变参数法薄壁机匣模拟件激光熔覆成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统方法加工薄壁机匣组合件,工艺复杂、加工变形难控制、生产周期长,且支板与筒体之间采用焊接方法连接,薄壁结构焊接过程中易引起挠曲变形,影响机匣尺寸形状和整体性能。激光熔覆成形技术(Laser Cladding Forming, LCF)能够成形出具有功能特性的高致密复杂形状金属零件,可满足机匣工作的高性能要求。然而,开环控制和3轴数控条件下,采用固定优化LCF工艺参数组合熔覆成形薄壁机匣件,“2.5D”成形台阶效应不可避免且多层熔覆成形热累积效应严重,影响机匣斜坡结构形状精度及整体成形质量。将变参数法引入LCF工艺中,选择合适的工艺参数及其变化范围,有规律地改变参数,实现了对机匣整体熔覆成形质量的改善,具体工作及结果如下:
     (1)分析机匣熔覆成形关键工艺,在此基础上设计变参数法机匣模拟件整体激光熔覆成形过程,深入分析变参数法成形过程原理知:近连续变送粉量成形可逼近于实时监测送粉量成形过程,从而减小机匣斜坡支板成形台阶效应,变激光功率和扫描速度成形可逼近于实时监测熔池成形过程,从而减小多层连续熔覆成形过程中的热累积效应,为后续变参数多层熔覆成形试验提供理论依据。
     (2)深入研究稳定送粉状态下送粉量、激光功率及扫描速度对熔覆道几何尺寸和熔覆质量的影响规律,结果表明:送粉量范围0.5-2.5g/min,获得较好质量熔覆道;激光功率400W和送粉量2.0g/min组合有利于保证多层熔覆成形质量,每层Z轴提升量0.21mm;扫描速度500mm/min有利于保证成形制件综合性能;变送粉量法控制成形制件形状精度比较有效;最佳工艺参数组合熔覆成形获得致密、硬度580HV的熔覆道。
     (3)针对机匣斜坡支板“2.5D”成形台阶效应问题,建立变厚度切片成形几何模型。0.5-2.5g/min内近连续增大送粉量,获得高度0.05-0.42mm近线性增大的单道单层熔覆层。采用Matlab仿真变厚度切片成形过程,规划正确扫描路径。通过变送粉量多层熔覆成形试验,成形出表面相对较光滑、形状较规则的斜坡薄壁件,有效减小了台阶效应。
     (4)采用每层固定偏移0.05mm和0.026mm,分别获得了侧表面平整度较好的机匣内、外锥壳;选择直线形和圆弧形熔覆道扫描轨迹之间的较佳中心距0.67mm来搭接成形,实现了内、外锥壳与支板的良好连接。设计机匣整体成形激光扫描路径,每层变换成形起点,并改变Z轴提升量来配合变送粉量法成形,直接成形出具有规则斜坡和锥壳形状薄壁结构的机匣模拟件。采用变参数法和冷却等待法减小多层成形热累积效应,提高了机匣整体熔覆质量,结果表明:变参数法更有利于提高机匣整体成形几何尺寸精度。
The whole process is complex, difficult and of long period when manufacturing the aero-engine thin-walled casing with traditional methods. Besides, welding deformation is easily caused when web plates and conical shells are jointed by welding. As a result, not only geometrical precision but also properties of casing become bad. Technology of Laser cladding forming (LCF), which can flexibly manufacture metallic components with full metal density, functions and properties and specific geometry, can be used to manufacture the casing with high properties. However, under conditions of open-loop control and 3-axis CNC, stair-step effect is inevitable when "2.5D" forming process is performed and thermal cumulative effect is serious when multi-layer cladding process is carried out. So the formed ramp web plates of casing have bad geometrical precision and the casing has poor quality. The method with variable parameters is introduced into LCF. Proper parameters are selected and varied regularly in a good range. Consequently, geometrical precision and clad quality of the formed simulated casing is improved significantly. Study details are as followed:
     (1) Key processes of forming thin-walled casing are analyzed and LCF of casing with variable parameters is designed. After deeply analyzing the process principle of forming with variable parameters, two key points are obtained. Process of varying powder feed rate approximately continuously can be considered as process closed-loop controlling powder feed rate so that stair-step effect can be reduced. On the other hand, process of varying laser power and scanning speed regularly can be considered as process closed-loop controlling melt pool so that thermal cumulative effect can be reduced. These two key points provide theoretical basis for the following experiment with variable parameters.
