基于连笔直写的微结构血管支架体外测评
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:基于连笔直写的生命体微结构血管支架采用了微纳米制造技术,由于构成材料分子大小尺度的变化,可能带来材料性能的改变,因此,必须对其进行全面的检测。我们将对其进行力学性能和生物相容性的检测。
     方法:我们首先通过缝合强度、爆破压力和径向顺应性对该血管支架进行力学性能检测;采用溶血率、体外动态凝血实验、血小板黏附实验对其进行血液相容性的检测;采用细胞培养MTT法、细胞形态学观察方法,研究该血管支架的细胞相容性。
     结果:该血管支架为类似于自然血管的三层结构,长2cm,内径6mm,内外层含有分布规则孔隙(大小10μm~30μm)的10%浓度的聚乳酸-乙醇酸(PLGA),中间层为无贯通孔隙的15%浓度的聚氨酯(PU)。该血管支架的径向顺应性达到4.03±0.56%/100mmHg,缝合强度为204.5±72.1N/cm2,爆破压力约为102±8KPa;该支架的溶血率为1.75%,小于ISO规定的5%,可认为这种支架无溶血作用;体外动态凝血实验中,该血管支架的抗凝血性能显著优于对照组载玻片(P<0.05),而且扫描电镜观察血小板粘附较少,显示出该血管支架良好抗凝血性能;MTT比色法结果显示其细胞毒性为0~1级;细胞形态学观察显示L929细胞在该血管支架膜片的浸提液中呈梭形或三角形,贴壁良好。
     结论:基于连笔直写的生命体微结构成形技术制备的血管支架具有良好的机械力学性能、血液相容性和细胞相容性,满足组织工程血管支架的要求。
Objective: To evaluate mechanical properties and biocompatibilities of the vascular scaffoldmanufactured with Micro-Tip Direct Writing technology.
     Methods: Mechanical properties of the vascular scaffold were measured by radial compliance,suture strength and bursting pressure separately. The blood compatibilities of the scaffold wereanalyzed by hemolytic rate test, in vitro dynamic blood clotting test, ant platelet adhesionexperiment. Cell compatibility was evaluated by MTT measurement and morphologicalobservation.
     Results: The scaffold showed radial compliance of4.03±0.56%/100mmHg, burst strength of102±8KPa, and suture retention strength of 204.5±72.1N/cm2. The hemolytic rate of the scaffoldwas 1.75% .It is lower than 5%which was ruled by ISO. The anti-coagulant property of thescaffolds was significantly better than that of glass slides in dynamic coagulation tests(P<0.05).The anti-coagulant property of the scaffold was also confirmed by less platelet adhesion. MTTassay results showed that the cytotoxic grade of the novel polyurethane was 0~1. Cellmorphology observation showed that the L929 cells were spindle-shaped or triangular with goodstretch. Conclusion: The scaffold manufactured with the new technique processes goodmechanical properties, blood compatibility and cell compatibility.
引文
[1].Klinkert, P., et al. , Saphenous vein versus PTFE for above-knee femoropopliteal bypass. Areview of the literature. Eur J Vasc Endovasc Surg, 2004. 27(4): p. 357-62.
    [2].Shin'Oka, T., et al. , Midterm clinical result of tissue-engineered vascular autografts seededwith autologous bone marrow cells. J Thorac Cardiovasc Surg, 2005. 129(6): p. 1330-8.
    [3].Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-6.
    [4].Weinberg, C.B. and E. Bell, A blood vessel model constructed from collagen and culturedvascular cells. Science, 1986. 231(4736): p. 397-400.
    [5].Ravi, S. and E.L. Chaikof, Biomaterials for vascular tissue engineering. Regen Med, 2010.5(1): p. 107-20.
    [6].Hibino, N., et al. , The tissue-engineered vascular graft using bone marrow without culture. JThorac Cardiovasc Surg, 2005. 129(5): p. 1064-70.
    [7].L'Heureux, N., et al.,Human tissue-engineered blood vessels for adult arterialrevascularization. Nat Med, 2006. 12(3): p. 361-5.
