J]. British journal of Phannacology,2008,153(l):157-163.
    [57] Anzini M, Chelini A, Mancini A, et al. Synthesis and biological evaluation of amidine,guanidine, and thiourea derivatives of2-amino(6-trifluoromethoxy)benzothiazole asneuroprotective agents potentially useful in brain diseases[J]. Journal of medicinalchemistry,2009,53(2):734-744.
    [58](a) Carboni S, Hiver A, Szyndralewiez C, et al. AS601245(l,3-benzothiazol-2-yl(2-[[2-(3-pyridinyl)ethyl]amino]-4-pyrimidinyl)aeetonitrile):a c-junNH2-terminal protein kinase inhibitor with neuroprotective properties[J]. The Joumal ofPhannacology and experimenial therapeutics,2004,310(l):25-32;(b) Singh T, Srivastava VK, Saxena K K, et al. Sythesis of new thiazolylthiazolidinylbenzothiazoles andthiazolylazetidinylbenzothiazoles as potential insectieidal, antifungal, andantibacterialagents[J]. Archiv der Pharmazie,2006,339(8):466-472.
    [59](a) Lin A J, Kasina S. Synthesis of3-substituted7-(3,3-dimethyl-1-triazeno)-10-methylphenothiazines as potential antitumor agents[J]. JHeterocyclic Chem,1981,18(4):759—761;(b) Jordan A D, Luo C, Reitz A B. Efficientconversion of substituted aryl thioureas to2-aminobenzothiazoles usingbenzyltrimethylammnnium tribromide[J]. J. Org. Chem.,2003,68(22):8693-8696;(c) MuX J, Zou J P, Zeng R S, et a1. Mn(III)-promoted cyclization of substituted thioformanilidesunder microwave irradiation: a new reagent for2-substituted benzothiazoles[J]. TetrahedronLetters,2005,46(25):4345-4347;(d) Bose D S,Idrees M.Hypervalent iodine mediatedintramolecular cyclization of thioformanilides: expeditious approach to2-substitutedbenzothiazoles[J]. J. Org. Chem.,2006,71(21):8261-8236;(e) Bose D S, Idrees M. Aconvenient access to substituted benzothiazole scaffolds via intramolecular cyclization ofthioformanilides[J]. Tetrahedron Letters,2007,48(4):669-672.(f) Bose D S, Idrees M,Srikanth B. Synthesis of2-arylbenzothiazoles by DDQ-promoted cyclization ofthioformanilides: A solution-phase strategy for library synthesis[J]. Synthesis,2007:819-823;(g) Downer-Riley N K, Jackson Y A. Iodine-mediated cyclisation of thiobenzamides toproduce benzothiazoles and benzoxazoles[J]. Tetrahedron,2007,63(41):10276-10281;(h)Downer-Riley N K, Jackson Y A. Conversion of thiobenzamides to benzothiazoles viaintramolecular cyclization of the aryl radical cation[J]. Tetrahedron,2008,64(33):7741-7744.
    [60] Inamoto K, Hasegawa C, Kawasaki J, et a1. Use of molecular oxygen as a reoxidant in thesynthesis of2-substituted benzothiazoles via palladium-catalyzed C-Hfunctionalization/intramoleeular C-S bond formation[J]. Adv Syn&Catal,2010,352(14-15):2643-2655.
    [61] Evindar G, Batey R A. Parallel synthesis of a library of benzoxazoles and benzothiazolesusing ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides[J]. J. Org.Chem.,2006,71(5):1802-l808.
    [62] Saha P, Ramana T, Purkait N, et a1. Ligand-free copper-catalyzed synthesis of substitutedbenzimidazoles,2-aminobenzimidazoles,2-aminobenzothiazoles, and benzoxazoles[J].J.Org Chem.,2009,74(22):8719-8725.
    [63] Jaseer E A, Prasad D J C, Dandapat A, et a1. An efficient copper (II)-catalyzed synthesis ofbenzothiazoles through intramolecular coupling-cyclization of N-(2-chloropheny1)benzothioamides[J]. Tetrahedron Letters,2010,51(38):5009—5012.
    [64] Feng E, Huang H, Zhou Y, et al. Metal-free synthesis of2-substituted (N, O, C)benzothiazoles via an intramoleeular C-S bond formation[J]. J. Comb. Chem.,2010,12(4):422-429.
