阳极氧化铝模板形成的动力学分析及预处理对模板形貌的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对阳极氧化铝模板的形成机理的研究,研究者主要对其形成过程的机理模型研究的较多,而对其形成过程的动力学的研究尚不多见。论文在能形成多孔阳极氧化铝模板的条件下,对铝模板形成动力学进行了以下研究:
     ①分析不同温度下阳极氧化铝模板形成过程中的电流密度-时间的变化曲线,该曲线经历了下降、上升、平稳三个阶段。由此可以推断,在相应条件下,均能够生成多孔阳极氧化铝膜。
     ②分析铝阳极氧化过程中阴极和阳极所发生的电化学反应,并采用铝试剂分光光度法,测量1.0mol/L的硫酸电解液中不同时刻对应铝离子的浓度,然后根据化学动力学理论,确定出所在实验条件下铝失电子反应为零级反应;控制温度为变量,可以得出不同温度下的速率常数;根据阿仑尼乌斯公式,确定出阳极铝失电子反应的表观活化能Ea=53.8 kJ·mol-1。实验过程中低温有利于阳极氧化铝模板的形成,与理论相符。
     ③根据对Tafel极化曲线的分析,求出铝阳极氧化过程中电极动力学基本参数,并推测了该过程的反应历程。
     同时,针对阳极氧化铝模板的制备过程中铝片预处理过程繁琐的缺点,论文探讨了预处理工艺的简化。通过改变铝的预处理工艺中的退火、除油、除氧化层、化学出光四个工序,考察每个预处理工序对所得模板形貌的影响。实验中电解液为0.13mol/L的草酸溶液,通过两步直流恒压阳极氧化法制备氧化铝模板,并采用原子力显微镜对其表面形貌进行了观察,结合阳极氧化初期电流-时间的变化,考察了预处理工艺中每个步骤对阳极氧化铝模板形貌的影响。得到如下结论:
     ①经过对制备样品的AFM表征,表明可以通过两步阳极氧化法成功制得阳极氧化铝模板,所制备的阳极氧化铝模板是由六面柱体状的膜胞所构成,微孔孔径大小基本相同,平均约为200nm;孔分布均匀有序,孔密度为109/cm~2。
     ②探讨预处理各个工序对模板有序规则性的影响,并在简化的条件下得到了规则有序的阳极氧化铝模板。对比实验表明,在经除油、不经高温退火、不经化学出光以及不用除去自然氧化层的预处理条件下,通过两步阳极氧化法仍能得到高度有序的多孔阳极氧化铝模板,使制备工艺得到了简化。
It was rearched on some mechanism models at present for the formation mechanism of the anodic alumina templet. However, investigators didn’t attach importance to the dynamics mechanism from the electrolyte and electrode aspect. Therefore, it is necessary to research the dynamics mechanism of anodic alumina templet deeply. This paper has done the following work under the sistuation that can form porous alumina templet with nano-pore array structure:
     ①The curves of current density– time are analyzed during the formation of anodic alumina template at different temperatures, the curves have experienced three stages of declining, rising and going steady. It can be inferred that porous anodic alumina film are able to generate in the appropriate conditions, and the speed of electrochemical reaction also increases with the increase of temperature.
     ②Reactions which take place on cathode and anode are analyzed, and the concentration of aluminum ion is mensurated by aluminum reagent spectrophotometry insulfuric acid electrolyte of 1.0 mol / L. Then, basing the chemistry dynamics theories, the reaction that aluminum loses electronics is confirmed zero order reaction, and the velocity constants are ascertained at different temperature by makeing temperature for variable, so the apparent activation energy can be confirmed basing Arrhenius equation, and the apparent activation energy is 53.80 kJ·mol-1. Theoretically, the low temperature is advantageous to the reaction which has low apparent activation energy, and the the experiment’s requests are even the same as the theory’s.
