基于钛盐的无机高分子复合絮凝剂的制备及其结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于新型絮凝剂聚硅硫酸钛(PTSS)的亲生物性,制备了多种基于钛盐的无机高分子复合絮凝剂(Ti-IPF)。筛选出适合工业化应用的聚硅硫酸钛铝(PTAS)和聚硅硫酸钛铁(PTFS)。通过实验得出合成PTAS和PTFS的最佳配比分别为n(Ti+Al):n(Si)=1:3、n(Ti):n(Al)=1:5和n(Ti+Fe):n(Si)=1:3、n(Ti):n(Fe)=1:5。
     采用X-射线衍射、红外光谱、紫外漫反射光谱分析了PTSS、PTAS与PTFS的成键情况。分析表明:PTSS、PTAS与PTFS均具有框架钛结构(Ti-O-Si)。其中,PTSS是以Ti-O-Si作为骨架单元,与聚硅酸键合形成高分子分枝长链结构,分子量大。最佳配比的PTAS中的Ti4+、Al3+和PTFS中的Ti4+、Fe3+分别取代Si-O-Si中的Si或通过金属离子水解形成的表面的羟基与聚硅酸的Si-O-Si结合,形成具有一定分子量的分枝链状结构单元,分子量较聚硅酸大。通过絮凝剂PTSS、PTAS与PTFS聚合过程中的粒度变化以及Zeta电位测定,推断出PTSS的混凝机理主要是高分子链的架桥网捕与络合物表面的羟基吸附作用。而PTAS和PTFS的混凝机理主要是吸附电中和与络合物表面的羟基吸附网捕卷扫作用,桥联网捕作用均起辅助作用。
     论文通过对模拟江水、乳化油废水和磷化废水的混凝实验表明:模拟江水的初始pH值为5.26~9.32、PTFS的投加量为0.3mmol/L时,除浊率达到99.8%。乳化油废水的初始pH值为7.15,PTAS和PTFS的投加量为0.4mmol/L时,对乳化油废水的除浊率分别达到92.5%和99.8%,CODCr的去除率分别达到99.6%和99.3%。采用中和絮凝沉淀法,磷化废水的最佳pH值中和至10.18时,总磷去除率达到99.8%。
In this work, According to a new type of inorganic polymer, poly-silicic titanium sulfate (PTSS), a variety of new inorganic polymeric flocculant titanium-based(Ti-IPF) were prepared by co-polymerization. Poly-silicic titanium-aluminum sulfate(PTAS) and poly-silicic titanium-iron sulfate(PTFS) were selected by industrial applications, The results showed that when the molar ratio of n(Ti+Al):n(Si) or n(Ti +Fe):n(Si) equal to 0.3, the molar ratio of n(Ti):n(Al) or n(Ti):n(Fe) equal to 0.2, the flocculants PTAS and PTFS were optimal.
     Bonding mechanism of optimal PTSS, PTAS, PTFS was probed by XRD, IR, UV/Vis measurement. The analysis results shows that the framework titanium structure, Ti-O-Si was existed in PTSS, PTAS and PTFS. The flocculant PTSS possessed long-chain branched structure and big molecular weight, which was composed of the framework titanium structure Ti-O-Si and poly silicate bonded. In the strcture of optimal flocculants PTAS and PTFS,the silicon of Si-O-Si was replaced by metal ions, such as titanium ions, iron ions, and aluminum ions, or poly-hydroxy adsorption which was formed by metal ions hydrolysis, the molecular weight was larger than the poly-silicic acid. Then, the particle size in the polymerization process and the Zeta potential of the optimal PTSS, PTAS and PTFS were investigated, thereby conjectures that the coagulation mechanism of PTSS was mainly chain bridging, sweeping and surface poly-hydroxy adsorption. The coagulation mechanism of PTAS and PTFS were mainly adsorption-charge neutralization and the surface poly-hydroxy adsorption, other mechanisms play a supporting roles, such as the chain bridging, sweeping, and so on.
