不同耕作方式下土壤团聚体中有机碳的分布及其季节变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机碳库的变化会对全球变化产生重要影响,而农田有机碳库在土壤有机碳库中占有举足轻重的作用。但是农田土壤有机碳的影响因素复杂,本文研究了稻田垄作免耕、常规耕作和冬水田三种方式下土壤中各形态的有机碳(总有机碳、微生物生物量碳、可溶性有机碳和颗粒态有机碳)在土壤团聚体中的分布及其季节变化。结果显示:
     1.从3中不同耕作方式下TOC的分布情况来看,TOC均主要富集在2.0-0.25mm粒级的大团聚体中,而在<0.053mm的粉砂与粘粒组分中,TOC含量通常是最少的;在垄作免耕下,TOC含量大于其它两种耕作方式。在本实验采集土壤的试验田,垄作免耕条件下产量高,故秸秆还田数量多于其它两种耕作方式,土壤中TOC含量自然较高。同时由于免耕在增加土壤有机碳库的同时还能够保护有机质并稳定团聚体,所以垄作免耕土壤中TOC最高。从季节变化来看,各粒级中TOC含量的变化趋势与本研究区域的温度变化趋势相符,即在10月和1月,各粒级中TOC含量通常比较接近,无显著差异,而在4月和7月,随着温度的逐渐升高,往往有下降的趋势。
     2.土壤微生物生物量碳(MBC)均主要富集在2.0-0.25mm粒级的大团聚体中,总有机碳主要分布在2.0-0.25mm粒级团聚体中,而有机碳为微生物的生长和生理活动提供必要的营养,所以微生物在2.0-0.25mm粒级团聚体中也就较多;从耕作方式上来看,在垄作免耕条件下,MBC含量均普遍大于常规耕作和冬水稻田,这与前人的研究结果相似;从季节变化来看,由于本实验区处于亚热带季风气候,春、秋两季气温和降水适中,更加有利于微生物的生长,所以4月和10月份团聚体中MBC含量通常是较大的,在温度较低的冬季和高温少雨的夏季,MBC含量较少。从qCO_2的季节变化来看,4月处于最小值。低的qCO_2可以保证高的代谢效率,使土壤有充足的活性有机物,维持较好的土壤性状和可持续利用潜力。说明春季适中的气温和降水条件,为微生物代谢提供了良好的环境,有利于土壤肥力的提高。
     3.从3种不同耕作方式下DOC的分布情况来看,DOC均主要富集在2.0-0.25mm粒级的大团聚体中,而在<0.053mm的粉砂与粘粒组分中,DOC含量通常最少;在三种不同耕作方式下,DOC含量并没有显著差异;从不同季节来看,DOC含量随不同季节温度的升高而增加,本文第三章的研究表明,在7月,团聚体中微生物的数量是很少的,而DOC是最容易被微生物利用的有机碳,微生物数量减少,消耗的DOC也就少,团聚体中DOC的含量也就较大。
     4.从3种不同耕作方式下POC的分布情况来看,POC均主要富集在2.0-0.25mm粒级的大团聚体中;颗粒有机物形成的团聚体受土地利用方式影响明显,垄作免耕显著提高了各个粒级土样中POC的含量;从季节变化来看,由于POC在土壤中的周转周期为一般为几年到几十年,所以在一年内基本没有显著变化。
     5.在三种不同的耕作方式下,土壤呼吸作用的速率是具有相同的分布模式,呈V字型分布。即1月的呼吸强度最小,10月和4月比1月稍大,7月则是呼吸强度最大的时候;垄作免耕土壤的呼吸速率要显著低于常规平作和冬水稻田,很好地保护了土壤有机碳;在不同季节下,本研究区域土壤的呼吸速率受温度影响明显,随着温度的升高而速率增大。
The variation of soil organic carbon pool will affects the CO_2 concentration in atmospheric enormously and would have an important impact on global change.Farmland soil organic carbon pool is playing a pivotal role in soil organic carbon pool,so the research of variation of farmland soil organic carbon pool is very necessary.However,there are many complex factors affect the change of farmland soil organic carbon pool,including the climatic conditions,farm management practices, vegetation and soil physical and chemical properties,as well as changes in land use patterns and so on.We engaged this study in assumed that there are some factors remain unchanged,for the future provide the basis for further study.In addition,microbial biomass carbon and respiration measurement,can be more objective study of soil organic carbon pool changes.Following the results of research:
     1.Judging from the distribution of MBC in aggregate,under the three different kinds of tillage managements,MBC is enrichment in 2.0-0.25mm aggregate mainly;Judging from the tillage managements,the MBC contents in combining ridge with no-tillage conditions in aggregate are generally higher than conventional tillage and flooded paddy field,which some people with other similar conclusions;Judging from the seasonal change,as a result of this experiment in the sub-tropical monsoon climate zone,moderate temperature and precipitation in spring,more conducive to microbial growth,so in April in the MBC content of aggregates is usually the largest.