     ③Basing the analysis of Tafel curves, the electrode dynamics parameters and the reaction course are ascertained,
     When scholars research the preparation of anodic alumina templet, applications, and the formation mechanism, it is required to go through some miscellaneous pretreatment procedures. To simplify the pretreatment process for prepaing anodic alumina templet, the influence of annealing, degreasing, chemical polishing on the morphology of anodic alumina templet are investigated in this thesis. During the experimental process, anodic alumina templets are prepared under constant potential by DC in oxalic acid solutions of 0.13mol/L through a two-step anodic oxidation. The morphology of anodic alumina templet is observed by atomic force microscope, and the influences of each step of pretreatment process on the characteristics of anodic alumina templet are discussed by analyzing the current change in the initial process of anodic oxidation. The following conclusions are gotten in this parer:
     ①It can be indicated that anodic alumina templets are successfully prepared by observig with atomic force microscope, the anodic alumina templet is compose of a many six-cylinder-shaped cells, the average diameter of pores is basically the same size with each other about 200 nm, the hole density is 109 / cm2, and the holes distribute evenly in an orderly manner.
     ②The influence of each pretreatment procedure on the morphology of anodic alumina templet is investigated, and regular anodic alumina templet is successfully prepared under the conditions of the simplification. A series of comparative experiments show that after degreasing, well-arranged porous alumina films are obtained without annealing, chemical polishing and removing natural oxide layer, and it makes the preparation of porous alumina films simplified.
引文
[1]朱祖芳.有色金属的耐腐蚀性及其应用[M].北京:化学工业出版, 1995.
    [2]马全宝,张正富等.多孔阳极氧化铝薄膜的应用进展[J].材料导报, 2004-1,18(1): 16-18.
    [3]覃东欢,彭勇等. Co-Ni合金纳米线有序阵列的制备与磁性研究[J].物理学报, 2001,50 (1): 144-148.
    [4] W.M. de Azevedoa. Spectroscopic characteristics of doped nanoporous aluminum oxide[J]. Materials Science and Engineering, 2004, 112 (B): 171-174.
    [5] Khana.H.R, Petrukowskia.B.K. Magnetic and structural properties of the electrochemically deposited arrays of Co and Co Fe nanowires[J]. Journal of Magnetism and Magnetic Materials, 2002, 249: 458 - 461.
    [6] Jia RP, She NY, et al. Enhanced photoluminescence properties of morin and trypsin absorbed on porous alumina films wit h ordered pores array [J]. Solid State Communications, 2004, 130: 367-372.
    [7] Forrerp, Schlottigff, Siegenthalerh, et al. Electrochemical preparation and surface properties of gold nanowire arrays formed by the template technique[J]. Journal of Applied Electrochemistry, 2000, 30 (5): 533-541.
    [8] O' Sullivan, J. P, Wood, G. C. The morphology and mechanism of formation of porous anodic films on aluminum [J]. Proc. R. Soc. London A, 1970, 317: 511-543
    [9] E.Palibroda,T.Farcas, A.Lupsan. A new image of porous aluminium oxide [J]. Meterials Science and Engineering,1995, (B32): 1-5.
    [10]李健生,郝艳霞,王连军,赵宝昌.氧化铝中空纤维膜的制备与表征[J].催化学报, 2001, 22(5):437-440.
    [11] Po-Lin Chen, Jun-Kai Chang, Fu-Ming Pan, Cheng-Tzu Kuo. Tube number density control of carbon nanotubes on anodic aluminum oxide template [J]. Diamond & Related Materials, 2005, 14: 804-809.
    [12] D.S. Xue, J.L. Fu, H.G. Shi. Mossbauer study of Fe0.92?xCoxP0.08 nanowire arrays [J]. Solid State Communications, 2007, 142: 247-250.
    [13] Andre Decroly, Jean-Pierre Petitjean. Study of the deposition of cerium oxide by conversion on to aluminium alloys [J]. Surface & Coatings Technology, 2005, 194: 1- 9.
    [14]黑田孝一,刘仁志.利用李沙育图对铝电解着色的研究[J].电镀与涂饰, 1987,1:12-15.