     The optimal PTSS, PTAS and PTFS were used to treat simulation river water, emulsified oil wastewater and phosphating wastewater, coagulation experiments show that turbidity removal rate reached 99.8%, when the initial pH value of simulation river water was 5.26 to 9.32, the dosage of PTAS and PTFS were respectively 0.3 millimoles percent litre. when the initial pH value of emulsified oil wastewater was 7.15, the dosage of PTAS and PTFS was 0.4 millimoles percent litre, of emulsified oil wastewater turbidity removal rates were respectively 92.5% and 99.8%, the removal rate of CODCr were respectively 99.6% and 99.3%. The pH value of phosphating wastewater increased to 10.18 by neutralization of lime and coagulate of PTFS, the removal rate of phosphorus reached 99.8%.
引文
[1]王万林.我国复合型无机高分子絮凝剂的研究及应用进展[J]. 2008,28(4):1-5.
    [2] R.I.L.Eggen, R.Behra, P.Burkhardt-Hoolm, et al. Challenges in ecotoxicology[J]. Environ.Sci. Technol., 2004, 38(3): 58-64.
    [3] E.Silva, N.Rajapakse, A.Kortenkamp. Something from"nothing"--eight weak estrogenic chemicals combined at concentrations below NOEC's produce significant mixture effects[J]. Environ.Sci.Technol., 2002, 36(8): 1751-1756.
    [4] Maria Tomaszewska, Sylwia Mozia, Antoni W. Morawski. Removal of organic matter by coagulation enhaneed with adsorption on PAC[J]. Desalination, 2004, 6(1): 79-87.
    [5]何铁林.水处理絮凝剂产业发展现状与趋势[J].中国水污染防治技术装备论文,2002,2(8):224-234.
    [6] J. Withgott.. Amphibian decline: ubiquitous herbicide emasculates frogs, Science[J]. Environ.Sci.Technol., 2002, 29(6): 447-448.
    [7]奕兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划[J].工业水处理,2000,20(11):1-6.
    [8]王九思.水处理化学[M].北京:化学工业出版社,2002.
    [9]肖锦,杞永亮.我国絮凝剂发展的现状与对策[J].现代化工,1997,17(12):6-9.
    [10]徐晓军.化学絮凝剂作用机理[M].北京:科学出版社,2005.
    [11] Lievitski. Preparation of 5/6 aluminum oxychloride and the development for industrial application[J]. Chemical Industry, 1960, 10(7): 220-230.
    [12] Sychev A. V. , Getmantsev S. V., The use of aluminum oxychloride for treatment of water with low alkali reserve[J]. Water Supply and Sanitaty Technology, 2005, 6(8): 14-15.
    [13] Linevich S. N. , Bogdanov S. S. , Getmantsev S. V.. Experunental, theoretical and full scale tests of aluminium polyoxychloride on the Don river’s Water[J]. Water Supply and Sanitaty Technology, 2004, 8(1): 15-18.
    [14]三上八州家,柳井正彦,森田博野,等.聚合硫酸铁的混凝特性应用实例[J].PPM,1980,4(5):24-30.
    [15]徐祖信,陈漩,李霞.聚氯化铝及其在工业废水处理中的应用与展望[J].上海环境科学,2003,22(5):353-357.
    [16]李润生.水处理新药剂碱式氯化铝[M].北京:中国建筑工业出版社,1981.
    [17]阮复昌,莫炳禄,徐国想,等.铁系净水剂混凝过程的计算机模拟[J].化学反应工程与工艺,1998,14(1):699-701.
    [18] A. G. El Samrania, B. S. Lartiges, E. Montargès-Pelletier, et al. Clarification of municipal sewage with ferric chloride: the nature of coagulant species[J]. WaterResearch, 2004, 38(3): 756-768
    [19] S. Bratskaya, S. Schwarz, D. Chervonetsky. Comparison atudy of humic acids flocculation with chitosan hydrochloride and chitosan glutamate[J]. Water Research, 2004, 3(8): 2955-2961.