    [61] Evindar G, Batey R A. Parallel synthesis of a library of benzoxazoles and benzothiazolesusing ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides[J]. J. Org.Chem.,2006,71(5):1802-l808.
    [62] Saha P, Ramana T, Purkait N, et a1. Ligand-free copper-catalyzed synthesis of substitutedbenzimidazoles,2-aminobenzimidazoles,2-aminobenzothiazoles, and benzoxazoles[J].J.Org Chem.,2009,74(22):8719-8725.
    [63] Jaseer E A, Prasad D J C, Dandapat A, et a1. An efficient copper (II)-catalyzed synthesis ofbenzothiazoles through intramolecular coupling-cyclization of N-(2-chloropheny1)benzothioamides[J]. Tetrahedron Letters,2010,51(38):5009—5012.
    [64] Feng E, Huang H, Zhou Y, et al. Metal-free synthesis of2-substituted (N, O, C)benzothiazoles via an intramoleeular C-S bond formation[J]. J. Comb. Chem.,2010,12(4):422-429.
    [65] Ma D W, Xie S W, Xue P. et al. Efficient and economical access to substituted benzothiazoles:Copper-catalyzed coupling of2-haloanilides with metal sulfides and subsequentcondensation[J]. Angew. Chem. Int. Ed.2009,48:4222-4225.
    [66] Seijas J, Vazquez-Tato M,Carballido-Reboredo M, et al. A new efficient access tobenzoxazoles and benzothiazoles from carboxylic acids under solvent-free conditions[J].Synlett2007,2:313-317.
    [67] Takashi I, Kazuhiro N, Hiroyuki I, et al. Synthesis of2-arylbenzothiazoles and imidazolesusing scandium triflate as a catalyst for both a ring closing and an oxidation steps[J].Heterocycles;2004,63(12):2769-2784.
    [68] Su F, Antonietti M, Wang X, et al. Aerobic oxidative coupling of amines by carbon nitridephotocatalysis with visible light[J]. Angewandte Chemie, International Edition;2011,50(3):657–660.
    [69] Raghavendra G M, Ramesha A B, Revanna C N, et al. One-pot tandem approach for thesynthesis of benzimidazoles and benzothiazoles from alcohols[J]. Tetrahedron Letters,2011,52(43):5571–5574.
    [70] Rudrawar S, Kondaskar A, Chakraborti A K, An efficient acid-and metal-free one-potsynthesis of benzothiazoles from carboxylic acids[J]. Synthesis,2005,15:2521–2526.
    [71] Zhu C, Akiyama T. One-pot tandem approach for the synthesis of benzothiazoles from benzylhalides[J]. Synlett;2010,16:2457–2460.
    [72](a) Dyker G. Handbook of C-H transformations: applications in organic synthesis;Wiley-VCH: Weinheim,2005.(b) Yu, J.; Shi, Z. C-H activation; Springer: Berlin,2010.(c)Goldberg K I, Goldman A S. Activation and functionalization of C-H bond; ACSsymposium series885:2004;(d) Turner G, Morris J, Greaney M. Direct arylation ofthiazoles on water[J]. Angew. Chem. Int. Ed.2007,46:7996–8000;(e) Do H, Daugulis O.Copper-catalyzed arylation of heterocycle C H bonds[J]. J. Am. Chem. Soc.2007,129:12404-12405;(f) Canivet J, Yamaguchi J, Ban I, et al. Nickel-catalyzed biaryl coupling ofheteroarenes and aryl halides/triflates[J]. Org. Lett.2009,11:1733-1736;(g) Zhao D, WangW, Yang F, et al. Copper-catalyzed direct C arylation of heterocycles with aryl bromides:discovery of fluorescent core frameworks[J]. Angew. Chem. Int. Ed.2009,48:3296-3300;(h) Huang J, Chan J, Chen Y, et al. A highly efficient Palladium/Copper cocatalytic systemfor direct arylation of heteroarenes: an unexpected effect of Cu(Xantphos)I[J]. J. Am. Chem.Soc.2010,132:3674-3675;(i) Shibahara F, Yamaguchi E, Murai T. Direct multiple C–Hbond arylation reaction of heteroarenes catalyzed by cationic palladium complex bearing1,10-phenanthroline[J]. Chem. Commun.2010,46:2471-2473;(j) Shibahara F,Yamaguchi E, Murai T. Direct arylation of simple azoles catalyzed by1,10-phenanthrolinecontaining Palladium complexes: an investigation of C4arylation of azoles and thesynthesis of triarylated azoles by sequential arylation[J]. J. Org. Chem.2011,76:2680-2693;(k) Yamamoto T, Muto K,Komiyama M, et al.Nickel-catalyzed C-H arylation of azoles withhaloarenes: scope, mechanism, and applications to the synthesis of bioactive molecules[J].Chem. Eur. J.2011,17:10113–10122.
