散体介质冲击载荷作用下力学行为理论分析与算法实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由大量粒子或粒子团所组成的散体介质广泛存在于生物、化工、材料等各类工程问题当中,揭示其在冲击载荷作用下所呈现的复杂动力学行为以及产生这些动力学行为的物理机制是当前多学科研究领域所关注的重要内容。本文主要从四个方面研究了散体介质的冲击行为:(1)一维球链在冲击载荷作用下波动现象的连续化描述方法,波的结构、传播规律和相关性质的研究。(2)散体介质间库仑摩擦力的描述,以及多刚体系统含库仑摩擦力的动态超静定问题的分析方法和数值算法。(3)散体介质间碰撞过程中法向局部能量耗散现象的描述方法和相应的数值算法。(4)大量散体材料的宏观力学性能分析。
     一维球链在冲击载荷作用下将呈现明显的连续介质性质:外部冲击载荷在球链中以波的形式存在,并按照确定的波速传播和扩散。为有效描述散体介质的这种自组织行为,本文首先精细分析冲击载荷影响范围内各个质点的动力学响应,进而基于广义Hamilton变分原理将散体介质的波动行为表示为一组三角函数正交基的线性组合,从而建立了散体介质宏观冲击行为的连续化描述方法。在该连续化描述方法的基础上研究了一维球链所激发的波形结构以及波的传播规律和相关性质,并建立了球链中非线性Hertz接触模型和线性接触模型之间的等效关系。通过相关的数值计算结果和实验结果的比较验证了该连续化分析方法的有效性。
     摩擦对多刚体的动力学行为研究带来巨大的挑战,近年来的研究结果表明摩擦(特别是库仑摩擦中的粘滞现象)是决定散体介质宏观力学行为的主要因素。本文基于变结构动力学的思想,通过引入补充的运动约束方程建立了处理由于库仑摩擦引起的的多刚体系统动态超静定问题的分析方法;同时引入Stronge定义的能量恢复系数建立了考虑局部能量耗散现象的刚体碰撞接触模型。数值算例和相关文献发表的实验结果验证了该方法的有效性。
     复杂散体介质受到冲击载荷作用下的动力学行为的描述依赖于高效的数值算法。在建立相关接触搜索算法的基础上发展了月壤计算机模拟生成技术;研究了月壤在受到冲击载荷作用下的动力学特性,提出了月壤力学性能的简化分析模型。研究表明月壤的承载能力与冲击速度有关:低速冲击情况下主要体现在粒子的相对密实和位错;高速冲击情况下则体现在月壤内部粒子形成的射流和飞溅。通过与NASA相关实验的对比建立了月壤轴对称问题二维到三维模型的等效规则。
Granular materials are formed by amounts of particles and it is useful for shockingprotection. The dynamic behavior of granular materials is neither similar to solid nor?uent and that caused the vigorous interest of many researchers. When shock accruesin granular materials, it will propagate through the granular materials and many inter-esting dynamic phenomena will be caused. This paper started from theoretical researchworks of a 1D chain of beads which was hit at one end of the chain, based on the Hamil-ton variational principle a continuable method has been carried out to analysis the wavepropagating of the chain. Multi-body dynamics with contact and friction is always atough problem, rigid body model and Coulomb’s law will caused many difficulties andinconsistencies. By bring movement restrictions of stick points from Lagrange ana-lytical mechanics into multi-body dynamics and defining contact model with energydissipation, the problem has been solved theoretically and numerically. At last the dy-namic behavior of Lunar soil has been studied from distinct element method(DEM), thelunar soil can be regarded as an ideal elastic-plastic spring under low-velocity impact.
     Chain of beads is a simple granular materials. When a long line of particles ishit at one end by another particle, dynamical self-organized impulsive waves will begenerated and propagating through the chain, after that the chain will fragmentate. Theimpulsive waves is propagating in constant speed with a wavelength affect area, parti-cles besides this area can not effect the movement of the waves. Based on the Hamiltonvariational principle we develop a continuable method, in this method theoretical re-sults of the waves can be described by the sum of a set of trigonometric functions.From analytical works we get that all the possible structures of the waves are decidedby the mass ratio of the chain, but the stiffness ratio of the chain excite the exact wavestructure.