    [8].Niklason, L.E., et al. , Functional arteries grown in vitro. Science, 1999. 284(5413): p.489-93.
    [9]. Matsumura, G., et al. , First evidence that bone marrow cells contribute to the constructionof tissue-engineered vascular autografts in vivo. Circulation, 2003. 108(14): p. 1729-34.
    [10].Nan, H., et al. , Blood compatibility of amorphous titanium oxide films synthesized by ionbeam enhanced deposition. Biomaterials, 1998. 19(7-9): p. 771-6.
    [11].韩茂生等,亚硫酸氢钠处理后牛心包的血液相容性.中国医学科学院学报, 2007. 29(5):第638-641页页.
    [12].Tsai, C.C., et al. , Effects of heparin immobilization on the surface characteristics of abiological tissue fixed with a naturally occurring crosslinking agent (genipin): an in vitro study.Biomaterials, 2001. 22(6): p. 523-33.
    [13].Watanabe M, et al. Tissue-engineered vascular autograft: inferior vena cava replacement ina dog model. Tissue Eng, 2001,7(4): 429-439.
    [14].Motlagh, D., et al. , Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro forvascular tissue engineering. Biomaterials, 2006. 27(24): p. 4315-24.
    [15].Van Minnen B, Stegenga B, et al. A long-term in vitro biocompatibility study of abiodegradable polyurethane and its degradation products. Biomed Mater Res A.2006 ;76(2):377-85.
    [1].Berger PB, Alderman EL, Nadel A et al.: for the International Multicenter Aprotinin GraftPatency Experience (IMAGE) Investigators: Frequency of early occlusion and stenosis in aleft internal mammary artery to left anterior descending artery bypass graft after surgerythrough a median sternotomy on conventional bypass: benchmark for minimally invasivedirect coronary artery bypass. Circulation 100(23), 2353–2358 (1999).
    [2].McKee JA, Banik SSR, Boyer MJ et al.: Human arteries engineered in vitro. EMBO Rep.4(6), 633–638 (2003).
    [3].Verma S, Szmitko PE, Weisel RD et al.: Should radial arteries be used routinely for coronaryartery bypass grafting? Circulation 110(5), e40–e46 (2004).
    [4].Kannan RY, Salacinski HJ, Butler PE et al.: Current status of prosthetic bypass grafts: areview. J. Biomed. Mater. Res. B Appl. Biomater. 74(1), 570–581 (2005).
    [5].Abbott WM, Megerman J, Hasson JE et al.:: Effect of compliance mismatch on vasculargraft patency. J. Vasc. Surg. 5(2), 376–382 (1987).
    [6].Conte MS: The ideal small arterial substitute: a search for the Holy Grail? FASEB J. 12(1),43–45 (1998).
    [7].Greisler HP: Interactions at the blood/material interface. Ann. Vasc. Surg. 4(1), 98–103(1990).
    [8].Wittemore AD, Kent KC, Donaldson MC et al.: What is the proper role ofpolytetrafluoroethylene grafts in infrainguinal reconstruction? J. Vasc. Surg. 10, 299–305(1989).
    [9].Humphrey JD: Mechanics of the arterial wall: review and directions.Crit. Rev. Biomed. Eng. 23(1–2), 1–162 (1995).
    [10].Weinberg CB, Bell E: A blood vessel model constructed from collagen and culturedvascular cells. Science 231(4736), 397–400 (1986).
    [11].Johnson WC, Lee KK: A comparative evaluation of polytetrafluoroethylene, umbilical vein,and saphenous vein bypass grafts for femoralpopliteal aboveknee revascularization: aprospective randomized Department of Veterans Affairs cooperative study. J. Vasc. Surg.32(2), 268–277 (2000).
    [12]. Xue L, Greisler HP: Biomaterials in the development and future of vascular grafts.J. Vasc. Surg. 37(2), 472–480 (2003).
    [13].Clowes AW, Kirkman TR, Reidy MA: Mechanisms of arterial graft healing. Rapidtransmural capillary ingrowth provides a source of intimal endothelium and smooth muscle inporous PTFE prostheses. Am. J. Pathol. 123(2), 220–230 (1986).