    [73] Hachiya H, Hirano K, Satoh T, et al. Nickel-Catalyzed Direct C-H Arylation andAlkenylation of Heteroarenes with Organosilicon Reagents[J]. Angew. Chem. Int. Ed.2010,49:2202–2205.
    [74] Zhang F, Greaney M, Decarboxylative.C-H cross-coupling of azoles[J]. Angew. Chem. Int.Ed.2010,49:2768–2771.
    [75](a) Liu B, Qin X, Li K, et al. Palladium/Copper bimetallic catalytic system: dramaticimprovement for Suzuki–Miyaura-Type direct C-H arylation of azoles with arylboronicacids[J]. Chem. Eur. J.2010,16:11836–11839.(b) Ranjit S, Liu X. Direct arylation ofbenzothiazoles and benzoxazoles with aryl boronic acids[J]. Chem. Eur. J.2011,17:1105–1108.(c) Kirchberg S, Tani S, Ueda K, et al. Oxidative biaryl coupling of thiophenesand thiazoles with arylboronic acids through Palladium catalysis: otherwise difficultC4-selective C-H arylation enabled by boronic acids[J]. Angew. Chem. Int. Ed.2011,50:2387–239.
    [76](a) Ackermann L, Althammer A, Fenner S. Palladium-catalyzed direct arylations ofheteroarenes with tosylates and mesylates[J]. Angew. Chem, Int. Ed.2008,48:201–204;(b)Roger J, Doucet H. Aryl triflates: useful coupling partners for the direct arylation ofheteroaryl derivatives via Pd-catalyzed C–H activation–functionalization[J]. Org. Biomol.Chem.2008,6:169-174;(c) Ackermann L,Barfusser S, Pospech J. Palladium-catalyzeddirect arylations, alkenylations, and benzylations through C H bond cleavages withsulfamates or phosphates as electrophiles[J]. Org. Lett.2010,12:724-726;(d) Chen R, LiuS, Liu X, et al. Palladium-catalyzed desulfitative C–H arylation of azoles with sodiumsulfinates[J]. Org. Biomol. Chem.2011,9:7675-7679;(e) Liu B, Guo Q, Cheng Y, Lan J, etal.Palladium-catalyzed desulfitative C[bond]H arylation of heteroarenes with sodiumsulfinates[J]. Chem. Eur. J.2011,17:13415–13419;(f) So C, Lau C, Kwong F.Palladium-catalyzed direct arylation of heteroarenes with aryl mesylates[J]. Chem. Eur. J.2011,17:761–765.
    [77] Liu S, Chen R, Guo X., et al. Iron-catalyzed arylation of benzoazoles with aromaticaldehydes using oxygen as oxidant[J]. Green Chem.2012,14:1577-1580.
    [78](a) Han W, Mayer P, Ofial A R. Palladium-catalyzed dehydrogenative cross-couplings ofbenzazoles with azoles[J]. Angew. Chem. Int. Ed.2011,50:2178–2182;(b) Malakar C,Schmidt D, Conrad J, et al. Double C H activation: the Palladium-catalyzed directC-arylation of xanthines with arenes[J]. Org. Lett.2011,13:1378-1381;(c) Wang Z, Li K,Zhao D, et al. Palladium-catalyzed oxidative C[bond]H/C[bond]H cross-coupling of indolesand pyrroles with heteroarenes[J]. Angew. Chem. Int. Ed.2011,50:5365–5369;(d) ZhuM, Fujita K., Yamaguchi R. Efficient synthesis of biazoles by aerobic oxidativehomocoupling of azoles catalyzed by a copper(I)/2-pyridonate catalytic system[J]. Chem.Commun.2011,47:12876-12878;(e) Nishino M, Hirano K, Satoh T, et al.Copper-mediated and Copper-catalyzed cross-coupling of indoles and1,3-azoles: DoubleC[bond]H activation[J]. Angew. Chem. Int. Ed.2012,51:6993-6997.