     2.Judging from the distribution of TOC in aggregate,TOC is enrichment in 2.0-0.25mm aggregate mainly;Judging from the tillage managements,under combining ridge with no-tillage, TOC content is often greater than the other two types of tillage managements;Judging from the seasonal change,the trend of TOC content vary is accord with trend of temperature changes in this study area.
     3.Judging from the distribution of DOC in aggregate,DOC is enrichment in 2.0-0.25mm aggregate mainly;In three different tillage managements,DOC content and no significant differences;Judging from the different seasons,DOC concentration increased with temperature increase.
     4.Judging from the distribution of POC in aggregate,POC is enrichment in 2.0-0.25mm aggregate mainly;Combining ridge with no-tillage significantly increase the POC content in the each size aggregate;Judging from the different seasons,the turnover of POC in the aggregate is generally a few years to several decades,so in one year there is no significant change in the basic.
     5.In three different tillage managements,soil respiration rate have the same distribution pattern,wasⅤ-shaped distribution.Respiration rate in January of the smallest and the largest in July;Respiration rate of combining ridge with no-tillage soil was significantly lower than that of conventional tillage and flooded paddy field soil,a will protection of the soil organic carbon; Judging from the different seasons,respiration rate increased with temperature increase.
引文
[1]Dalai,R.C.,and Chan,K.Y.,Soil organic matter in rainfed cropping systems of the Australian cereal belt[J].Australian Journal of Soil Research,2001.39:435-464.
    [2]Biedenbender S H,McClaran M P,Quade J,et al.Landscape patterns of vegetation change indicated by soil carbon isotope composition[J].Geoderma,2004.119:69-83.
    [3]Schimel D S,Brasswell B H,Holland E,et al.,Climatic,edaphic,and biotic controls over storage and turnover of carbon in soils[J].Global Biogeochemical Cycles,1994,8:279-294.
    [4]Biederbeck B O,Zentner R P.Labile soil organic matter as influenced by cropping practices in an arid environment[J].Soil Biology and Biochemistry,1994.26:1647-1656.
    [5]Kalbitz K,Solinger S,Park J H,et al.Controls on the dynamics of dissolved organic matter in soils:a review[J].Soil Science,2000.165:277-304.
    [6]Zsolnay A.Dissolved humus in soil waters.In:Piccolo A,ed.Humic Substances in Terrestrial Ecosystems [J].Amsterdam:Elsevier.1996.171-223
    【7]彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展【J】.土壤学报.2004.41(4):618-623.
    [8]Wu J S,Joergensen R G,Pommerening B,Chaussod R,Brooks P C.Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure[J].Soil Biology and Biochemistry,1990,20:1167-1169.
    [9]Jenkinson DS,Ladd JN.Microbial biomass in soil,measurement and turnover[A].In:Paul EA,eds.Soil Biochemistry[C].New York:Marcel Dekker,Inc.,1981.5:415-471.
    [10]Powlson DS,Jenkinson DS.A comparison of the organic matter,biomass,adenosine triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils[J].Journal of Agricultural Science.1981.97:713-721.
    [11]Powlson D S,Brookes P C,Christensen B T.Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J].Soil Biol Biochem,1987.19:159-164.
    [12]Gregorich E G,and Janzen H H,Storage of soil carbon in the light fraction and macroorganic matter[J].Advances in Soil Science.1996.167-190
    [13]Cambardella CA,Elliott ET.Particulate soil organic matter changes across a grassland cultivation sequence [J].Soil Science Society of America Journal,1992.56:777-783
    [14]Swift R S,Sequestration of carbon by soil[J].Soil Science.2001.166:858-871.