    [20] A. L. Ahmad, S. Sumathi, B. H. Hameed. Coagulation of residue oil and suspended solid in palm oilmill effluent by chitosan, alum and PAC[J]. Chemical Engineering Journal, 2006, 11(8): 99-105.
    [21]付英,于水利,杨园晶,等.聚硅酸铁(PSF)混凝剂硅铁反应过程研究[J].环境科学,2007,28(3):569-577.
    [22]付英,于水利,付胜涛,等.固液共存氧化型聚硅酸铁(PSF-I)混凝剂的分析[J].环境科学,2006,27 (10):2061-2066.
    [23]阮复昌,莫炳禄,公国庆,等.聚合硫酸铁的生成机理[J].高校化学工程学报,1996, 10 (2):210-213.
    [24]贾青竹,衣守志.聚硅酸聚合氯化铁复合型絮凝剂的制备及性能研究[J].工业用水与废水,2004,24(1):38-40.
    [25]陈冬辰.聚合硫酸铁的制备及其在污水中的应用[J].山东化工,1997,1(3):39-41.
    [26]胡翔,孙治荣.稀释作用对聚硅酸铁混凝剂混凝性能的影响[J].工业用水与废水,2004,35(4):18-20.
    [27]万鹰昕,程鸿德.无机高分子絮凝剂絮凝机制的研究进展[J].矿物岩石地球化学通报,2001,20(1):63-65.
    [28]孙剑辉,徐毅.聚硅酸盐类絮凝剂的研究进展[J].工业水处理,2000,20(3):4-6.
    [29]高宝玉,岳钦艳,宋永会.用透射电镜研究聚硅酸硫酸铁混凝剂的形态[J].环境化学,1998,17(2):170-173.
    [30]高宝玉,岳钦艳,汤鸿霄.聚硅氯化铝混凝剂中Al(Ⅲ)水解聚合历程及铝硅作用特性研究[J].环境科学学报,2000,20(2):151-155.
    [31] Gao Baoyu, Yue Qinyan, Wang Bingjian. The chemical species distribution and transformarion of polyaluminum silicate chloride coagulant[J]. Chemosphere, 2002, 4(6): 809-813.
    [32]胡勇有,王占生,汤鸿霄.聚磷氯化铝溶液形态分布及转化规律[J].环境科学学报,1995,15(1):224-231.
    [33]栾兆坤,刘振儒,赵春禄.聚铝铁硅絮凝剂的合成方法及其混凝效能[J].环境化学,1997,16(6):546-551.
    [34]常青,王武权,栾兆昆.聚合硅酸硫酸铝的制备、结构及性能研究[J].环境化学,1999,18(2):168-172.
    [35]刘温霞,隆言泉,王启常,等.用Al-Ferron逐时络合比色法研究聚合硅酸硫酸铝的结构形态[J].中国造纸学报,2001,16:57-64.
    [36]王东升,汤鸿霄.聚铁硅型复合无机高分子絮凝剂的形态分布特征[J].环境科学,2001,22(1):94-97.
    [37]石宝友,汤鸿霄.聚合氯化铝与有机高分子复合絮凝剂的点和特性及其絮凝作用[J].环境化学,1999,18(4):302-308.
    [38]常青.用Ca(OH)2-PDADMA-PAM法絮凝处理制革废水[J].环境科学学报, 1994,14(2):216-221.
    [39]高宝玉,王燕,岳钦艳,等.PAC与PDMDAAC复合絮凝剂中铝的形态分布[J].中国环境科学,2002,22(5):472-476.
    [40] Tang Hongxiao, Wang Dongsheng, Ge Xiaopeng. Environmental nano-polluntants(ENP) and aquatic micro-interfa processes[J]. Water Science and Technology, 2004, 50(12): 103-109.
    [41]汤鸿霄.环境分子科学与环境纳米技术[J].环境科学学报,2005,25:1-4.