    [14].Allen BT, Mathias CJ, Sicard GA et al.: Platelet deposition on vascular grafts. Theaccuracy of in vivo quantitation and the significance of in vivo platelet reactivity. Ann. Surg.203(3), 318–328 (1986).
    [15].Goldman M, Hall C, Dykes J et al.: Does 111indiumplatelet deposition predict patency inprosthetic arterial grafts? Br. J. Surg. 70(10), 635–638 (1983).
    [16]. Hamlin GW, Rajah SM, Crow MJ et al.: Evaluation of the thrombogenic potential of threetypes of arterial graft studied in an artificial circulation. Br. J. Surg. 65(4), 272–276 (1978).
    [17].Shepard AD, Gelfand JA, Callow AD et al.: Complement activation by synthetic vascularprostheses. J. Vasc. Surg. 1(6), 829–838 (1984).
    [18].Abbott W, Green R, Matsumoto T et al.: Prosthetic aboveknee femoropopliteal bypassgrafting: results of a multicenter randomized prospective trial. AboveKnee FemoropoplitealStudy Group. J. Vasc. Surg. 25(1), 19–28 (1997).
    [19].Seifalian AM, Salacinski HJ, Tiwari A et al.: In vivo biostability of apoly(carbonateurea)urethane graft. Biomaterials 24(14), 2549–2557 (2003).
    [20].Kim BS, Putnam AJ, Kulik TJ et al.: Optimizing seeding and culture methods to engineersmooth muscle tissue on biodegradable polymer matrices. Biotechnol Bioeng. 1998;57:46–54.
    [21].Nillason LE,Oao J,Abbott wM et al.: Functiomll arteries grown in vitro~J].Science,1999,284:489—49
    [22]Kim BS, Nikolovski J, Bonadio J et al.: Engineered smooth muscle tissues: regulating cellphenotype with the scaffold. Exp Cell Res. 1999;251:318–328.
    [23].Hoerstrup SP, Kadner A, Breymann C et al.: Living, autologous pulmonary arteryconduits tissue engineered from human umbilical cord cells. Ann Thorac Surg. 2002;74:46–52.
    [24].Shum-Tim D, Stock U, Hrkach J et al. .Tissue engineering of autologous aorta using a newbiodegradable polymer. Ann Thorac Surg. 1999;68:2298–2305.
    [25].Hoerstrup SP, Zund G, Sodian R et al. Tissue engineering of small caliber vascular grafts.Eur J Cardiothorac Surg. 2001;20:164–169.
    [26].Watanabe M, Shin’oka T, Tohyama S, Hibino N, Konuma T, Matsumura G, Kosaka Y,Ishida T, Imai Y, Yamakawa M, Ikada Y, Morita S. Tissue-engineered vascular autograft:inferior vena cava replacement in a dog model. Tissue Eng. 2001;7:429–439.
    [27].Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair andtissue engineering. Biomaterials. 2000;21: 2215–2231.
    [28].Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A. Tissueengineering of heart valves—human endothelial cell seeding of detergent acellularized porcinevalves. Eur J Cardiothorac Surg. 1998;14:279–284.
    [29].Bishopric NH, Dousman L, Yao Y-MM, inventors; St Jude Medical Inc, assignee. MatrixSubstrate for a Viable Body Tissue-Derived Prosthesis and Method for Making the Same. StPaul, Minn: St. Jude Medical Inc; 1999.
    [30].Patrick J. Schaner, a Niels D. Martin, a Thomas N. Tulenko, et al. Decellularized vein as apotential scaffold for vascular tissue engineering . J Vasc Surg 2004;40:146-53.
    [31].Florian Opitza, Katja Schenke-Laylanda, Tina U. Cohnerta, Barry Starcher.Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis invivoCardiovascular Research .2004;63: 719– 730.
    [32].Robotin-Johnson MC, Swanson PE, Johnson DC, Schuessler RB, Cox JL. An experimentalmodel of small intestinal submucosa as a growing vascular graft. J Thorac Cardiovasc Surg.1998;116:805– 811.