    [79](a) Johanne. Vinyl sulfide cyclized analogues of angiotensin II with high affinity and fullagonist activity at the AT1receptor[J]. J. Med. Chem.,2002,45:1767-1777;(b) Dvorak CA, Schmitz W D, Poon D J, et al. The synthesis of streptogramin antibiotics:()-Griseoviridin and its C-8epimer[J]. Angew. Chem. Int. Ed.,2000,39:1664-1666.
    [80](a) Cremlyn R J. An introduction to organosulfur chemistry; John Wiley&Sons: Chichester,1996;(b) Trost B M,Lavoie A C. Enol thioethers as enol substitutes. An alkylationsequence[J]. J. Am. Chem. Soc.,1983,105:5075-5090;(c) Singleton D A. Church K M.[3+2] Methylenecyclopentane annulations of unactivated and electron-rich olefins with2-(phenylsulfonyl)-1-methylenecyclopropanes[J]. J. Org. Chem.,1990,55:4780-4782;(d)Mizuno H.Domon K, Masuya K,et al. Total synthesis of ()-coriolin[J]. J. Org. Chem.,1999,64:2648-2656;(e) Muraoka N, Mineno M, Itami K, et al. Rapid synthesis of CDP840with2-pyrimidyl vinyl sulfide as a platform[J]. J. Org. Chem.,2005,70:6933-6936;(f) David RL A, Kornfield J A. Facile, efficient routes to diverse protected thiols and to theirdeprotection and addition to create functional polymers by thiol ene coupling[J].Macromolecules,2008,41:1151-1161;(g) Stanford M J, Dove A P. One-pot synthesis ofα,ω-chain end functional, stereoregular, star-shaped poly(lactide)[J]. Macromolecules,2009,42:141-147;(h) Pounder R J, Stanford M J, Brooks P,et al. Metal free thiol–maleimide‘Click’ reaction as a mild functionalisation strategy for degradable polymers[J]. Chem.Commun.,2008:5158-5160.
    [81] Trost B M, Keeley D, Bogdanowicz M J, et al.1-Lithiocyclopropyl phenyl sulfide. Newspiroannelating reagent[J]. J. Am. Chem. Soc.,1973,95:3068-3070.
    [82](a) DeTar D F. Calculation of steric effects in reactions[J]. J. Am. Chem. Soc.,1974,96:1254-1255(;b)Torst B M, Keeley D E. New synthetic methods. A stereocontrolled approachto cyclopentane annelation[J]. J. Am. Chem. Soc.,1976,98:248-250.
    [83] Truong V X, Dove A P. Organocatalytic, regioselective nucleophilic “Click” addition of thiolsto propiolic acid esters for polymer–polymer coupling[J]. Angew. Chem. Int. Ed.,2013,52:4132-4136.
    [84](a) Kuniyasu H, Ogawa A, Sato K, et al. The first example of transition-metal-catalyzedaddition of aromatic thiols to acetylenes[J]. J. Am. Chem. Soc.,1992,114:5902-5903;(b)Ogawa A, Ikeda T, Kimura K,et al. Highly regio-and stereocontrolled synthesis of vinylsulfides via transition-metal-catalyzed hydrothiolation of alkynes with thiols[J]. J. Am.Chem. Soc.,1999,121:5108-5114;(c) Takenori M, Masayuki D, Akihiro N,, et al. Highlyregioselective double hydrothiolation of terminal acetylenes with thiols catalyzed byPalladium diacetate[J]. Bull. Chem. Soc. Jpn.,2011,84:413-415.
    [85] Malyshev D A, Scott N M, Marion N, et al. Homogeneous Nickel catalysts for theselective transfer of a single arylthio group in the catalytic hydrothiolation of alkynes[J].Organometallics,2006,25:4462-4470.
