超级电容器用纳米二氧化锰的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容器作为新型储能元件,对其电极活性材料的研究是目前新能源领域研究的热点之一。过渡金属氧化物二氧化锰作为传统的电极材料应用非常广泛。本文以廉价的二氧化锰作为超级电容器的电极材料,采用TG-DTA,XRD,SEM,BET等现代物理测试方法对制备的样品进行表征,通过电化学性能测试研究了二氧化锰材料的制备方法及后处理条件对电容特性的影响。采用水热法、液相氧化还原法分别制备了不同的二氧化锰纳米材料。主要研究内容如下:
     1.水热法合成,以高锰酸钾为氧化剂,醋酸锰为还原剂,制得α型MnO_2粉体。扫描电子显微镜SEM结果显示产物形貌为典型的纳米棒,且纳米棒分布均匀。研究了反应温度和反应时间对产品结构形貌和电化学性能的影响,得出在反应温度为140℃反应时间为2 h时得到的纳米棒具有最大长径比,直径约为20-40 nm,长度为几百纳米到几微米,且电化学性能最好,比电容量达到145 F/g。随反应时间的增加比电容量由145 F/g减小到40 F/g,电荷传输电阻增加。
     2.以酸性有机还原剂草酸与高锰酸钾反应制备了二氧化锰材料并研究了其电化学性能。XRD结果显示制得的产物主要晶相为无定形α-MnO_2,SEM结果表明样品为粒径均匀的纳米球体。KMnO_4与H_2C_2O_4的摩尔比为2:3,反应温度为60℃,反应时间为3 h时,制备的样品经循环伏安测试得到较大的比电容量,且CV曲线矩形特征明显,比电容量为158 F/g。将该样品在400℃下灼烧2 h,在1 mol/L的Na-2SO_4电解液、0-1V扫描电位内以2 mV/s的扫速进行测试时,该电极表现出理想的电容特性,比容量达到265 F/g,增加了68%。并研究了电解液对电极电容特性的影响,分别在碱性(6 mol/L的KOH)和中性(1 mol/L的Na_2SO_4)电解液中对样品进行了循环伏安测试。结果表明,二氧化锰作为超级电容器电极材料更适合在中性电解液中工作。
     3.以碱性有机还原剂三乙醇胺还原高锰酸钾制备了二氧化锰材料。XRD及SEM结果显示合成样品为纳米二氧化锰颗粒,但有团聚现象发生。对样品进行热处理,温度为400℃时,样品晶化程度增强,晶格排列变得规则有序。N_2吸脱附的结果表明,350℃热处理后的样品具有较大的比表面积,而且在介孔范围内具有较宽的孔径分布。循环伏安测试结果也表明350℃热处理得到的样品在1 mol/L的Na_2SO_4电解液中表现出良好的电容性能,在2 mV/s的扫描速度下得到251 F/g的比电容量,相对于未处理的前躯体样品比电容量增加了48.5%。充放电测试结果表明制备的样品具有良好的循环稳定性。
Supercapacitors have been extensively studied as the energy storage devices. And the electrode material has been the focus of research and exploitation in the field of supercapacitor. It is the transition metal oxide manganese dioxide that has been applied widely as the electrode material. So we chose inexpensive manganese dioxide as our target product used for the supercapacitor electrode material. And a series of modern physical methods are taken to characterize the properties of the prepared materials. Power X-ray diffraction (XRD), scanning electron microscope (SEM) and N2 adsorption and desorption measurements are employed to investigate crystalline structure, surface morphology, the specific surface area and the pore size distribution. And it is discussed that how the synthesized conditions and the heat-treatment effect the capacitance of manganese dioxide materials.