    [33].Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification ofextractable growth factors from small intestinal submucosa. J Cell Biochem.1997;67:478–491.
    [34].Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of apericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction.J Biomed Mater Res. 1994; 28:655– 666.
    [35].Sung HW, Hsu CS, Chen HC, Hsu HL, Chang Y, Lu JH, Yang PC. Fixation of variousporcine arteries with an epoxy compound. Artif Organs. 1997;21:50–58.
    [36].Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y. Thermo-responsivepolymeric surfaces; control of attachment and detachment of cultured cells. Makromol ChemRapid Commun. 1990;11: 571–576.
    [37].Joseph Yang, Masayuki Yamato, Teruo Okano. Cell-sheet engineering using intelligentsurfaces. MRS Bulletin. 2005;189-193
    [38].L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biologicaltissue-engineered human blood vessel. FASEB J. 1998;12: 47–56.
    [39].L’Heureux N, Stoclet JC, Auger FA, Lagaud GJ, Germain L, Andriantsitohaina R. A humantissue-engineered vascular media: a new model for pharmacological studies of contractileresponses. FASEB J. 2001; 15:515–524.
    [40].Nicolas L’Heureux, Nathalie Dusserre, Gerhardt Koning,et al. Human tissue-engineeredblood vessels for aldult arterial revascularization. Nature.2006;12(3):361-365
    [41].Weinberg CB, Bell E. A blood vessel model constructed form collagen and culturedvascular cells. Science. 1986;231:397– 400.
    [42].Grassl ED, Oegema TR, Tranquillo RT. Fibrin as an alternative biopolymer to type-Icollagen for the fabrication of a media equivalent. J Biomed Mater Res. 2002;60:607– 612.
    [43]. Neidert MR, Lee ES, Oegema TR, Tranquillo RT. Enhanced fibrin remodeling in vitro withTGF-beta1, insulin and plasmin for improved tissue-equivalents. Biomaterials.2002;23:3717–3731.
    [44].Clark RA. Fibrin glue for wound repair: facts and fancy. Thromb Haemost.2003;90:1003–1006.
    [45].Johnson DJ, Robson P, Hew Y, Keeley FW. Decreased elastin synthesis in normaldevelopment and in long-term aortic organ and cell cultures is related to rapid and selectivedestabilization of mRNA for elastin. Circ Res. 1995;77:1107–1113.
    [46].Lin Y, Chang L, Solovey A, Healey JF, Lollar P, Hebbel RP. Use of blood outgrowthendothelial cells for gene therapy for hemophilia A. Blood. 2002;99:457– 462.
    [47].Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells andendothelial outgrowth from blood. J Clin Invest. 2000;105:71–77.
    [48].Gleason RL, Humphrey JD. A mixture model of arterial growth and remodeling inhypertension: altered muscle tone and tissue turnover. J Vasc Res. 2004;41:352–363.
    [49].J.Andrew McKee1, Soma, S.R.Banik2,Matthew J.Boyer1,et al. Human arteries engineeredin vitro. EMBO reports.2003;4(6):633-638.
    [50].Gretchen Vogel.The unexpected brains behind blood vesselgrowth.Science.2005;307:665-666
    [51].Yoh-suke Mukouyama, Donghun Shin, David J. Anderson. Sensory Nerves Determine thePattern of Arterial Differentiation and Blood Vessel Branching in the Skin. Cell. 2002;109:693-705
    [52].Yoh-suke Mukouyama, Hans-Peter Gerber, David J Anderson, et al. Peripheralnerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positivefeedback. Development. 2005;132:941-952
    [54].Chan G, Mooney DJ: New materials for tissue engineering: towards greater control over thebiological response. Trends Biotechnol. 26(7), 382–392 (2008).
    [55].Rizzi SC, Ehrbar M, Halstenberg S et al.: Recombinant protein-co-PEG networks ascell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctionalcharacteristics. Biomacromolecules 7(11), 3019–3029 (2006).153 Doi K, Matsuda T: Enhanced

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700