    [15]Glochin A,Oades J M,Kjemstd J O and Clarke P,Soil structure and carbon cycling[J].Australian Journal of Soil Research.1994.32:1043-1068.
    [16]Oades and Waters.Aggregate hierarchy in soils[J].Australian Journal of Soil Research.1991.29:815 - 828
    【17】周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展【J].地球科学进展,2005.20(1):99-105
    [18]马毅杰,陈家坊等.水稻土物质变化与生态环境。北京:科学出版社。1999.8-17
    [19]王淑平,周广胜,吕育财,等.中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系[J].植物生态学报,2002.26(5):513-517.
    [20]Jenkinson DS,Adams DE,Wild A.Model estimates of CO_2 emissions from soil in response to global warming [J].Nature,1991,351:304-306.
    【21]张国盛,黄高宝,YIN Chan.农田土壤有机碳固定潜力研究进展[J].生态学报,2005.25(2):351-357
    【22】潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全【J].地球科学进展,2005.20(4):384-393.
    [23]Doran J W,Elliott E T and Paustian K.Soil microbial activity,nitrogen cycling,and long-term changes in organic carbon pools as related to fallow tillage management[J].Soil and Tillage Research,1998.49:3-18.
    [24]Mikhailova E A,Bryant R B,Vassenev I I,et al.Cultivation Effects on Soil Carbon and Nitrogen Contents at Depth in the Russian Chernozem[J].Soil Science Society of America Journal,2000,64:738-745.
    [25]Humberto B C,Rattan L.Mechanism of carbon sequestration in soil aggregates.Critical Reviews in Plant Sciences,2004.23:481-504
    [26]Lal R.Soil carbon dynamics in cropland and rangeland[J].Environmental Pollution,2002,116:353-362.
    【27】朱咏莉,韩建刚,吴金水.农业管理措施对土壤有机碳动态变化的影响[J】.土壤通报.2004.35:648-851
    [28】许阳春,沈其荣,冉伟.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报.2002.39:89-96.
    [29]黄昌勇主编,土壤学.北京:中国农业出版社.2000.1-311.
    [30]Spackman L K,Munn L C.Genesis and morphology of soils associated with formation of Larance Basis(Mima-Like)Mounds in Wyoming[J].Soil Science Society of America Journal,1984,48:1382-1384.
    [31]Kay B D.Soil structure and organic carbon:a review[M].Soil Processes and the Carbon Cycle.1998.169-198.
    [32]Stevenson F J,Cole M A.Cycles of soil carbon,nitrogen,phosphorus,sulfur,micronutrients[J].USA:John Wiley & Sons Inc,1999.
    【33]李庆逵.中国水稻土.北京:科学出版社.1992.
    [34]Herrick J E,Wander M M.Relationships between soil organic carbon and soil quality in cropped and rangeland soils:the importance of distribution,composition,and soil biological activity[M].Soil processes and the carbon cycle.1997,405-425
    【35】李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素【J].地理科学.2001.21:301-307.
    [36】骆东奇,侯春霞.紫色土团聚体抗蚀特性研究[J],水土保持学报,2003,17(2):20-27
    【37】李阳兵谢德体.不同土地利用方式对岩溶土壤团粒结构的影响[J],水土保持学报,2001.15(4):122-125
    【38]彭新华赵其国.红壤侵蚀裸地植被恢复及有机碳含量对土壤团聚体稳定性的影响【J],生态学报,2003,23(10):2176-2182
    [39]Eswaran H,Reich F,Kimble J M.Global soil carbon stocks[A].In:Lai R,Kimble J,Eswaran H et al.Global Climate Change and Pedogenic Carbonates[M].USA:Lewis Publishers,1999.15-26.
    [40]Pan G,Guo T.Pedogenic carbonates in aridic soils of China and significance for terrestrial carbon transfer[A].In:Lal R,Kimble J,Eswaran H.eds.Global Climate Change and Pedogenic Carbonates[M].New York:Lewis Publishers.1999,135-148.
    [41】姜勇,庄秋丽,梁文举.农田生态系统土壤有机碳库及其影响因子[J].生态学杂志,2007.26(2):278-285
    [42]Post W M,EmanuelW P,Zinke P J,et al.Soil carbon pools and world life zones[J].Nature,1982.298:156-159.