     (2) Under the condition that metal powders are fed in stable state, influences of powder feed rate, scanning speed and laser power on clad dimensions and quality are deeply investigated. Results show that range of powder feed rate 0.5-2.5g/min achieves clad layers with good clad quality; good parameters combination of laser power 400W and powder feed rate 2.0g/min is appropriate for multi-layer cladding and Z-increment value is also determined to be 0.21mm; scanning speed 500mm/min makes the formed sample with good combination property; to improve geometrical precision of the formed sample, the method with variable powder feed rate is more effective than with variable scanning speed; clad layer with dense structure and micro-hardness 580HV is achieved by the good parameters combination.
     (3) To prevent stair-step effect when layered forming ramp web plates of casing with 2.5D slices, a geometrical model forming with variable thickness slices is developed. While powder feed rate is varied at a calculated step approximately continuously, a single clad layer with height increasing near linearly to clad length is obtained. Clad height increases from 0.05mm to 0.42mm with powder feed rate varying from 0.5g/min to 2.5g/min. Correct scanning paths are planed by simulating the process forming with variable thickness slices through Matlab program. Using clad layer of variable height and the obtained scanning path, a relatively smooth ramp thin wall is formed by multi-layer cladding experiments. Result shows the method with variable powder feed rate reduces stair-step effect significantly.
     (4) By offsetting fixed values of 0.05mm and 0.026mm every layer, inner and outer conical shells of casing are formed with good side surface smoothness respectively. By overlapping linear and circular clad layers and selecting center distances between linear and circular scanning tracks to be 0.67mm, joints of web plates and conical shells are formed with good properties and precision. Scanning path for forming the integral casing is designed. Starting point is changed every layer and Z-increment value is varied to match the method with variable powder feed rate. Consequently, the simulated thin-walled casing is directly formed with uniform ramp and conical thin-walled structures. Method with variable parameters and self-cooling are both used to reduce thermal cumulative effect and clad quality of the formed casing is improved significantly. Results also show that the method with variable parameters is more effective to improve geometrical precision of the formed casing.
引文
[1]Zhong Minlin, Liu Wenjin. Laser surface cladding:the state of the art and challenges [J]. Journal of Mechanical Engineering Science,2010,224(5):1041-1060.
    [2]李俊涛,陈兴福,吴剑涛,等.K432A机匣部件精铸工艺研究[J].铸造,2006,55(3):249-251.
    [3]庞克昌,周建华,孟笑影,等.TC14钛合金大型机匣采用等温锻造生产小余量锻件[J].金属学报,2002,38(z1):362-363.
    [4]张辉,王君平,麻丽红,等.双环薄壁铸铝机匣的机械[J].航天工艺,2001(5):7-10.
    [5]胡晓群,叶红雨,冯湛.航空发动机对开机匣数控铣削工艺[J].航空制造技术,2006(2):91-94.
    [6]于翠苹.航空发动机短机匣加工变形控制工艺研究[D].硕士学位论文,大连:大连理工大学,2008.
    [7]赵秀芬,李冬梅,赵明.飞机发动机叶片机匣的高效加工[J].航空制造技术,2009(13):92-94.
    [8]冀用尊,亓军洲,侯会云,等.大型对开机匣整体电子束焊接成型技术[J].航空发动机,2004,30(1):43-46.
    [9]高明铎.航空发动机钦合金机匣的焊接及热处理技术[J].航空发动机,1996,(3):48-53.