    [42]郑怀礼,龙腾锐,袁宗宣.絮凝法处理中药制药废水的试验研究[J].水处理技术,2002,28(6):341-344.
    [43]蒋林时,张洪林,张强,等.复合高分子絮凝剂处理T105废水[J].水处理技术,2002,28(1):49-51.
    [44]汤心虎,黄秀微,刘佩璇,等.无机/有机负荷絮凝剂对印染废水脱色的研究[J].水处理技术,2001,27(5):267-230.
    [45]唐玉斌,陆柱,赵庆祥.绿色水处理技术的研究与应用进展[J].水处理技术,2002,28(1):1-4.
    [46]郑怀礼,刘克万.无机高分子复合絮凝剂的研究进展及发展趋势[J].水处理技术, 2004,30(6):315-318.
    [47] Kim YH. Coagulants and Flocculant:Theory & Practice[M]. New York: Tall Oaks Pubblishing Inc. 1995.
    [48] B. Y. Gao, H. H. Hahn, E. Hoffmann. Evaluation of aluminum-silicate polymer composite as a coagulant for water treatment[J]. Water Research, 2002, 36(2): 3573-3581
    [49]栾兆坤,宋永会.聚硅金属盐混凝剂的制备方法和性能研究[J].环境化学,1997,16 (6):534-539.
    [50] Doucet F. J. , Rotov M. E. , Exley C. Direct and indirect identification of the formation of hydroxyaluminosilicates in acidic solutions [J]. Journal of Inorganic Biochemistry, 2001, 8(7): 71-79.
    [51] Ohno K. , Uchiyama M., Kamei T. , et al. Practical design offlocculator for new polymeric inorganic coagulant-PSI[J]. Water Sci. Technol. , 2004 , 4 (1): 67-75.
    [52]高宝山.混凝剂聚硅硫酸铝的性能研究[J].环境科学学报,2001,2(1):30-36.
    [53]王炳建.聚硅氯化铝铁在水中的混凝性能研究[J].环境化学. 2002,21(6):533-538.
    [54]汤鸿霄.无机高分子絮凝理论与絮凝剂[M].中国工业建筑出版社,2006.
    [55]渡诚司,田中稔.钛系混凝剂在工业废水处理中的应用[J].工业材料,2000,48(9):55-58.
    [56] Jwasaki, Hiromichi,等.用于自来水处理的含钛混凝剂[J].日本公开特许公报,2001,12(1): 184-185.
    [57]戴安邦.无机化学[M].北京:人民教育出版社,1962.
    [58]徐如人,庞文琴.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [59] F.利鲍著,席耀忠译.硅酸盐结构化学[M ].北京:中国建筑工业出版社,1989.
    [60]郭新闻,王桂茹,王祥生. Ti-Si Pentasil型杂原子分子筛的气固相同晶取代法制备及其羟基化性能[J].催化学报,1994,15(4):311-313.
    [61]郭雅妮,李硕文.聚硅酸硫酸铝絮凝剂的制备及其相关性研究[J].纺织高校基础科学学报,2000,13( 4):338-343.
    [62]武汉大学,吉林大学.无机化学[M].北京:高等教育出版社,第三版,1994.
    [63]谢少艾,陈虹锦,舒谋海.元素化学简明教程[M].上海交通大学出版社,2006. 230-231.
    [64]付英.聚硅酸铁(PSF)的研制及其混凝机理[D].哈尔滨工业大学博士论文. 2007.
    [65] Can Li, Guang Xiong, Jianke Liu, et al. Identifying Framework Titanium in TS-1 Zeolite by UV Resonance Raman Spectroscopy[J]. J. Phys. Chem. B, 2001, 10(5): 2993-2997.
    [66]邓芹英,刘岚,邓惠敏.波谱分休教程[M].北京:科学出版社,2002.
    [67]于慧,高宝玉,岳钦艳,等.红外光谱法研究聚硅氯化铝混凝剂的结构特征[J].山东大学学学报(自然科学版),1999,34(2):19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700