    [15] Zeng H, Zheng M, Skomski R. Optical properties of ordered Co AAO nano-array composite structure[J] . Journal of Applied Physics, 2000, 87: 4718-4720.
    [16] Garcia J M ,Asenjo A ,Velazquez V. Magnetic force microscopy ofmagnetic domain structure in highly ordered Co nanowire arrays[J]. Journal of Applied Physics, 1999, 85: 15-19.
    [17] Kwon H W, Kim S K. A study of magnetic properties FexCo alloynanowire arrays [J]. Journal of Applied Physics, 2000, 87: 9-13.
    [18] Raposo V, Garcia J M, Gonzalez J M, et al. Longrange magnetostatic interactions in arrays of nanowires[J]. Journal of Magnetism and Magnetic Materials, 2000, 222: 227-232.
    [19] Yang Shaoguang, Zhu Hao, Yu Dongliang. Preparation and magnetic property of Fe nanowire array [J]. Journal of Magnetism and Magnetic Materials, 2000, 222: 97-100.
    [20] Bao Jianchun, Xu Zheng, Hong Jianming. Fabrication of cobaltnanost ructures with different shapes in alumina template[J]. Scripta Materialia, 2004, 50: 19-23.
    [21] Jin G G, Liu W F ,Jia C. High2filling , large-area Ni nanowire arrays and the magnetic properties[J] . Journal of Crystal Growth, 2003, 258: 337-341.
    [22] Zhu H, Yang S G, Ni G. Study on magnetic property of Fe14Ni86 alloy nanowire array [J]. Journal of Magnetism and Magnetic Materials, 2001, 234: 454-458.
    [23] Qin Donghuan, Peng Yong, Cao Lin. A study of magnetic properties: FexCo1-x alloy nanowire arrays [J]. Chemical Physics Letters, 2003, 374: 661-666.
    [24] Zhu Hao , Yang Shaoguang ,Ni Gang. Fabrication and magnetic properties of Co67Ni33 alloy nanowire array [J]. Scripta mater, 2001, 44: 2291-2295.
    [25]曾曙,马莒生,郭鹤桐.铝阳极氧化膜纳米级微孔内电沉Fe-Co-Mn合金的磁性和垂直磁记录介质特性研究[J].功能材料(增刊) , 2000 , 31 : 32-38.
    [26] Guo Yuguo, Wan Lijun, Zhu Chuanfeng. Ordered Ni-Cu nanowire array with enhanced coercivity[J]. Chemistry of Materials, 2003, 15: 664-667.
    [27] Zhou Yingke, Li Hulin. Sol-gel template synthesis of highly ordered LiCo0. 5Mn0. 5O2 nanowire arrays and their structural properties [J]. Journal of Solid State Chemistry, 2002, 165: 247-253.
    [28] Zhou Yingke, Huang Jier, Shen Chengmin. Synthesis of highly ordered LiNiO2 nanowire arrays in AAO templates and their structural properties [J]. Materials Science and Engineering A, 2002, 335: 260-267.
    [29] Zhou Yingke, Shen Chengmin, Li Hulin. Synthesis of high ordered LiCoO2 nanowire arrays by AAO template [J]. Solid State Ionics, 2002, 146: 81-86.
    [30] H. Masuda, K. Fukuda. Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina [J]. Science, 1995, 268:1466-1468.
    [31] Zhao Yanchun et al. A facile approach to formation of through-hole porous anodic aluminum oxide film [J]. Materials Letters 2005, 59:40-43.
    [32] S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, Stress generated porosity in anodic alumina formed in sulphuric acid electrolyte [J]. Corrosion Science, 2007, 49: 3772–3782.
    [33] H.Masuda, H. Asoh, M. Watanabe, et al. Square and Triangular Nanohole Array Architectures in Anodic Alumina [J]. Advanced Materials, 2001, 13(3): 189-192.
    [34] Patrizia Bocchetta, Carmelo Sunseri, Giovanni Chiavarotti. Microporous aluminamembranes electrochemically grown[J]. Electrochimica Acta, 2003, 48: 3175-3183.