     Different nanostructured manganese dioxide was prepared by hydrothermal and oxidation reduction method. The major research contents are as follows:
     First.α-MnO_2 powders were prepared by hydrothermal, in which KMnO_4 oxidized the reductant (CH_3COO)_2Mn that leads the formation of MnO_2. The SEM pictures depict the typical nano-rod of morphologies, and the nano-rods show a uniform distribution. The effect on characteristics of materials by reaction time and temperature were studied. The results show that the better capacitance and the large aspect ratio are obtained when the reaction temperature is 140℃and the reaction time is 2 h. The best specific capacitance is 145 F/g. The nanorods have a diameter about 20-40 nm and the lengths up to a region of hundreds of nanometers to several micrometers. The specific capacitance decreased as the reaction time prolonged, and the charge transfer resistance increased.
     Second. Oxalic acid was used as reductant to prepare MnO_2 powders. And the electrochemical properties were studied. The XRD results indicate that the product is amorphousα-MnO_2. The SEM pictures show that the surface morphologies are consist of nano-spheres. The optimal prepared conditions are as follows: reaction temperature is 60℃, reaction time is 3h and the molar ratio is KMnO_4:H_2C_2O_4=2:3. The specific capacitance of the product is 158 F/g. The specific capacitance increased by 68%, from 158 F/g to 265 F/g, when the product was heat-treated at 400℃for 2h. And the influence of different electrolyte on the capacitance property was studied. The cyclic voltammetry results indicate that neutral electrolyte is more suitable for the MnO_2 electrode working than basic electrolyte.
     Last. Amorphous manganese dioxide is prepared by reaction of potassium permanganate with an organic reductant triethanolamine for the first time. XRD and SEM results show that the prepared material is nanoscaled MnO_2 powders, but there is some particle agglomeration. The effect of heat-treatment temperature is studied on the characteristics of the materials. It is found that when the heat-treatment temperature rising to 400℃, the crystalline convert toα-MnO_2 from amorphous MnO_2. The electrochemical characteristics of the prepared MnO_2 powder are characterized by means of cyclic voltammetry experiments in 1 mol/L Na_2SO_4 electrolyte. The specific capacitance value is 251 F/g that is obtained from the product annealing at 350℃at a scan rate of 2 mV/s. And charging-discharging measurement reveals the good stability of the prepared material.
引文
[1] Yata S, Okamoto E, Sataka H, et al. Polyacene capacitor[J]. J Power Souces, 1996, 60:207-212.
    [2] Osaka T, Liu X J, Nojima M, et al. An electrochemical double layer capacitor using an active cabon electrode with gel electrolyte binder[J]. J Electrochem Soc, 1999, 146(3):15-17.
    [3]董恩沛.双电层电容器[J].电子科学技术, 1981, 8:19-21.
    [4]董恩沛.一种新型电子元件-双电层电容器[J].科学实验, 1982, 3:15-17.
    [5]武文.大容量电容器技术革命[J].世界电子元器件, 1999, 1:60-63.
    [6]杨玉娟.纳米二氧化锰的制备及其电容性能研究[硕士学位论文].天津:天津大学应用化学系, 2007.
    [7]汪奇,瞿美致,张伯兰,等.电化学超级电容器电极材料的研究进展[J].无机材料学报, 2002, 17(4):649-656.
    [8]张丹丹,姚宗干.双电层电容器[J].高电压技术, 1999, 25(4):69-71.
    [9]张莉,邹积岩,薛洪发.大功率超级电容器的实验研究[J].电子材料与元件, 2002, 21(7):11-12.
    [10]张丹丹,姚宗干.大功率高储能密度电化学电容器的研究进展[J].电子元件与材料, 2000, 19(1):34-37.
    [11] Burke A. Ultracapacitors: why, how, and where is the technology[J]. J Power sources, 2000, 91:37-50.
    [12]南俊民,杨勇,林祖赓.电化学电容器及其研究进展[J].电源技术, 1996, 20(4):152-164.
    [13] Kotz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochim Acta, 2000, 45:2483-2498.
    [14]王国庆,林忠富,左忠伟,等.超大容量双电层电容器主要参数的测试[J].电子元件与材料, 2000, 19(2):15-21.
    [15]王国庆.双电层电容器发展现状及前景[J].电子元件与材料, 2000, 19(1):38-42.