    [86](a) Cao C, Fraser L R, Love J A. Rhodium-catalyzed alkyne hydrothiolation witharomatic and aliphatic thiols[J]. J. Am. Chem. Soc.,2005,127:17614-17615;(b) Fraser L R,Bird J, Wu Q, et al. Synthesis, structure, and hydrothiolation activity of Rhodiumpyrazolylborate complexes[J]. Organometallics,2007,26:5602-5611;(c) Yang J, Sabarre A,Fraser L R, et al. Synthesis of1,1-disubstituted alkyl vinyl sulfides via Rhodium-catalyzedalkyne hydrothiolation: scope and limitations[J]. J. Org. Chem.,2009,74:182-187;(d)Giuseppe A D, Castarlenas R, Pérez-Torrente J J, et al. Ligand-controlled regioselectivity inthe hydrothiolation of alkynes by Rhodium N-heterocyclic carbene catalysts[J]. J. Am.Chem. Soc.,2012,134:8171-8183;(e) Zhao H, Peng J, Cai M Z. Heterogeneoushydrothiolation of alkynes with thiols catalyzed by diphosphino-functionalized MCM-41anchored Rhodium complex[J]. Cat. Lett.,2012,142:138-142.
    [87](a) Weiss C J, Wobser S D, Marks T J. Organoactinide-mediated hydrothiolation ofterminal alkynes with aliphatic, aromatic, and benzylic thiols[J]. J. Am. Chem. Soc.,2009,131:2062-2063;(b) Weiss C J, Wobser S D, Marks T J. Lanthanide-and Actinide-mediatedterminal alkyne hydrothiolation for the catalytic synthesis of Markovnikov vinyl sulfides[J].Organometallics,2010,29:6308-6320.
    [88] Sarma R,, Rajesh N, Prajapat D. Indium(III) catalysed substrate selective hydrothiolation ofterminal alkynes[J]. Chem. Commun.,2012,48:4014-4106.
    [89] Weiss C J, Marks T J. Organozirconium complexes as catalysts for Markovnikov-selectiveintermolecular hydrothiolation of terminal alkynes: scope and mechanism[J]. J. Am. Chem.Soc.,2010,132:10533-10546.
    [90](a) Ogawa A, Ikeda T, Kimura K, et al. Highly regio-and stereocontrolled synthesis of vinylsulfides via transition-metal-catalyzed hydrothiolation of alkynes with thiols[J]. J. Am.Chem. Soc.,1999,121:5108-5114;(b) Shoai S, Bichler P, Kang B, et al. Catalytic alkynehydrothiolation with alkanethiols using Wilkinson's catalyst[J]. Organometallics,2007,26:5778-5781;(c) Yang Y, Rioux R M. Highly regio-and stereoselective hydrothiolation ofacetylenes with thiols catalyzed by a well-defined supported Rh complex[J]. Chem.Commun.,2011,47:6557-6559.
    [91] Corma A, Gonz_alez-Aellano C, Igesias M, et al. Efficient synthesis of vinyl and alkylsulfides via hydrothiolation of alkynes and electron-deficient olefins using soluble andheterogenized gold complexes catalysts original research article[J]. Appl. Catal. A,2010,375:49-54.
    [92] Gerber R, Frech C M. Alkyne hydrothiolation catalyzed by a dichlorobis(aminophosphine)complex of Palladium: selective formation of cis-configured vinyl thioethers[J]. Chem. Eur.J.,2012,18:8901-8905.
    [93] Riduan S N, Ying J Y, Zhang Y. Carbon dioxide mediated stereoselective Copper-catalyzedreductive coupling of alkynes and thiols[J]. Org. Lett.,2012,14:1780-1783.
    [94] Kondoh A, Takami K, Yorimitsu H, et al. Stereoselective hydrothiolation of alkynes catalyzedby cesium base: facile access to (Z)-1-alkenyl sulfides[J]. J. Org. Chem.,2005,70:6468-6473.
    [95](a) Truce W E, Simms J A, Boudakian M M. The stereochemistry of base-catalyzedadditions of thiols to acetylenes[J]. J. Am. Chem. Soc.,1956,78:695-696;(b) Truce W E,Simms J A. Stereospecific reactions of nucleophilic agents with acetylenes and vinyl-typehalides. IV. The stereochemistry of nucleophilic additions of thiols to acetylenichydrocarbons1[J]. J. Am. Chem. Soc.,1956,78:2756-2759;(c) Truce W E, Tichenor G JW. Effect of activating group on trans-stereoselectivity of thiolate additions to activatedacetylenes[J]. J. Org. Chem.,1972,37:2391-2396;(d) Takikawa Y, Shimada K, MatsumotoH. A convenient preparation of Z-styryl, Z,Z-and E,Z-distyryl sulfides in liouid ammonia[J].Chem. Lett.,1983:1351-1354;(e) Silva M S, Lara R G, Marczewski J M, et al. Synthesis ofvinyl sulfides via hydrothiolation of alkynes using Al2O3/KF under solvent-freeconditions[J]. Tetrahedron Lett,2008,49:1927-1930.