    [35]王凡,卫庆硕,张玉玲.贫水电解质体系制备多孔阳极氧化铝模板的研究[J].物理化学学报, 2004, 20 (9): 1134-137.
    [36] Mikulskas, S.Juodkazis, et al. Aluminum Oxide Photonic Crystals Grown by a New Hybrid Method [J]. Advanced Materials, 2001, 13(20): 1574-1577.
    [37]徐源, Thompson G E, Wood G C.多孔型铝阳极氧化膜孔洞形成过程的研究[J].中国腐蚀与防护学报, 1989, 9(1): 563-568.
    [38]徐源, Thompson G E, Wood G C.铝阳极氧化膜形成过程中离子迁移的规律及对膜形态的影响[J].中国腐蚀与防护学报, 1988, 8(1): 432-436.
    [39] Martin C R, Nanomaterials: A membrane-based synthetic approach [J]. Science, 1994, 266:1961-1966.
    [40] Y. Xu, G.E. Thompson, G.C. Wood, [J] .Trans.Inst. MetalFinish, 1986,63: 98–103.
    [41]虞澜,史聪花,彭巨擘等.氧化铝纳米阵列模板的制备和研究[J].云南大学学报, 2002, 24(3): 212-214.
    [42] Jessensky O, Müller F, Gosele U. Self-organized formation of hexagona pore arrays in anodic alumina[J]. Applied Physics Letters, 1998, 72(10): 1173-1175.
    [43] V. P. Parkhutik, V. I. Shershulsky. Theoretical modeling of porous oxide growth on aluminum[J]. J. Phys. D: Appl. Phys, 1992, 25: 1258-1263.
    [44] Hui Pan, Jianyi Lin, Yuanping Feng, and Han Gao.Electrical-Bridge Model on the Self-Organized Growth of Nanopores in AnodizedAluminum Oxide[J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2004, 3(4): 462-466.
    [45]高玉波,彭智,宋国君,马永为,佘希林,李建江.恒电流密度法制备大孔径高度有序阳极氧化铝模板[J].材料导报, 2007 , 21 (7): 136-138.
    [46]高云霞,任继嘉,宁福元等编.铝合金表面处理[M].北京:冶金工业出版社,1991.
    [47]覃奇贤,郭鹤桐,刘淑兰等编.电镀原理与工艺[M].天津:天津科学技术出版社,1993.
    [48]李淑英,赫荣晖.纳米孔洞阳极氧化铝膜的制备及应用[J].全面腐蚀控制, 1999,15(2): 6-8.
    [49] Yu Cheng Sui, Jose M Saniger. Characterization of anodic porous alumina by AFM[J].Materials Letters, 2001, 48:127-136.
    [50] Assen A. Girginov, Alexander S. Zahariev, Maria S. Machkova. Kinetics of formation of complex anodic oxide films on aluminium [J]. Materials Chemistry and Physics, 2002, 76: 274–278.
    [51] Zhu Hao, Yang Shaoguang, Ni Gang. Fabrication and magnetic properties of Co67Ni33 alloy nanowire array [J]. Scripta mater, 2001, 44: 2291-2295.
    [52]罗一帆,许旋.铝阳极氧化碱蚀槽中游离碱浓度和铝含量的测定[J].电镀与涂饰, 2003, 22 (4): 32-37.
    [53]唐辉,周发连,罗明标,邹悦.微量铝的析相分离富集与测定方法[J].分析试验室,2004, 23(1): 23-24.
    [54]胡国媛,孙兰,卢玉棋.水中微量铝的分光光度测定[J].中国卫生检验杂志, 2001, 11 (6): 685-686.
    [55]孙登明,计芳.催化动力学光度法测定活化剂铝[J].光谱学与光谱分析, 2003, 23(2): 351-353.
    [56]魏金城.石墨炉原子吸收分光光度法测定水中铝[J].中国给水排水, 1998, 14(3): 49-50.
    [57]雷建平,干宁,邹公伟,毕树平.环境与生物样品中铝测定的吸光光度和荧光光度分析方法进展[J].无机化学学报, 2000, 16(1): 13-18.