     Multi-body dynamics with contact and friction is fundamental for mechanics andengineering, but rigid body model and Coulomb’s law in multi-body dynamics bringmany difficulties and inconsistencies. Contact between rigid bodies is described by lo-cal ?exibility model, it is a double stiffness track basing on Hertz contact law and the restitution coefficient defined by Stronge. Movement restrictions of stick points are ad-ditional conditions to get the static frictions between rigid bodies. Then the movementof the multi-body system with contact and friction can be decided.
     Lunar soil–a typical granular materials has also been studied in this paper. A com-puter simulation technology has been used to get the numerical model of the lunar soil,dynamic behavior of the numerical model under impact is simulated by distinct elementmethod. Compared numerical results and experiment results we find the relationshipbetween 2D and 3D model of axis symmetry problems. Under low-velocity impact thedynamic behavior of the lunar soil is decided by the denseness and dislocation of theparticles; jet ?ow of particles will be the major phenomena of lunar soil under high-velocity impact.
引文
[1] D. T. Spasic, T. M. Atanackovic. A Model for Three Spheres in Colinear Impact[J]. Archiveof Applied Mechanics. 2001, 71:327–340
    [2] Alexandre Rosas, Katja Lindenberg. Pulse Velocity in a Granular Chain[J]. Physical ReviewE. 2004, 69:037601
    [3] Stefan Hutzler, Gary Delaney, Denis Weaire, Finn MacLeod. Rocking Newton’s Cradle[J].American Association of Physics Teachers. 2004, 72:1508–1516
    [4] Viorel Ceanga, Yildirim Hurmuzlu. A New Look at an Old Problem: Newton’s Cradle[J].Journal of Applied Mechanics. 2001, 521:168–176
    [5] D.D. Quinn, K. Bairavarasu. Near-Simultaneous Impacts[J]. International Journal of ImpactEngineering. 2004, 4:320–332
    [6] E. D. Sontag. Nonsmooth Mechanics[M]. 1992
    [7] Marian Manciu, Surajit Sen, Alan J. Hurd. The Propagation and Backscattering of Soliton-Like Pulses in a Chain of Quartz Beads and Related Problems. (II). Backscattering[J]. Phys-ica A. 1999, 274:607–618
    [8] Raman Singh, Arun Shukla, Harry Zervas. Explosively Generated Pulse PropagationThrough Particles Containing Natural Cracks[J]. Mechanics of Materials. 1996, 23:255–270
    [9] C. Coste, E. Falcon, S. Fauve. Solitary Waves in a Chain of Beads Under Hertz Contact[J].Physical Review E. 1997, 56:6104–6117
    [10] V. F. Nesterenko, A. N. Lazaridi. Tunability of Solitary Wave Properties in One-DimensionalStrongly Nonlinear Phononic Crystals[J]. Journal of Applied Mechanics and TechnicalPhysics. 1985, 26:USSR
    [11] V. F. Nesterenko, A. N. Lazaridi. Problems of Nolinear Acoustics[J]. Nonlinear Acoustics.1987, 1:309–313
    [12] V. F. Nesterenko. High-Rate Deformation of Heterogeneous Materials[M]. 1992
    [13] Anindya Chatterjee. Asymptotic Solution for Solitary Waves in a Chain of Elastic Spheres[J].Physical Review E. 1999, 59:5912–5919
    [14] R. S. MacKay. Solitary Waves in a Chain of Beads Under Hertz Contact[J]. Physics LettersA. 1999, 251:191–192
    [15] Surajit Sen, Marian Manciu. Solitary Wave Dynamics in Generalized Hertz Chains: AnImproved Solution of the Equation of Motion[J]. Physical Review E. 2001, 64:056605
    [16] V. Tournat, V. E. Gusev, B. Castagne`de. Self-Demodulation of Elastic Waves in a One-Dimensional Granular Chain[J]. Physical Review E. 2004, 70:056603
    [17] E.B. Herbold, V.F. Nesterenko. Shock Wave Structure in a Strongly Nonlinear Lattice WithViscous Dissipation[J]. Physical Review E. 2007, 75:021304