    [16]王茂章.多孔炭材料在双电层电容器中的应用[J].新型炭材料, 1995, 1:1-5.
    [17]梁逵,吴孟强,周旺,等.电池型电容器-超大容量离子电容器[J].电子元件与材料, 2001, 20(4):24-26.
    [18]雷惊天,张占军,吴立人,等.电动车用电源及其发展战略[J].电源技术, 2001, (25)1:40-46.
    [19]程夕明,孙逢春.电动汽车能量存储技术概况[J].电源技术, 2001, 25(1):47-52.
    [20]阿布里提·阿布都拉,清水健一.电动汽车的发展现状和开发动向[J].电工电能新技术, 2000, 1:49-53.
    [21]黄小文.电化学电容器及锂离子电池正极材料的研究[博士学位论文].长春:东北师范大学, 2002.
    [22] Zhang J P, Huang J, Jow T R. The limitations of energy density for electrochemical capacitors[J]. J Electrochem Soc, 1997, 144(6):2026-2031.
    [23] Rudge A, Davey J, Raistrick I, et.al. Conducting polymers as cative materials in electrochemical capacitors[J]. J Power Sources, 1994, (47):89-107
    [24] Panero S, Spila E, Scrosati B. On use of ionically conducting membrances for the fabrications of laminated polymer based redox capacitor[J]. J Electroanal Chem, 1995, 385:389-396.
    [25]王钰.超级电容器电极材料二氧化锰的制备、改性及其电容性能[硕士学位论文].长沙:中南大学应用化学系, 2007.
    [26] Morimoto T, Hiratsuka K, Sanada Y, et al. Electric double-layer capacitor using organic electrolyte[J]. J Power Sources, 1996, 60: 239-247.
    [27] Kotz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochim Acta, 2000, 45:2483-2498.
    [28]孟庆函,刘玲,曹高萍.氯化铜/活性炭复合电极的制备及性能的研究[J].功能材料, 2005, 8(36):1170-1172.
    [29]刘玲,孟庆函.体型酚醛树脂复合活性炭电极的制备及性能研究[J].炭素技术, 2005, 2(24):9-11.
    [30] Wang Yonggang, Xia Yongyao. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system[J]. Electrochem Commun, 2005, 7: 1138-1142.
    [31] Wang Yonggang, Xia Yong-yao. Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Intercalated Compounds I. The C/LiMn2O4 System[J]. J Electrochem Soc, 2006, 153 (2):450-454.
    [32] Zhang Jianrong, Jiang Dechen, Chen Bin. Preparation and Electrochemistry of Hydrous Ruthenium Oxide Active Carbon Electrode Materials for Supercapacitor[J]. J Electrochem Soc, 2001, 148 (12):1362-1367.
    [33] Zhang Jianrong, Chen Bin, Li Weikuan, et.al. Electrochemical behavior of amorphous hydrous Ruthenium oxide/active carbon composite electrodes for supercapacitor[J]. Int J Mod Phys B, 2002, 28&29(16):4479-4483.
    [34]苏岳锋,吴锋,刘亚栋.有机双电层电容器用活性炭电极的修饰[J].电子元件与材料, 2005, 24(2):20-23.
    [35]吴海芳,胡中华.活性炭纤维制备双电层电容器[J].炭素技术, 2004, 23(1):12-16.
    [36] Hsieh C T, Teng H S. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics[J]. Carbon, 2002, 40(5):667-674.
    [37] Miura K, Nakagawa, Okamoto H. Production of high density activated carbon fiber by a hot briqueting method[J]. Carbon, 2000, 38(1):119-125.
    [38] Li Jun, Wang Xianyou, Huang Qinghua, et a1. A new type of MnO2 xH2O/CRF composite electrode for supercapacitors[J]. J Power Sources, 2006, 160:1501-1505.
    [39] Lawrence J, Hardwick, Hahn M, et a1. An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite[J]. Electrochim Acta, 2006, 52:675-680.