    [58] GB 9734-88[S].中华人民共和国国家标准.化学试剂铝测定的通用方法.
    [59] HG 5-1593-85[S].化工工业部标准.工业硅酸铅.
    [60]王林,鲁化永.铝试剂-双波长分光光度法测定水中微量铝[J].分析与监测(工业水处理)1996, 16 (6): 34-35.
    [61]高丽花.铝试剂比色法测定饮料中微量铝.华南热带农业大学报[J]. 2006, 12(4): 12-14.
    [62]郭虹.铝试剂分光光度法测定食品中的铝.中国卫生检验杂志[J]. 2006, 6(1): 47-48.
    [63]余志峰,王玉功,陈月源.铝试剂分光光度法测定铝锭中微量三氧化二铝[J].岩矿测试. 2007. 26(1): 71-73.
    [64]张铁垣主编,分析测试标准化工作手册[M].中国标准出版社, 2005.
    [65] [美]A.J.巴德, L.R.福克纳主编,谷林英,吕鸣祥,宋诗哲等译.电化学方法[M].化学工业出版社,1980.
    [66]查全性主编.电极过程动力学导论[M].科学出版社, 2002.
    [67]李荻主编.电化学原理[M].北京航空航天大学出版社, 1999.
    [68]傅献彩,沈文霞,姚天扬主编.物理化学[M].高等教育出版社(第四版, 1990.
    [69]王琪编著.化学动力学导论[M].吉林人民出版社, 1980.
    [70] Tarik M. Nabi, Hideo Sambe, David E. Ramaker. AFM study of topographical changes on aluminum surfaces in sulfuric acid under low current anodic dissolution[J]. Journal ofElectroanalytical Chemistry, 2001, 501: 33-40.
    [71] D.H. Choi a, P.S. Lee b, W. Hwang a, K.H. Lee b, H.C. Park..Measurement of the pore sizes for anodic aluminum oxide (AAO) [J]. Current Applied Physics, 2006, 651:125-129.
    [72] H.W. Liua, H.M. Guoa, Y.L. Wanga, et al. Self-assembled stripes on the anodic aluminum oxide by atomic force microscope observation [J]. Applied Surface Science, 2003, 219: 282-289.
    [73] Hanna-Kaisa Koponena, Inka Saarikoskia, Tuulia Korhonena, Marjo P??kk?a, et al. Modification of cycloolefin copolymer and poly(vinyl chloride) surfaces by superimposition of nano- and microstructures [J]. Applied Surface Science, 2007, 253(12): 5208-5213.
    [74] G.X. Wang, J.S. Park, M.S. Par, X.L. Goua. Synthesis and high gas sensitivity of tin oxidenanotubes [J]. Sensors and Actuators B, 2008, 131:313-317.
    [75] Yanmao Shi, Bo Zhou, Ping Wu, Keyu Wang, Chenxin Cai. Templated fabrication, characterization and electrocatalysis of cobalt hexacyanoferrate nanotubes[J]. Journal of Electroanalytical Chemistry, 2007, 611: 1-9.
    [76] D.M. Qu, P.X. Yan , J.B. Chang, et al. Nanowires and nanowire–nanosheet junctions of SnO2 nanostructures[J]. Materials Letters, 2007, 61: 2255-2258.
    [77] ZHOU Jian-hua, HE Jian-ping, ZHAO Gui-wang, et al. Alumina nanostructures prepared by two-step anodization process [J]. Trans. Nonferrous Met. Soc, China, 2007, 17: 82-86.
    [78] Ho-Jae Kang, Deug Joong Kim, Sung-Joon Park,et al. Controlled drug release using nanoporous anodic aluminum oxide on stent [J]. Thin Solid Films, 2007, 515: 5184-5187.
    [79] Wei Wang, Sheng-Yue Wang, You-Lu Gao, et al. Nickel sulfide nanotubes formed by a directional infiltration self-assembly route in AAO templates[J]. Materials Science and Engineering B, 2006, 133: 167–171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700