    [10]汪苏,王春侠,郭军刚.航空发动机薄壁机匣激光焊接有限元数值模拟[J].北京航空航天大学学报,2006,32(7):833-837.
    [11]Lewis G K, Schlienger E. Practical considerations and capabilities for laser assisted direct metal deposition [J]. Materials and Design,2000,21(4):417-423.
    [12]宋建丽,李永堂,邓琦林,等.激光熔覆成形技术的研究进展[J].机械工程学报,2010,46(14):29-39.
    [13]Brown C 0, Breinan E M, Kear B H. Method for fabricating articles by sequential layer deposition. US Patent [P],4323756,1982-04-06.
    [14]Schwendner K I, Banerjee R, Collins P C, et al. Direct laser deposition of alloys from elemental powder blends [J]. Scripta Materialia,2001,45(10):1123-1129.
    [15]钟敏霖,宁国庆,刘文今.激光熔覆快速制造金属零件研究与发展[J].激光技术,2002,26(5):388-391.
    [16]Lewis G K, Nemec R B, Milewski J 0, et al. Directed light fabrication [C].13rd International Congress on Applications of Lasers and Electro-optics, Laser Institute of America, Orlando, Florida,October17-20,1994:17-26.
    [17]Romero J A, Griffith M L, Atwood C L, et al. Laser engineered net shaping LENSTM for additive component processing [C]. Proceedings of the Rapid Prototyping and Manufacturing Conference. Dearborn, MI,1996:23-25.
    [18]Ashley S. From CAD art to rapid metal tools [J]. Mechanical Engineering, 1997,119(3):82-87.
    [19]Mazumder J, Choi J, Nagaranthnam K, et al. Direct metal deposition (DMD) of H tool steel for 3-D components:microstructure and mechanical properties [J]. Journal Metals,1997,49(5):55-60.
    [20]Abbott D H, Arcella F G. Laser Forming titanium components [J]. Advanced materials & processes,1998,53(2):24-26.
    [21]Wu Xinhua. Review of alloy and process development of TiAl alloys [J]. Intermetallics,2006,14(10-11):1114-1122.
    [22]Sigel J, Dausinger F, Hugel H. Optic device for generating metallic parts with the LAPS-J process [J]. Proceedings of the SPIE. The Int. Society for Optical Engineering,1997,3102:86-94.
    [23]Xue L, Islam M U. Free-form laser consolidation for producing metallurgically sound and functional components [J]. Journal of Laser Applications,2000,12(4):160-165.
    [24]Gremaud M, Wagniere J D, Zryd A, et al. Laser Metal Forming:process fundamentals [J]. Surface engineering,1996,12(3):251-259.
    [25]李延民,李建国,杨海欧,等.金属零件激光直接成形[J].应用激光,2002,22(2):140-144.
    [26]王华明.金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J].航空学报,2002,23(5):473-478.
    [27]张永忠,章萍芝,石力开,等.金属零件激光快速成型技术研究[J].材料导报,2001,15(12):10-13.
    [28]宁国庆,钟敏霖,杨林,等.激光直接制造金属零件过程的闭环控制研究[J].应用激光,2002,22(2):172-176.
    [29]邓琦林,许黎明,胡德金,等.激光熔覆成形金属零件中微裂纹的减少和消除[J].机械工程学报,2002,38(增刊):117-121.
    [30]Atwood C, Griffith M, Harwell L, et al. Laser Engineered Net Shaping (LENSTM):A tool for direct fabrication of Metal Parts [C].17th International Congress on Applications of Lasers and Electro-optics, Orlando, Florida, November 16-19,1998:E-1.
    [31]张魁武.国外激光熔覆设备[J].金属热处理,2002,27(7):26-32.
    [32]Srivastava D, Chang I T H, Loretto M H. The effect of process parameters and heat treatment on the microstructure of direct laser fabricated TiAl alloy samples [J]. Intermetallics,2001,9(12):1003-1013.