    [18] Jongbae Hong. Universal Power-Law Decay of the Impulse Energy in Granular Protectors[J].Physical Review Letters. 2005, 94:108001
    [19] E. J. Hinch, S. Saint-Jean. The Fragmentation of a Line of Balls by an Impact[J]. Proc R SocLond A. 1999, 455:3201–3220
    [20] Wei Ma, Caishan Liu, Bin Chen, Lin Huang. Theoretical Model for the Pulse Dynamics in aLong Granular Chain[J]. Physical Review E. 2006, 74:046602
    [21] Jongjin Lee, Sangdo Park, Insuk Yu. Multi-Soliton Propagation in a Linear GranularChain[J]. Physical Review E. 2003, 67:066607
    [22] Surajit Sen, Marian Manciu, Robert S. Sinkov its, Alan J. Hurd. Nonlinear Acoustics inGranular Assemblies[J]. Granular Matter. 2001, 3:33–39
    [23] Jongbae Hong, Aiguo Xu. Effects of Gravity and Nonlinearity On the Waves in the GranularChain[J]. Physical Review E. 2001, 63:061310
    [24] E. Hascoet, E. J. Hinch. Linearized Impulse Wave Propagating Down a Vertical Column ofHeavy Particles[J]. Physical Review E. 2002, 66:011307
    [25] Jongbae Hong, Heekyung Kim, Jeong-Pil Hwang. Characterization of Soliton Damping inthe Granular Chain Under Gravity[J]. Physical Review E. 1999, 61:964–967
    [26] Marian Manciu, Victoria N. Tehan, Surajit Sen. Dynamics of a Gravitationally Loaded Chainof Elastic Beads[J]. Chaos. 2000, 10:658–669
    [27] C.A. Arancibia-Bulnes, J. C. Ruiz-Sua′rez. Broad Solitions in Homogeneous Hertzian Gran-ular Chains[J]. Physica D. 2002, 168-169:159–164
    [28] Francisco Melo, Ste′phane Job, Francisco Santibanez, Franco Tapia. Experimental Evidenceof Shock Mitigation in a Hertzian Tapered Chain[J]. Physical Review E. 2006, 73:041305
    [29] C. Daraio, V. F. Nesterenko, E. B. Herbold, S. Jin. Tunability of Solitary Wave Propertiesin One-Dimensional Strongly Nonlinear Phononic Crystals[J]. Physical Review E. 2006,73:026610– 174 –
    [30] Masami Nakagawa, Juan H. Agui, David T. Wu, David Vivanco Extramiana. Impulse Dis-persion in a Tapered Granular Chain[J]. Granular Matter. 2003, 4:167–174
    [31] Robert L. Doney. Impulse Absorption by Tapered Horizontal Alignments of ElasticSpheres[J]. Physical Review E. 2005, 72:041304
    [32] Jongbae Hong. Slow Dynamical Behaviors of the Propagating Signal in Granular ChainUnder Gravity[J]. Physica A. 2002, 315:187–193
    [33] Charles S. Campbell. A Problem Related to the Stability of Force Chains[J]. Granular Matter.2003, 5:129–134
    [34] Stephane Job, Francisco Melo. How Hertzian Solitary Waves Interact With Boundaries in a1D Granular Medium[J]. Physical Review Letters. 2005, 94:178002
    [35] Lautaro Vergara. Scattering of Solitary Waves From Interfaces in Granular Media[J]. Physi-cal Review Letters. 2005, 95:108002
    [36] Lautaro Vergara. Delayed Scattering of Solitary Waves From Interfaces in a Granular Con-tainer[J]. Physical Review E. 2006, 73:066623
    [37] Robert Doney. Decorated, Tapered, and Highly Nonlinear Granular Chain[J]. Physical Re-view Letters. 2006, 97:155502
    [38] C. Daraio, V.F. Nesterenko, E. B. Herbold, S. Jin. Strongly Nonlinear Waves in a Chain ofTe?on Beads[J]. Physical Review E. 2005, 72:016603
    [39] V. F. Nesterenko, C. Daraio, E. B. Herbold, S. Jin. Anomalous Wave Re?ection at theInterface of Two Strongly Nonlinear Granular Media[J]. Physical Review Letters. 2005,95:158702
    [40] C. Daraio, V. F. Nesterenko. Strongly Nonlinear Wave Dynamics in a Chain of PolymerCoated Beads[J]. Physical Review E. 2006, 73:026612