    [96] Wang Z, Mo H, Bao W. Mild efficient and highly stereoselective synthesis of(Z)-vinylchalcogenides from vinyl bromides catalyzedby Copper(I) in ionic liquids based on aminoacids[J]. Synlett,2007:91-94.
    [97] Yamashita F, Kuniyasu H, Terao J. et al. Platinum-catalyzed regio-and stereo-selective arylthiolation of internal alkynes[J]. Org. Lett.,2008,10:101-104.
    [1](a) Izawa Y, Pun D, Stahl S. S. Palladium-catalyzed aerobic dehydrogenation ofsubstituted cyclohexanones to phenols[J]. Science,2011,333:209-213;(b) Diao T, Stahl SS. Synthesis of cyclic enones via direct Palladium-catalyzed aerobic dehydrogenation ofketones[J]. J. Am. Chem. Soc.,2011,133:14566-14569;(c) Diao T, Wadzinski T, Stahl S. S.Direct aerobic α,β-dehydrogenation of aldehydes and ketones with aPd(TFA)2/4,5-diazafluorenone catalyst[J]. Chem. Sci.,2012,3:887-891;(d) Izawa Y, ZhengC W, Stahl S. S. Aerobic oxidative Heck/dehydrogenation reactions of cyclohexenones:efficient access to meta-substituted phenols[J]. Angew. Chem., Int. Ed.,2013,52:3672-3675.
    [2] Simon M, Girard S A, Li C J. Catalytic aerobic synthesis of aromatic ethers fromnon-aromatic precursors[J]. Angew. Chem., Int. Ed.,2012,51:7537-7540.
    [3](a) Xie Y, Liu S, Liu Y, et al. Palladium-catalyzed one-pot diarylamine formation fromnitroarenes and cyclohexanones[J]. Org. Lett.,2012,14:1692-1695;(b) Girard S, Hu X,Knauber T, et al. Pd-catalyzed synthesis of aryl amines via oxidative aromatization of cyclicketones and amines with molecular oxygen[J]. Org. Lett.,2012,14:5606-5609;(c) Hajra A,Wei Y, Yoshika N. Palladium-catalyzed aerobic dehydrogenative aromatization ofcyclohexanone imines to arylamines[J]. Org. Lett.,2012,14:5488-5491;(d) Barros M, DeyS, Maycock C,et al. Metal-free Direct Amination/Aromatization of2-cyclohexenones toiodo-N-arylanilines and N-Arylanilines promoted by iodine[J]. Chem. Commun.,2012,48:10901-10903;(e) Zhao J W, Huang H W, Wu W Q, et al. Metal-free synthesis of2-aminobenzothiazoles via aerobic oxidative cyclization/dehydrogenation of cyclohexanonesand thioureas[J]. Org. Lett.2013,15:2604-2607.
    [4] Xu R, Wan J P, Mao H, et al. Facile synthesis of2-(phenylthio)phenols by Copper(I)-catalyzedtandem transformation of C S coupling/C H functionalization[J]. J. Am. Chem. Soc.,2010,132:15531-15533.
    [5] Evans D, Saunders J C, Williamson W R N. Aryl sulphur compounds as antiasthmatics[P],US4122194,1978-10-24.
    [6] Elothmani, D, Do Q T, Simonet J, Guillanton G L, Utilisations synthetiques d'une electrodesoluble au soufre. III. creation De L'enchainement C-S-C a partir D'ethers aromatiques et dephenols[J]. Bulletin de la Societe Chimique de France,1994,131:779–788.
    [7] Samoshin V, Kudryavtsev K V. Novel reaction: brominative aromatization of2-alkyl(aryl)thiocyclohexanones[J]. Tetrahedron Lett.,1994,35:7413–7414.
    [8] Oba M, Tanaka K, Nishiyama K, et al. Aerobic oxidation of thiols to disulfides catalyzed bydiaryl tellurides under photosensitized conditions [J]. J. Org. Chem.2011,76:4173-4177.