    [33]Mazumder J, Dutta D, Kikuchi N, et al. Closed loop direct metal deposition:art to part [J]. Optics and Lasers in Engineering,2000,34(4-6):397-414.
    [34]Milewski J 0, Lewis G K, Thoma D J, et al. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition [J]. Journal of Materials Processing Technology,1998,75(1-3):165-172.
    [35]Kobryn P A, Moore E H, Semiatin S L. The effect of laser power and traverse speed on microstruture, porosity and build height in laser-deposited Ti-6A1-4V [J]. Scripta mater,2000,43(4):299-305.
    [36]Pinkerton A J, Li Lin. Multiple-layer cladding of stainless steel using a high-powered diode laser:an experimental investigation of the process characteristics and material properties [J]. Thin Solid Films, 2004,453-454:471-476.
    [37]Li Lin. The advances and characteristics of high-power diode laser materials processing [J]. Optics and Lasers in Engineering,2000,34(4-6):231-253.
    [38]孙玉文,刘伟军,王越超,等.基于成形工具姿态调整的适应性积层制造技术研究[J].高技术通讯,2003,13(2):55-59.
    [39]Wu X, Mei J. Near net shape manufacturing of components using direct laser fabrication technology [J]. Journal of Materials Processing Technology,2003, 135(2-3):266-270.
    [40]Hensinger D M, Ames A L, Kuhlmann J L. Motion planning for a direct metal deposition rapid prototyping system [C]. Proceedings of the 2000 IEEE International Conference on Robotics& Automation, San Francisco, CA, USA, April 24-28 2000,4:3095-3100.
    [41]Li Yanming, Yang Haiou, Lin Xin, et al. The influences of processing parameters on forming characterizations during laser rapid forming [J]. Materials Science and Engineering,2003,360(1-2):18-25.
    [42]Lewis G K, Milewski J 0, Cremers D A, et al. Laser production of articles from powders. US Patent [P],5837960,1998-11-07.
    [43]Lewis G K, Less R M. Rotary powder feed through apparatus. US Patent [P], 6305884,2001-10-23.
    [44]Keicher D M, Miller W D. Multiple beams and nozzles to increase deposition rate. US Patent [P],6268584,2001-07-31.
    [45]Koch J, Mazumder J. Apparatus and methods for monitoring and controlling multilayer laser cladding. US Patent [P],6122564,2000-09-19.
    [46]Lin J, Steen W M. Design characteristics and development of a nozzle for coaxial laser cladding [J]. Journal of Laser Application,1998,10(2):55-63.
    [47]钟敏霖,刘文今,李凤生.垂直面送粉激光熔覆喷嘴.中国专利[P],02123645.3.
    [48]钟敏霖,刘文今.垂直装卸的分体式激光熔覆同轴送粉喷嘴.中国专利[P],00100041.1,2000.
    [49]钟敏霖,张红军,刘文今.可调宽带双向对称送粉激光熔班喷嘴.中国专利[P],01110132.6.
    [50]张永忠,石力开.激光熔覆同轴送粉喷嘴.中国专利[P],01267740.X.
    [51]李鹏.基于激光熔覆的三维金属零件激光直接制造技术研究[D].博士学位论文,武汉:华中科技大学,2005.
    [52]Boddu M R, Landers R G, Liou F W. Control of laser cladding for rapid prototyping-A review.12The Annual Solid Freeform Fabrication Symposium, Austin, Texas, August 7-9:460-467.
    [53]Pinkerton A J, Li Lin. The significance of deposition point standoff variations in multiple-layer coaxial laser cladding [J]. International Journal of Machine Tools & Manufacture,2004,44(6):573-584.
    [54]Zhong Minlin, Liu Wenjin, Ning Guoqing, et al. Laser direct manufacturing of tungsten nickel collimation component [J]. Journal of Materials Processing Technology,2004,147(2):167-173.