    [41] C. Daraio, V. F. Nesterenko, E. B. Herbold, S. Jin. Energy Trapping and Shock Disintegrationin a Composite Granular Medium[J]. Physical Review Letters. 2006, 96:058002
    [42] E.B. Herbold, V.F. Nesterenko. Solitary and Shock Waves in Discrete Double Power-LawMaterials[J]. Physical Review E. 2007, 70:012831
    [43] Peng Song, Peter Kraus, Vijay Kumar. Analysis of Rigid Body Dynamic Models for Simula-tion of Systems With Frictional Contacts[J]. Journal of Applied Mechanics. 2000, 32:102–124
    [44] Lars Johansson. A Newton Method for Rigid Body Frictional Impact With Multiple Simula-taneous Impact Points[J]. Computer Methods in Applied Mechanics and Engineering. 2001,191:239–254
    [45] W. J. Stronge. Chain Reaction From Impact On Aggregate of Elasto-Plastic‘Rigid’Bodies[J]. International Journal of Impact Engineering. 2003, 28:291–302
    [46] W. J. Stronge. Contact Problems for Elasto-Plastic Impact in Multi-Body Systems[J]. LectureNotes in Physics. 2000, 551:189–234
    [47] G. G. Adams. Imperfectly Constrained Planer Impacts - A Coefficient of RestitutionModel[J]. International Journal of Impact Engineering. 1997, 19:693–701
    [48] M. Schatzman. Sue une classe de proble′mes hyperboliques non line′aires[J]. C R Acad SciParis Se′r. 1973, 277:A671–A674
    [49] J.-J Moreau. Application of Convex Analysis to Some Problems of Dry Friction[J]. Appli-cations of Pure Mathematics to Mechanics. 1979, II:263–280
    [50] J.-J Moreau. Standard Inelastic Shocks and the Dynamics of Unilateral Constraints[J]. Uni-lateral Problems in Structural Mechanics. 1985, 288:173–221
    [51] J.-J Moreau. Bounded Variation in Time[J]. Nonsmooth Mechanics. 1988, 2:1–74
    [52] J.-J Moreau. Unilateral Contact and Dry Friction in Finite Freedom Dynamics[J]. Nons-mooth Mechanics and Applications. 1988, 302:1–82
    [53] M. D. P. Monteiro Marques. Chocs ine′lastiques standards: un re′sultat d’existence[J]. Se′mAnal. 1985, 15:1–32
    [54] M. D. P. Monteiro Marques. Differential Inclusions in Nonsmooth Mechanical Problems:Shocks and Dry Friction[J]. Nonlinear Differential Equations and Applications. 1993, 9:11–52
    [55] B. Brogliato. Nonsmooth Impact Mechanics: Models, Dynamics and Control[M]. LectureNotes in Control and Information, 1996
    [56] David E. Stewart. Rigid-Body Dynamics With Friction and Impact[J]. Society for Industryand Applied Mathematics Review. 2000, 42:3–39
    [57] Peng Song, Jong-Shi Pang, Vijay Kumar. A Semi-Implicit Time-Stepping Model for Fric-tional Compliant Contact Problems[J]. Journal of Sound and Vibration. 2007, 283:433–448
    [58] Anindya Chatterjee. On the Realism of Complementarity Conditions in Rigid Body Colli-sions[J]. Nolinear Dynamics. 1999, 20:159–168
    [59] Mihai Anitescu, Gary D. Hart. Solving Nonconvex Problems of Multibody Dynamics WithJoints, Contact and Small Friction by Successive Convex Relaxation[J]. Math Struct andMech. 2000, TBIP:1–24
    [60] Mihai Anitescu, Gary D. Hart. A Fixed-Point Iteration Approach for Multibody DynamicsWith Contact and Small Friction[J]. Mathematical Programming. 2004, 101:3–32
    [61] Igor S. Aranson. Patterns and Collective Behavior in Granular Media: Theoretical Con-cepts[J]. Reviews of Modern Physics. 2006, 78:641–692
    [62] Martin van Hecke. Shape Matters[J]. Materials Science. 2007, 317:49–50
    [63] Vijay Narayan, Sriram Ramaswamy, Narayanan Menon. Long-Lived Giant Number Fluctu-ations in a Swarming Granular Nematic[J]. Science. 2007, 317:105–108
    [64] H. S. Wright, Michael R. Swift, P. J. King. Stochastic Dynamics of a Rod Bouncing Upon aVibrating Surface[J]. Physical Review E. 2006, 74:061309