    [43]Schimel D S.,Terrestrial ecosystems and the carbon cycle[J].Global Change Biology.1995.1:77-91
    [44]Karlen D L,Rosek M J.Gardner J C.Conservation reserve program effects on soil quality indicators[J].Journal of Soil and Water Conservation.1999.54(1):439-444
    [45]Trumbore S E,Chadwick O A,Amundson R.Rapid exchange of soil carbon and atmospheric CO_2 driven by temperature change[J].Science,1996.272:393-396.
    [46]袁道先.现代岩溶学与全球变化[J].地学前缘,1997,4(1-2):17-24
    [47]Nabuurs G Jet al.,Resolving Issues on Terrestrial Biospheric Sinks in the Kyoto Protocol,Report 410 200 030,Dutch National Research Programme on Global Air Pollution and Climate Change[J],DLC Institute for forestry and Nature Research,The Netherlands,1999.
    [48]Potter CS,Randerson JT,Field CB et al.,Terrestrial ecosystem production:a process model based on global satellite and surface data[J].Global Biogeochemical Cycles.1993.7:811-841
    [49]Davidson EA,Ackerman I L.Changes in soil carbon inventories following cultivation of previously untilled soils[J].Biodegradation.1993.20,161-193.
    [50]Harrison K,Broecker W,Bonani G.A strategy for estimating the impact of CO_2 fertilization on soil carbon storage[J].Global Biogeochemical Cycles,1993,7:69-80
    [51]Townsend A R,Vitousek P M,Trumbore S E.Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii[J].Ecology.1995.76:721-733.
    [52]Skjemstad J O,Dalai R C,and Barron P F.Spectroscopic investigations of cultivation effects on organic matter of Versitols[J].Soil Sci.Am.J.1986.50:354-359.
    [53]Torn M S,Trumbore O A,Chadwick P M,Vitousek and Hendricks D M.Mineral control of soil organic carbon storage and turnover[J].Nature,1997.389:170-173.
    [54]Smith P,Martino D,Cai Z et al.Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture[J].Agriculture,Ecosystems and Environment.2007.118:6-28.
    【55】潘根兴,周萍,李恋卿,张旭辉.固碳土壤学的核心科学问题与研究进展[J].土壤学报,2007.44(2):327-337.
    [56】鲍士旦.土壤农化分析(第3版)[M].北京:中国农业出版社,2000:16-18,39-56.
    [57]Denef K,Zotarelli L,Boddey R M,et al.Microaggregate-associated carbon as a diagnostic fraction for management-induced changes in soil organic carbon in two Oxisols[J].Soil Biology and Biochemistry,2007.39:1165-1172.
    [58]Kirchner M J,Wol|um II A G,King L D,Soil microbial populations and activities in reduced chemical input agroecosysteme[J].Soil Science Society of America Journal.1993.57:1289-1295.
    [59]Six J,Elliott ET,Paustian K.Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture[J].Soil Biology and Biochemistry.2000.32(14):2099-3102.
    [60]Jastrow J D.Soil aggregate formation and the accrual of particulate Organic matter.Soil Biology and Biochemistry[J].1996.28(4-5):665-676.
    [61]Zhang L,Xiao J Y,Xie D T et al.Study on microbial characteristics in paddy soil under long-term no-tillage and ridge culture[J].Journal of Soil and Water Conservation.2002.16(2):111 - 114
    [62]Peng P Q,Wu J S,Huang D Yet al.Microbial biomass C,N,P of farmland soils in different land uses and cropping systems in Dongting Lake region[J].Acta Ecologica Sinica,2006.26(7):2261-2267.
    [63]Yang J F,Hart X F,Yin H Bet al.Effect of different fertilization treatment for the soft microbial biomass carbon of Maize【J].中国农学通报,2006.22(1):173-176.
    [64]Pang X,Zhang F F,Wang J G.Effect of different nitrogen levels on SMB-N and microbial activity[J].Plant Nutrition and Fertilizer Science,2000.6(4):476-480.
    [65]Wright A L,Hons F M.Soil carbon and nitrogen storage in aggregates from different tillage and crop regimes[J].Soil Science Society America,2005.169:141 - 148.