    [55]刘继常,李力钧.激光熔覆成形金属薄壁结构的试验研究[J].机械工程学报,2004,40(10):185-188
    [56]Li Peng, Ji Shengqin, Zeng Xiaoyan, et al. Direct laser fabrication of thin-walled metal parts under open-loop control [J]. International Journal of Machine Tools & Manufacture,2007,47(6):996-1002.
    [57]Lu Z L, Li D C, Lu B H, et al. The prediction of the building precision in the Laser Engineered Net Shaping process using advanced networks [J]. Optics and Lasers in Engineering,2010,48(5):519-525.
    [58]Toyserkani E, Khajepour A.A mechatronics approach to laser powder deposition process [J]. Mechatronics,2006,16(10):631-641.
    [59]Fathi A, Khajepour A, Durali M, et al. Geometry control of the deposited layer in a nonplanar laser cladding process using a variable structure controller [J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2008,130(3):0310031-03100311.
    [60]Li L, Steen W M. Sensing, modeling and closed loop of powder feeder for laser surface modification [C]. Orlando, FL,USA,ICALEO'1993:965-74.
    [61]Carlvalho P A, Braz N, Pontinha M M, et al. Automated workstation for variable composition laser cladding-its use for rapid alloy scanning [J]. Surface and Coatings Technology,1995,72 (1-2):62-70.
    [62]Hu Dongming, Kovacevic R. Sensing, modeling and control for laser-based additive manufacturing [J]. International Journal of Machine Tools&Manufacture, 2003,43(1):51-60.
    [63]Koomsap P, Prabhu V V, Schriempf J T, et al. Simulation-based design of laser-based free forming process control [J]. Journal of Laser Applications, 2001,13(2):46-59.
    [64]Hofmeister W H, MacCallum D 0, Knorovsky G A. Video monitoring and control of the LENS process [J]. Proceedings of AWS 9thInt. Conf. on Computer Technology in Welding, 1999:187-196.
    [65]Liu Jichang, Li Lijun. In-time motion adjustment in laser cladding manufacturing process for improving dimensional accuracy and surface finish of the formed part [J]. Optics & Laser Technology,2004,36(6):477-483.
    [66]Bi Guijun, Schu " rmannb B, Gasser A, et al. Development and qualification of a novel laser-cladding head with integrated sensors [J]. International Journal of Machine Tools & Manufacture,2007,47(3-4):555-561.
    [67]Jeng J Y, Lin M C. Mold fabrication and modification using hybrid processes of selective laser cladding and milling [J]. Journal of Materials Processing Technology,2001,110(1):98-103.
    [68]Thomas H, Eckhard B. New developments in surface technology and prototyping [J]. Proceedings of SPIE-The International Society for Optical Engineering, 2002,4831:468-474.
    [69]Steffen N, Robert M, Siegfried S, et al. Integrated laser cell for combined laser cladding and milling [J]. Assembly Automation,2010,30(1):36-38.
    [70]黄卫东,等.激光立体成形[M].西安:西北工业大学出版社,2007.
    [71]王华明,张述泉,王向明.大型钛合金结构件激光直接制造的进展与挑战(邀请论文)[J].中国激光,2009,36(12):3204-3209.
    [72]薛蕾,黄卫东,陈静,等.激光成形修复技术在航空铸件修复中的应用[J].铸造技术,2008,29(3):391-394.
    [73]Ocelic V, de oliveira U, de Boer M, et al. Thick Co-based coating on cast iron by side laser cladding:Analysis of Processing conditions and coating properties [J]. Surface and Coatings Technology,2007,201(12):5875-5883.
    [74]Chen Changjun, Wang Maocai, Wang Dongsheng, et al. Laser cladding of AI/Ir Powders on ZM5 magnesium base alloy [J]. Rare Metals,2007,26(5):420-425.
    [75]席明哲,虞钢,张永忠,等.同轴送粉激光成形中粉末与激光的相互作用[J].中国激光,2005,32(4):562-566.
    [76]狄科云.激光熔覆快速成形光内同轴送粉斜壁堆积的初步研究[D].硕士学位论文,苏州:苏州大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700