    [65] Dmitri Volfson, Arshad Kudrolli, Lev S. Tsimring. Anisotropy Driven Dynamics in VibratedGranular Rods[J]. Journal of Sound and Vibration. 2004, 283:433–448
    [66] Igor S. Aranson, Dmitri Volfson, Lev S. Tsimring. Swirling Motion in a System of VibratedElongated Particles[J]. Physical Review E. 2007, 75:051301
    [67] S. Dorbolo, D. Volfson, L. Tsimring, A. Kudrolli. Dynamics of a Bouncing Dimer[J]. Phys-ical Review Letters. 2005, 95:044101
    [68] C. Goldenberg, I. Goldhirsch. Friction Enhances Elasticity in Granular Solids[J]. Letters ofNature. 2005, 435:188–191
    [69] C.S. Chang, Q. Shi, C. L. Liao. Elastic Constants for Granular Materials Modeled as First-Order Strain-Gradient Continua[J]. International Journal of Solids and Structures. 2003,40:5565–5582
    [70] Donald P. Visco, Jr., Saravanan Swaminathan. Impulse Penetration into Idealized Granu-lar Beds: Behavior of Cumulative Surface Kinetic Energy[J]. Physical Review E. 2004,70:051306
    [71] Meheboob Alam, Stefan Luding. Energy Nonequipartition, Rheology, and Microstructure inSheared Bidisperse Granular Mixtures[J]. Physics of Fluids. 2005, 17:063303
    [72] S. Luding. The Effect of Friction On Wide Shear Bands[J]. Journal of Sound and Vibration.2004, 21:23–40
    [73] O. Mouraille, S. Luding. Sound Wave Propagation in Weakly Polydisperse Granular Mate-rials[J]. Journal of Sound and Vibration. 2007, 5:231–242
    [74] S. Lunding. Collisions and Contacts Between Two Particles[J]. Institute for Computer Ap-plications. 2005, 13:210–221
    [75] Stefan Luding. Cohesive, Frictional Powders: Contact Models for Tension[J]. GranularMatter Manuscript. 2006, 23:441–448
    [76] B. Muth, M.-K. Mu¨ller, P. Eberhard, S. Luding. Collision Detection and AdministrationMethods for Many Particles With Different Sizes[J]. Journal of Sound and Vibration. 2007,283:433–448
    [77] Stefan Luding, Karsten Manetsbergerc, Johannes Mu¨llers. A Discrete Model for Long TimeSintering[J]. Journal of Mechanics and Physics of Solids. 2005, 53:455–491
    [78] S. Luding. Granular Materials Under Vibration: Simulations of Rotating Spheres[J]. PhysicalReview E. 1995, 52:4442–4457
    [79] Zhiwei Xu, Michael Yu Wang, Tianning Chen. Particle Damping for Passive Vibration Sup-pression: Numerical Modeling and Experimental Investigation[J]. Journal of Sound andVibration. 2005, 279:1097–1120
    [80] M. Saeki. Analytical Study of Multi-Particle Damping[J]. Journal of Sound and Vibration.2005, 281:1133–1144
    [81] Sean McNamara, Eric Falcon. Simulations of Vibrated Granular Medium With Impact-Velocity-Dependent Restitution Coefficient[J]. Physical Review E. 2005, 71:031302
    [82] Martin H. Sadd, Qingli Dai. A Comparison of Micro-Mechanical Modeling of Asphalt Ma-terials Using Finite Elements and Doublet Mechanics[J]. Mechanics of Materials. 2005,37:641–662
    [83] M.P. Wojtkowski. A System of One Dimensional Balls With Gravity[J]. Communications inMathematical Physics. 1990, 126:507–533
    [84] M.P. Wojtkowski. The System of One Dimensional Balls in an External Field. II[J]. Com-munications in Mathematical Physics. 1990, 127:425–432
    [85] Ch. Glocker, Zurich, Switzerland. Concepts for Modeling Impacts Without Friction[J]. ActaMechanica. 2004, 10:1007–1026
    [86] Lin Huang. Linear Algebra in System and Control Theory[M]. Science Press of PRC, 2001
    [87] 钟万勰. 数值计算方法[M]. 建筑工业出版社, 1990
    [88] T. J. Ahrens. Constraints On Core Composition From Shock Wave Data[J]. Phil Trans RoySoc London. 1982, 3:12–32