    [40]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社, 2002
    [41]王贵欣,瞿美臻,陈利,等.碳纳米管用作超级电容器电极材料[J].化学通报, 2004, 3:185-191.
    [42] Frackowiak E, Delpeux S, Jurewicz K, et al. Enhanced capacitance of carbon nanotubes throuth chemical activation[J]. Chem Phys Lett, 2002, 361:35-41.
    [43] Niu C M, Sichel E K, Hoch R, et al. High power electrochemical capacitors based carbon nanotube electrodes[J]. Appl Phys Lett, 1997, 70(11):1480-1482.
    [44] Conway B E.电化学超级电容器一科学原理及技术应用[M].北京:化学工业出版社, 2005.
    [45] Xu Maowen, Bao Shujuan, Li Hulin. Synthesis and characterization of mesoporous nickel oxide for electrochemical capacitor [J]. J Solid State Electrochems, 2007, 11:372-377.
    [46] Chen Jie, Huang Kelong, Liu Suqin. Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor [J]. Electrochim Acta, 2009, 55:1-5.
    [47] Cottineau T, Toupin M, Delahaye T, et al. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors [J]. Appl. Phys. A, 2006, 82:599-606.
    [48] Wu Mengqiang, Zhang Liping, Wang Dongmei, et al. Cathodic deposition and characterization of tin oxide coatings on graphite for electrochemical supercapacitors [J]. J Power Sources, 2008, 175:669-674.
    [49] Fang Weichuan. Synthesis and Electrochemical Characterization of Vanadium Oxide/Carbon Nanotube Composites for Supercapacitors [J]. J Phys Chem C, 2008, 112:11552-11555.
    [50] Hu Chichang, Huang Chaoming, Chang K H. Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors[J]. J Power Sources, 2008, 185:1594-1597.
    [51] Tao Feng, Zhao Yongqing, Zhang Guoqing, Li Hulin. Electrochemical characterization on cobalt sulfide for electrochemical supercapacitors [J]. Electrochem Commun, 2007, 9:1282-1287.
    [52] Jayalakshmi M, Rao M M, Choudaary B M. Identifying nano SnS as a new electrode material for electrochemical capacitors in aqueous solutions [J]. Electrochem Commun, 2004, 6:1119-1122.
    [53] Liu Wei, Soneda Y, Kodama M, et al. Low-temperature preparation and electrochemical capacitance of WC/carbon composites with high specific surface area [J]. Carbon, 2007, 45:2759-2767.
    [54] Morishita T, Soneda Y, Hatori H, Inagaki M. Carbon-coated tungsten and molybdenum carbides for electrode of electrochemicalcapacitor [J]. Electrochim Acta, 2007, 52 (24):78-84.
    [55] Ramesh T N, Jayashree R S, Kamath P, et al. Effect of lightweight supports on specific discharge capacity ofβ-nickel hydroxide [J]. J Power Sources, 2002, 104:295-298.
    [56] Cao Lin, Xu Feng, Liang Yanyu, et al. Preparation of the novel nanocomposite Co(OH)2/ultra-stable Y zeolite and its application as a supercapacitor with high energy density [J]. Adv Mater, 2004, 16(20):1853-1857.
    [57] Patil U M, Gurav K V, Fulari V J, et al. Characterization of honeycomb-like“β-Ni (OH):thin films synthesized by chemical bath deposition method and their supercapacitor application [J]. J Power Sources, 2009,188:338-342.
    [58] Chabre Y, Pannetier J. Structural and electrochemical propreties of the proton/γ-MnO2 system[J]. Prog Solid State Chem, 1995, 23:1-130.
    [59] Prelot B, Christiane P, Thomas F, et al. Structural-chemical disorder of manganese dioxide 1. Influence on surface properties at the solid-electrolyte interface[J]. J Colloid Interface Sci, 2003, 257:77-84.
    [60] Thackeray M M. Manganese oxides for lithium batteries[J]. Prog Solid State Chem,1997, 25:1-71.