    [9] Krasnova L B, Yudin A K. p-Tolylsulfinyl amides: reagents for facile electrophilicfunctionalization of Olefins[J]. J. Org. Chem.2004,69:2584-2587.
    [10] Trost B M, Rigby J H. Dehydrogenative sulfenylation of cyclohexanones[J]. TetrahedronLett.,1978,19:1667-1670.
    [1](a) Izawa Y, Pun D, Stahl S S. Palladium-catalyzed aerobic dehydrogenation of substitutedcyclohexanones to phenols[J]. Science2011,333:209-213;(b) Diao T, Stahl S S. Synthesisof cyclic enones via direct Palladium-catalyzed aerobic dehydrogenation of ketones[J]. J. Am.Chem. Soc.2011,133:14566-14569;(c) Diao T, Wadzinski T, Stahl S. S.Direct Aerobicα,β-Dehydrogenation of aldehydes and ketones with a Pd(TFA)2/4,5-diazafluorenoneCatalyst[J]. Chem. Sci.,2012,3:887.
    [2](a) Xie Y J, Liu S W, Liu Y, et al Palladium-catalyzed one-pot diarylamine formation fromnitroarenes and cyclohexanones[J]. Org. Lett.2012,14:1692-1695;(b) Girard S, Hu X,Knauber T,et al Pd-catalyzed synthesis of aryl amines via oxidative aromatization of cyclicketones and amines with molecular oxygen[J]. Org. Lett.2012,14:5606-5609;(c) Hajra A,Wei Y and Yoshika N. Palladium-catalyzed aerobic dehydrogenative aromatization ofcyclohexanone imines to arylamines[J]. Org. Lett.2012,14:5488-5491;(d) Barros M, Dey S,Maycock C, et al. Metal-free direct amination/aromatization of2-cyclohexenones toiodo-N-arylanilines and N-arylanilines promoted by iodine[J]. Chem. Commun.2012,48:10901-10903.
    [3] Simon M, Girard S A, Li C J. Catalytic aerobic synthesis of aromatic ethers from non-aromaticprecursors[J]. Angew. Chem. Int. Ed.2012,51:7537-7540.
    [4](a) Xiao F H, Liao Y F, Wu M Y,et al. One-pot synthesis of carbazoles from cyclohexanonesand arylhydrazine hydrochlorides under metal-free conditions[J]. Green Chem.2012,14:3277-3280;
    [5] Ma D W, Geng Q, Zhang H, et al. Assembly of substituted phenothiazines by a sequentiallycontrolled CuI/L-proline-catalyzed cascade C-S and C-N bond formation [J]. Angew. Chem.Int. Ed.2010,49:1291-1294.
    [6] Dai C, Sun X F, Tu X, et al. Novel Copper-catalyzed rearrangement of2-aminobenzothiazolesto phenothiazines[J]. Chem. Commun.2012,48:5367-5369.
    [7] Bayer A G. Verfahren zur herstellung von in10-stellung basisch substituierten3-alkyl-phenthiazinen. DE1051857.1959-03-05.
    [8] Madrid P B, Polgar W E, Toll L, et al. Synthesis and antitubercular activity of phenothiazineswith reduced binding to dopamine and serotonin receptors[J]. Bioorg. Med. Chem. Lett.2007,17:3014-3017.
    [9] Craig C, Warburton. Lipoid-water partition coefficients of some phenothiazines[J]. Aust. JChem.1956,9:294-295.
    [10] Thomas L, Gupta A, Gupta V. Synthesis of1-and3-methyl phenothiazines[J]. Heterocycl.Commun.2002,8:343-348.
    [1](a) Zhu Y, Jia F, Liu M, et al. A multipathway coupled domino strategy: metal-free oxidativecyclization for one-pot synthesis of2-acylbenzothiazoles from multiform substrates[J]. Org.Lett.2012,14,4414-4417;(b) Zhu Y, Jia F, Liu M, et al. I2–CF3SO3H Synergistic promotedsp3C–H bond diarylation of aromatic ketones[J]. Org. Lett.2012,14:5378-5381.
    [2] Duan Z Y, Sadananda R, Liu X G. One-pot synthesis of amine-substituted aryl sulfides andbenzo[b]thiophene derivatives[J]. Org. Lett.2010,12:2430-2433.