    [89] T. J. Ahrens. Application of Shock Wave Data to Earth and Planetary Science[J]. New York:Plenum Press. 1986, 8:56–73
    [90] T. J. Ahrens. Application of Shock Compression Science to Earth and Planetary Physics[J].America Physical Society. 1996, 5:25–30
    [91] Piekutowski, A.J. Formation of Bowl-Shaped Craters[J]. Proceedings of Lunar ScienceConference. 1980, 11:2129–2144
    [92] Housen, K.R., Schmidt, R.M., Holsapple, K.A. Crater Ejecta Scaling Laws: FundamentalForms Based On Dimensional Analysis[J]. Journal of Geophysical Research. 1983, 88:2485–2499
    [93] Housen, K.R., Holsapple, K.A. Impact Cratering On Porous Asteroids[J]. Icarus. 2003,163:102–119
    [94] Edwin L. Fasanella. Low Velocity Earth-Penetaration Test and Analysis[J]. American Insti-tute of Aeronautics and Astronautics. 2001, 1388:1–10
    [95] John Locke McCarty, Huey D. Carden. Experimental Study of Vertical Impact of an Lm-Type Landing Gear Assembly Under Simulated Lunar Gravity[J]. National Aeronautics andSpace Administration. 1968, D-4711:NASA TN
    [96] 王敏中. 高等弹性力学[M]. 北京大学出版社, 2002
    [97] L. Vu-Quoc, X. Zhang, O.R. Walton. A 3-D Discrete-element Method for Dry GranularFlows of Ellipsoidal Particles[J]. Computer Methods in Applied Mechanics and Engineering.2000, 187:483–528
    [98] Xiang Zhang, L. Vu-Quoc. Simulation of Chute Flow of Soybeans Using an Improved Tan-gential Force-Displacement Model[J]. Mechanics of Materials. 2000, 32:115–129
    [99] Oleg Vinogradov. Equivalent Normal Stiffness of the Ball in Granular Dynamics Simula-tions[J]. Granular Matter. 2003, 5:153–158
    [100] Kun S. Marhadi, Vikram K. Kinra. Particle Impact Damping: Effect of Mass Ratio, Material,and Shape[J]. Journal of Sound and Vibration. 2005, 283:433–448
    [101] Laetitia Paoli. Penalty Approximation for Dynamical Systems Submitted to Multiple Non-Smooth Constraints[J]. Multibody System Dynamics. 2002, 8:347–366
    [102] Alexandre Rosas, Katja Lindenberg. Pulse Dynamics in a Chain of Granules With Friction[J].Physical Review E. 2003, 68:041304
    [103] David T. Wu. Conservation Principles in Solitary Impulse Propagation Through GranularChains[J]. Physica A. 2002, 315:194–202
    [104] Nark Nyul Choi, Min-Ho Lee, Gregor Tanner. Classical Dynamics Near the Triple Collisionin a Three-Body Coulomb Problem[J]. Physical Review Letters. 2004, 93:054302
    [105] A. P. Ivanov. On Multiple Impact[J]. Journal of Applied Mathematics and Mechanics. 1995,59:887–902
    [106] C Thorntony, K K Yin, M J Adams. Numerical Simulation of the Impact Fracture and Frag-mentation of Agglomerates[J]. Journal of Physics D: Applied Physics. 1996, 29:424–435
    [107] K. van Staeyen, E. Tijskens, H. Ramon. A Multibody Dynamic Approach for CollidingParticles[J]. Journal of Sound and Vibration. 2003, 266:481–491
    [108] J.M. HILL, A.P.S. SELVADURAI. Mathematics and Mechanics of Granular Materials[J].Journal of Engineering Mathematics. 2005, 52:1–9
    [109] David Elata, James G. Berryman. Contact Force-Displacement Laws and the MechanicalBehavior of Random Packs of Identical Spheres[J]. Mechanics of Materials. 1996, 24:229–240
    [110] Antonio Sarmiento, Ramon Reigada, Aldo H. Romero, Katja Lindenberg. Enhanced PulsePropagation in Nonlinear Arrays of Oscillators[J]. Physical Review E. 1999, 60:5317–5326
    [111] E. Trizac. Correlations in Ballistic Processes[J]. Physical Review Letters. 2003, 91:218302
    [112] B. Velicky, C. Caroli. Pressure Dependence of the Sound Velocity in a Two-DimensionalLattice of Hertz-Mindlin Balls: Mean-Field Description[J]. Physical Review E. 2002,65:021307