    [61] Subramanian V, Zhu Hongwei, Wei Bingqing. Alcohol-assisted room temperature synthes is of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte[J]. Chem Phys Lett, 2008, 453:242–249.
    [62] Jiang Rongrong, Huang Tao, Liu Jiali, et al. A novel method to prepare nanostructured manganese dioxide and its electrochemical properties as a supercapacitor electrode[J]. Electrochim Acta, 2009, 54:3047–3052.
    [63] Hong Xinlin, Zhang Gaoyong, Zhu Yinyan, Yang Hengquan. Sol–gel synthesis and characterization of mesoporous manganese oxide[J]. Mater Res Bull, 2003, 38: 1695–1703.
    [64] Wang Xingyan, Wang Xianyou, Huang Weiguo, et al. Sol–gel template synthesis of highly ordered MnO2 nanowire arrays[J]. J Power Sources, 2005, 140:211–215.
    [65] Yang Jingsi. In?uence of synthesis conditions on the electrochemical properties of nanostructured amorphous manganese oxide cryogels[J]. J Power Sources, 2003, 122: 181–187.
    [66] Yang Yanjing, Liu Enhui, Li Limin. Nanostructured MnO2/exfoliated graphite composite electrode as supercapacitors[J]. J Alloys Compd, 2009, 487:564-567.
    [67]张伟,刘开宇,张莹.α- MnO2的机械化学法合成及其电容性质[J].中国锰业, 2008, 26(2):40-43.
    [68]李清文,李娟,夏熙,等.纳米MnO2粉末的固相合成及其电化学性能的研究[J].应用科学学报, 1999, 17 (2):245-249.
    [69]李娟. MnO2纳米粉体的合成及可充性[J].电池, 1999, 29 (2):47-52.
    [70] Subramanian V, Zhu Hongwei, Vajtai R, et al. Hydrothermal Synthesis and Pseudocapacitance Properties of MnO2 Nanostructures[J]. J Phys Chem B, 2005, 109:20207-20214.
    [71] Hu Chichang, Wu Y T, Chang K H. Low-Temperature Hydrothermal Synthesis of Mn3O4 and MnOOH Single Crystals: Determinant In?uence of Oxidants[J]. Chem Mater, 2008, 20: 2890–2894.
    [72] Yan Jun, Fan Zhuangjun, Wei Tong, Zhongwei Qie, et al. Preparation and electrochemical characteristics of manganese dioxide/graphite nanoplatelet composites[J]. Mater Sci Eng B, 2008, 151:174–178.
    [73] Jana S, Pande S, Sinha A K, et al. A Green Chemistry Approach for the Synthesis of Flower-like Ag-Doped MnO2 Nanostructures Probed by Surface-Enhanced Raman Spectroscopy[J]. J Phys Chem C, 2009, 113:1386–1392.
    [74] Hu C C, Tsou T W. Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition[J]. Electrochim Acta, 2002, 47:3523-3532.
    [75] Lee C Y, Tsai H M, Chuang H J, et al. Characteristics and Electrochemical Performance of Characteristics and Electrochemical Performance of Nanocomposite Electrodes[J]. J Electrochem Soc, 2005,152(4):A716-A720.
    [76] Chang J K, Chen Y L, Tsai W T. Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition[J]. J Power Sources, 2004, 135:344–353.
    [77] Decaraj S, Munichandraiah N. Electrochemical supercapacitor studies of nanostructuredα-MnO2 synthesized by microemulsion method and the effect of annealing[J]. J Electrochem Soc, 2007, 154(2):A80-A88.
    [78] Xu Chengjun, Li Baohua, Du Hongda, et al. Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method[J]. J Power Sources, 2008, 180:664-670.
    [79] Ai Zhihui, Zhang Lizhi, Kong Fanhai, et al. Microwave-assisted green synthesis of MnO2 nanoplates with environmental catalytic activity[J]. Mater Chem Physics, 2008, 111:162-167.