    [3] Chakraborti A K, Rudrawar S, Jadhav K B.“On Water” organic synthesis: a highly efficientand clean synthesis of2-aryl/heteroaryl/styryl benzothiazoles and2-alkyl/aryl alkylbenzothiazolines[J]. Green Chem.2007,9:1335-1340.
    [4] Matsushita H, Lee S H, Joung M. Smart cleavage reactions: the synthesis of benzimidazolesand benzothiazoles from polymer-bound Esters[J]. Tetrahedron Lett.2004,45:313-316.
    [5] Chen R, Liu S W, Liu X H, Yang L, et al. Palladium-catalyzed desulfitative C–H arylation ofazoles with sodium sulfinates[J]. Org. Biomol. Chem.2011,9:7675-7679.
    [6] Deng H, Li Z K, Ke F, et al. Cu-catalyzed three-component synthesis of substitutedbenzothiazoles in water[J]. Chem. Eur. J.2012,18:4840-4843.
    [7] Liu B, Qin X R, Li K Z. A Palladium/Copper bimetallic catalytic system: dramaticimprovement for Suzuki–Miyaura-Type direct C H arylation of azoles with arylboronicacids[J]. Chem. Eur. J.2010,16:11836-11839.
    [8] Praveen C, Kumar K H, Muralidharan D. Oxidative cyclization of thiophenolic and phenolicschiff's bases promoted by PCC: a new oxidant for2-substituted benzothiazoles andbenzoxazoles[J]. Tetrahedron2008,64:2369-2374.
    [9] Chakraborti A K, Selvam C, Kaur G. et al. An efficient synthesis of benzothiazoles by directcondensation of carboxylic acids with2-aminothiophenol under microwave irradiation[J].Synlett2004:851-855.
    [10] Yamamoto T, Muto K, Canivet J, et al. Nickel-catalyzed C-H arylation of azoles withhaloarenes: scope, mechanism, and applications to the synthesis of bioactive molecules[J].Chem. Eur. J.2011,17:10113-10122.
    [11] Wang H B, Wang L, Shang J S. Fe-catalysed oxidative C–H functionalization/C–S bondformation[J]. Chem. Commun.2012,48:76-78.
    [12] Inamoto K, Hasegawa C, Hiroya K. Palladium-catalyzed synthesis of2-substitutedbenzothiazoles via a C H functionalization/intramolecular C S bond formation process[J].Org. Lett.2008,10:5147-5150.
    [13] Bose D S, Idrees M. Hypervalent iodine mediated intramolecular cyclization ofthioformanilides: expeditious approach to2-substituted benzothiazoles[J]. J. Org. Chem.2006,71:8261-8263.
    [14] Auld D S, Zhang Y Q, Southall N T. A basis for reduced chemical library inhibition of fireflyluciferase obtained from directed evolution[J]. J. Med. Chem.2009,52:1450-1458.
    [1] Ranjit S, Liu X G, Duan Z Y. Synthesis of vinyl sulfides by Copper-catalyzed decarboxylativeC S cross-coupling[J]. Org. Lett.2010,12:4134-4136.
    [2] Gerber R, Frech C M. Alkyne hydrothiolation catalyzed by a dichlorobis(aminophosphine)complex of Palladium: selective formation of cis-configured vinyl thioethers[J]. Chem. Eur. J.2012,18:8901-8905.
    [3] Sarma R, Rajesh N, Prajapati D. Indium(III) catalysed substrate selective hydrothiolation ofterminal alkynes[J]. Chem. Commun.2012,48:4014-4016.
    [4] Zheng Y F, Du X F, Bao W L. L-proline promoted cross-coupling of vinyl bromide with thiolscatalyzed by CuBr in ionic liquid[J]. Tetrahedron Lett.2006,47:1217.
    [5] Bhadra S, Ranu B C. Water-promoted regioselective hydrothiolation of alkynes[J]. Can. J.Chem.2009,87:1605-1609.
    [6] Yang Y, Rioux R M. Highly regio-and stereoselective hydrothiolation of acetylenes with thiolscatalyzed by a well-defined supported Rh complex[J].Chem. Commun.2011,47:6557-6559.
    [7] Raghuvanshi D S, Singh K N, Singh R. Regioselective hydrothiolation of alkynes by sulfonylhydrazides using organic ionic base-bronsted acid[J]. Org. Lett.2013,15:4202-4205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700