    [113] Jacek S. Leszczynski. Using the Fractional Interaction Law to Model the Impact Dynamicsof Multi-Particle Collisions in Arbitrary Form[J]. Physical Review E. 2004, 70:051315
    [114] Felicia S. Manciu, Surajit Sen. Secondary Solitary Wave Formation in Systems With Gener-alized Hertz Interactions[J]. Physical Review E. 2002, 66:016616
    [115] S. Luding, E. Clement, A. Blumen, J. Rajchenbach, J. Duran. Onset of Convection in Molec-ular Dynamics Simulations of Grains[J]. Physical Review E. 1994, 50:R1762–R1765
    [116] S. Luding, E. Clement, A. Blumen, J. Rajchenbach, J. Duran. Anomalous Energy Dissipationin Molecular-Dynamics Simulations of Grains[J]. Physical Review E. 1994, 50:4113–4122
    [117] Phil Attard. Interaction and Deformation of Viscoelastic Particles: Nonadhesive Particles[J].Physical Review E. 2001, 63:061604
    [118] S. Dippel, G. G. Batrouni, D. E. Wolf. Collision-Induced Friction in the Motion of a SingleParticle On a Bumpy Inclined Line[J]. Physical Review E. 1996, 54:6845–6856
    [119] Stephen R. Hostler. Wave Propagation in Granular Materials[M]. Javier Bezos, 2004
    [120] Brian Mirtich. Rigid Body Contact: Collision Detection to Force Computation[J]. ContactAnalysis and Simulation. 1998, 21:533
    [121] A. Santander, J. Mahecha, F. Pe′rez. Rigid-Rotator and Fixed-Shape Solutions to the CoulombThree-Body Problem[J]. Few-Body Systems. 1997, 22:37–60
    [122] W. J. Stronge. The Domino Effect: A Wave of Destabilizing Collisions in a Periodic Array[J].Mathematical and Physical Sciences. 1987, 409:199–208
    [123] Huaning Zhu, Morteza M. Mehrabadi, Mehrdad Massoudi. Three-Dimensional ConstitutiveRelations for Granular Materials Based On the Dilatant Double Shearing Mechanism and theConcept of Fabric[J]. International Journal of Plasticity. 2006, 22:826–857
    [124] Kuanmin Maoa, Michael Yu Wangb, Zhiwei Xuc, Tianning Chen. DEM Simulation of Par-ticle Damping[J]. Powder Technology. 2004, 142:154–165
    [125] Francesco Paolo Di Maio, Alberto Di Renzo. Analytical Solution for the Problem ofFrictional-Elastic Collisions of Spherical Particles Using the Linear Model[J]. ChemicalEngineering Science. 2004, 59:3461–3475
    [126] Alberto Di Renzo, Francesco Paolo Di Maio. Comparison of Contact-Force Models for theSimulation of Collisions in DEM Based Granular Flow Codes[J]. Chemical EngineeringScience. 2004, 59:525–541
    [127] Paul A. Langston, Mohammad A. Al-Awamleh, Feras Y. Fraige, Basel N. Asmar. DistinctElement Modelling of Nonspherical Frictionless Particle Flow[J]. Chemical EngineeringScience. 2004, 59:425–435
    [128] A. Samimi, A. Hassanpour, M. Ghadiri. Single and Bulk Compressions of Soft Granules: Ex-perimental Study and DEM Evaluation[J]. Chemical Engineering Science. 2004, 60:3993–4004
    [129] Zemin Ning, Mojtaba Ghadiri. Distinct Element Analysis of Attrition of Granular SolidsUnder Shear Deformation[J]. Chemical Engineering Science. 2006, 61:5991–6001
    [130] Maddalena Fanellia, Donald L. Fekea, Ica Manas-Zloczower. Prediction of the Dispersionof Particle Clusters in the Nano-Scale―Part I: Steady Shearing Responses[J]. ChemicalEngineering Science. 2006, 61:473–488
    [131] Maddalena Fanellia, Donald L. Fekea, Ica Manas-Zloczower. Prediction of the Dispersionof Particle Clusters in the Nano-Scale―Part II, Unsteady Shearing Responses[J]. ChemicalEngineering Science. 2006, 61:4944–4956