    [80] Hibino M, Zhou Haoshen, Honma I. Electrode properties of manganese oxide synthesized by sonochemical method in non-aqueous system[J]. J Power Sources, 2005, 146:304-309.
    [81] Yang Zeheng, Zhang Yuancheng, Zhang Weixin, et al. Nanorods of manganese oxides: Synthesis, characterization and catalytic application[J]. J Solid State Chem, 2006, 179:679-684.
    [82] Fei Jinbo, Cui Yue, Yan Xuehai, et al. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment[J]. Adv Mater, 2008, 20:452-456.
    [83] Bard A J, Faulkner L R.电化学方法原理及应用[M].谷林瑛,译.北京:化学工业出版社, 1986.
    [84]李获.电化学原理[M].北京:北京航空航天大学出版社, 1999.
    [85]查全性.电极过程动力学导论[M].北京:科学出版社, 2002.
    [86]杨绮琴.应用电化学[M].广州:中山大学出版社, 2001.
    [87]藤媳昭,相泽益男,井上做.电化学测试方法[M].陈震,姚建年,译.北京:北京大学出版社, 1989.
    [88]田昭武.电化学研究方法[M].北京:科学出版社, 1984.
    [89]周伟舫.电化学测量[M].上海:上海科学技术出版社, 1985.
    [90] Urban J J, Yun W S, Gu Q, et al. Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate[J]. J Am Chem Soc, 2002, 124:1186-1187.
    [91] Lee K, Seo W S, Park J T. Synthesis and optical properties of colloidal tungsten oxide nanorods[J]. J Am Chem Soc, 2003, 125:3408-3409.
    [92] Toupin M, Brousse T, Belanger D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chem Mater, 2004, 16:3184-3190.
    [93] Ghodbane O, Pascal J L, Favier F. Microstructure effects on charge-storage properties in MnO2-based electrochemical supercapacitors[J]. Applied materials and interfaces, 2009, 1(5):1130-1139.
    [94] Preisler E. Chemical H insertion into a low microtwinned EMD at temperatures[J]. J Appl Electrochem, 1989, 19:540-545.
    [95] Ruetschi P, Giovanoli R. Cation Vacancies in MnO2 and Their Influence on Electrochemical Reactivity[J]. J Electrochem Soc, 1988, 135:2663-2669.
    [96] Andersen T N. Determination of the relative polarity of MnO2 surface with gas chromatography[J]. Prog Batteries&Battery Mater, 1992, 11:105-111.
    [97]王莉.新型锰氧化物的制备及表征[硕士学位论文].广州:华南师范大学应用化学系, 2007.
    [98]杜芳林.超级电容器纳米电极材料的制备和电化学性能[硕士学位论文].青岛:青岛科技大学无机化学系, 2008.
    [99]张治安,杨邦朝,胡永达,等.超级电容器氧化锰电极电容特性研究[J].材料热处理学报, 2005, 26(2) :10-13.
    [100] Ruetschip, Giovanoli R. Cation vacancies in MnO2 and their influence on electrochemical reactivity[J]. J Electrochem Soc, 1988, 135:2663-2669.
    [101] Preisler E. Semiconductor properties of manganese dioxide[J]. J Appl Electrochem, 1976, 6:311-320.
    [102]李兵红,梁逵,丁士华.热处理对纳米α-MnO2电容特性的影响[J].电子元件与材料, 2006, 25(6):21-23.
    [103] Toupin M, Brousse T. Charge storge mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chem Mater, 2004, 16:3184-3190.
    [104] Reddy R N, Reddy R G. Sol–gel MnO2 as an electrode material for electrochemical capacitors[J]. J Power Sources, 2003, 124:330-337.
    [105] Reddy R N, Reddy R G. Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material[J]. J Power Sources, 2004, 132:315-320.
    [106] Chun S E, Pyun Su-Ⅱ, Lee G J, A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1 M Na2SO4 solution[J]. Electrochim Acta, 2006, 51:6479-6486.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700