    [66]Wen Q,Zhao X R,Tuo D B.The distribution characteristics of microbial biomass nitrogen in different soil aggregate in semi-arid area[J].Scientia Agricultura Sinica,2005.38(1):91-95.
    [67]Franzluebbers A J,Arshad M A.Soil organic matter pools with conventional and zero tillage in a cold,semi-arid climate[J].Soil and Tillage Research,1996.15:1-11.
    [68]Roscoe R,Buurman P,Velthorst E Jet al.Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado's oxisol[J].Geoderma,2001.4:185-202.
    [69]Kandeler E,Stermmer M,Klimanek E M.Response of soil microbial biomass,unease and xylanase within particle size fractions to long-term soil management[J].Soil Biology and Biochemistry,1999.31:261-273.[70]Lupwayi N Z,Haque I,Saka A R and Siaw D E K A.Leucaena hedgerow intercropping and cattle manure application in the Ethiopian highlands Ⅱ.Maize yields and nutrient uptake[J].Biology and Fertility of Soils.1999.28:196-203.
    [71]蒋先军,李航,谢德体等.分形理论在土壤肥力研究中的应用与前景[J].土壤,2007,39(5):677-683.
    [72]Christensen B T.,Physical fractionation of soil and organic matter in primary particle size and density separates[J].,.1992.1-89.
    [73]Cambardella C A.Elliot E T.Carbon and nitrogen distribution in aggregates from cultivated and nature grassland soils[J].Soil Sci.Soc.Am.J.1993.57:1071-1076.
    [74]Gupta V V S R,Germuda J J.,Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J].Soil Bio.Biochem.1988.20,777-786.
    [75]Elliott E T,Aggregate structure and carbon,nitrogen,and phosphorus in native and cultivated soils[J].Soil Sci.Soc.Am.J.1986.50,627-633.
    [76]Ellert B H,Gregorich E G.Management-induced changes in the actively cycling fractions of soil organic matter[J].In:Mcfee W W,Kelly J M.eds.Carbon Forms and Functions in Forest Soils.Wisconsin,Madison,USA:Soil Science Society of America,Inc.1995.119-138
    [77]Rochette P,Gregorich E G.Dynamics of soil microbial biomass C,soluble organic C and CO2 evolution after three years of manure application[J].Canadian journal of soil science.1998.78:283-290
    [78]Gregorich EG,Rochette P,McGuire S,Liang BC and Lessard R.Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring-applied manure[J].Journal of Environmental Quality.1998.27:209-214.
    [79]Yano Y,McDowell W H and Aber J D.Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition[J].Soil Biology and Biochemistry.2000.32:1743-1751
    [80]Kaiser K,Kaupenjohann M,Zech W.Sorption of dissolved organic carbon in soils:effects of soil sample storage,soil-to-solution ratio,and temperature[J].Geoderma.2001.99:317-328.
    [81]Colchin A.Oades J M,Xjemstad J O,et al.Soil structure and carbon cycling[J].Aus.J.Soil Res.,1994.32:1043-1068
    [82]Carter M R.Analysis of soil organic matter storage in agroecosystems.[M].London:CRC Lewis,1996.3-11
    [83]Chan K Y,Heenan D P,Oates A.Soil carbon fractions and relationship to soil quality under different tillage and stubble management[J].Soil Till.Res.,2002.63:133-139
    [84]Bayer C,MartinoNeto L,Mielniczuk J,Pillon C N and Sangoi L.Changes in soil organic matter fractions under subtropical no-till cropping systems[J].Soil Science Society of America Journal.2001.65:1473-1478
    [85]黄承才,葛滢,常杰等.中亚热带东部三种主要木本群落土壤呼吸的研究【J】.生态学报,1999,19(3):324-328.
    [86]Lundegardh H.Carbon dioxide evolution and crop growth[J].Soil Science,1927,23:417-453.
    [87]Liu X Z,Wan S Q,Su B,et al.Response of soil CO2 effiux to water manipulation in a tallgrass prairie ecosystem[J].Plant and Soil,2002,240:213-223.
    [88]Reicosky D C,DugasW A,Torbert H A.Tillage-induced soil carbon dioxide loss from different cropping systems[J].Soil and Tillage Research,1997.41:105-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700