    [132] Budong Yang, Yue Jiao, Shuting Lei. A Study On the Effects of Microparameters OnMacroproperties for Specimens Created by Bonded Particles[J]. International Journal forComputer-Aided Engineering and Software. 2006, 23:607–631
    [133] Markus Herten, Matthias Pulsfort. Determination of Spatial Earth Pressure On Circular ShaftConstructions[J]. Granular Matter. 1999, 2:1–7
    [134] B. N. Asmar, P. A. Langston, A. J. Matchett. A Generalised Mixing Index in Distinct ElementMethod Simulation of Vibrated Particulate Beds[J]. Granular Matter. 2002, 4:129–138
    [135] F. Y. Fraige, P. A. Langston. Horizontal Pneumatic Conveying: a 3d Distinct ElementModel[J]. Granular Matter. 2006, 8:67–80
    [136] Koji Wada, Hiroki Senshu, Takafumi Matsui. Numerical Simulation of Impact Cratering OnGranular Material[J]. Icarus. 2006, 180:528–545
    [137] R. Balevicˇius, A. Dzˇiugys, R. Kacˇianauskas, A. Maknickas, K. Vislavicˇius. Investigation ofPerformance of Programming Approaches and Languages Used for Numerical Simulation ofGranular Material by the Discrete Element Method[J]. Computer Physics Communications.2006, 175:404–415
    [138] D. J. DICHMANN, J. H. MADDOCKS, R. L. PEGO. Hamiltonian Dynamics of an Elasticaand the Stability of Solitary Waves[J]. Archive for Rational Mechanics and Analysis. 1996,135:357–396
    [139] Zhen Zhao, Caishan Liu, Wei Ma, Bin Chen. Experimental Investigation of the PainleveParadox in a Robotic System[J]. Journal of Applied Mechanics. 2008, TP:221239
    [140] Zhen Zhao, CaiShan Liu. The Analysis and Simulation for Three-Dimensional Impact WithFriction[J]. Multibody System Dynamics. 2007, 18:511–530
    [141] Adam Sokolow, Jan M. M. Pfannes, Robert L. Doney. Absorption of Short Duration Pulsesby Small, Scalable, Tapered Granular Chains[J]. Applied Physics Letters. 2005, 87:254104
    [142] Vicente Garzo′, Jose′ Mar′ia Montanero. Effect of Energy Nonequipartition On the TransportProperties in a Granular Mixture[J]. Granular Matter. 2003, 5:165–168
    [143] K. Bagi. Statistical Analysis of Contact Force Components in Random Granular Assem-blies[J]. Granular Matter. 2003, 5:45–54
    [144] Jiansheng Xiang, Don McGlinchey. Numerical Simulation of Particle Motion in Dense PhasePneumatic Conveying[J]. Granular Matter. 2004, 6:167–172
    [145] M. J. Jiang, D. Harris, H. S. Yu. A Novel Approach to Examining Double-Shearing TypeModels for Granular Materials[J]. Granular Matter. 2005, 7:157–168
    [146] J. Tejchman, E. Bauer. Modeling of a Cyclic Plane Strain Compression-Extension Test inGranular Bodies Within a Polar Hypoplasticity[J]. Granular Matter. 2005, 7:227–242
    [147] J. Tejchman, A. Niemunis. FE-Studies On Shear Localization in an Anistropic Micro-PolarHypoplastic Granular Material[J]. Granular Matter. 2006, 8:205–220
    [148] Alexandre Rosas, J. Buceta, Katja Lindenberg. Dynamics of Two Granules[J]. PhysicalReview E. 2003, 68:021303
    [149] C. Daraio, V. F. Nesterenko, E. B. Herbold, S. Jin. Strongly Nonlinear Waves in a Chain ofTe?on Beads[J]. Physical Review E. 2005, 72:011603
    [150] I. Han, B. J. Gilmore. Multi-Body Impact Motion With Friction-Analysis, Simulation andExperimental Validation[J]. Journal of Mechanical Design. 1993, 115:412–422
    [151] Feng Kang. Symplectic Geometric Algorithms for Hamiltonian Systems[M]. National De-fence Industry Press of PRC, 2001
    [152] K. L. Johnson. Contact Mechanics[M]. Cambridge University Press, 1985
    [153] Mahmoud G. Nasser. Numerical Methods for Multibody Elastic Systems and Contact Prob-lems[M]. 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700