长江流域两种新银鱼分子生态学初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银鱼是东亚特有的一年生淡水鱼类,在长江中下游及其附属湖泊具有丰富的多样性。其中太湖新银鱼(Neosalanx taihuensis)和寡齿新银鱼(N.oligodontis)为两种常见淡水经济银鱼。本文选择长江流域天然银鱼分布区内的9个太湖新银鱼地理种群和5个寡齿新银鱼地理种群,利用分子标记技术,对线粒体DNA Cytb等基因碱基序列进行了测定,揭示了两种银鱼种群内及种群间的遗传多样性、物种地理格局并推测了物种的进化分化关系。结果显示两物种均存在丰富的种内和种间遗传分化。
     太湖新银鱼具有15种单倍型,其中单倍型Ⅰ、Ⅱ、Ⅲ的样本比例分别为37.0%、26.5%和26.5%,其余单倍型比例不高于2.4%。各单倍型分布范围与其相对丰度呈正比例关系:Ⅰ型分布最广,全流域都有分布,Ⅱ型集中分布于泊湖以下区域,Ⅲ型在泊湖以上水域比例较高;而其它单倍型则主要表现为局域分布。TCS网图显示,Ⅰ型应为基型,而Ⅱ、Ⅲ型平行衍生自Ⅰ型,其它单倍型分别由此三型分化而来。聚类分析结果表明,所有单倍型以Ⅰ、Ⅱ、Ⅲ型为核心聚为A、B、C三类。太湖新银鱼种群遗传多样性表现出上游低而下游高的趋势,其多样性最高的种群是位于长江中下游交界地带(古彭蠡泽区域)。
     寡齿新银鱼的单倍型组成特点与太湖新银鱼相似,Ⅰ、Ⅱ、Ⅲ三型分别占总样本数的39.2%、23.5%和25.5%,其它10个劣势单倍型仅占总样本数的11.8%。空间分布上,Ⅰ、Ⅱ型为广布型、Ⅲ型主要集中在梁子湖和洞庭湖区域。TCS网图显示单倍型Ⅲ为基型,Ⅰ和Ⅱ型为逐次分化出的单倍型,其它劣势单倍型分别由此三个优势单倍型分化而来。聚类分析结果表明寡齿新银鱼13个单倍型同样聚为以三个优势单倍型为核心的A、B、C三类。种群单倍型数明显呈现出下游丰富,上游匮乏的格局(洞庭湖除外),遗传多样性最丰富地区仍为中下游交界地带。
     两种银鱼遗传多样性空间分布格局的一致性规律表明,长江中下游交界地带应为流域淡水银鱼发生地或起源地,推测现淡水银鱼地理分布格局应是伴随着古彭蠡泽解体而分散扩布形成的。
     本文同时对S7核糖体基因第1内含子和AFLP两种分子标记进行了初步分析,结果显示二者均可应用于银鱼的种内遗传多样性和系统发育关系的研究。
     太湖新银鱼和寡齿新银鱼遗传多样性格局显示长江流域天然银鱼多样性和种质资源保护应当首先关注华阳河—鄱阳湖、梁子湖的长江中下游交界区域,以及洞庭湖湖群。在资源条件有限的情况下,应优先保护鄱阳湖和洞庭湖区域。
Icefishes(Salangidae) are a group of annual economic fishes endemic to Eastern Asia.The Yangtze River basin of China shows the highest species richness of natural icefishes.The species of Neosalanx taihuensis and Neosalanx oligodontis are two popular icefishes occurred in the Mid-lower reaches of this river basin.This present study mainly focused on the genetic diversity and spatial distribution patterns of these two fish species,based on the base sequence analysis on mtDNA Cytb gene and other two genetic marks.Totally 9 populations of N.taihuensis and five populations of N.oligodontis were examined in our study.Results indicated that these two Neosalanx fishes are both enriched in intra- and inter-population genetic differentiations.
     Totally 15 haplotypes were checked out of 162 specimen of N.taihuensis by base sequence diversity of mtDNA Cytb gene.The three richest haplotypes ofⅠ,Ⅱ,Ⅲare predominant with percentage occurrences of 37.0%,26.5%and 26.5%,and the other haplotypes are all in much lower ratios(no more than 2.4%each).The distribution ranges of the haplotypes indicate a positive relationship between the spatial ranges and relative abundances of haplotypes.The most predominant haplotype of typeⅠoccurred most widely along the whole river basin,haplotypeⅡoccurred in the lower reaches and typeⅢmainly in mid reaches,whereas the other rare haplotypes restricted highly in fewer local populations.
     The 15 haplotypes are clustered into three groups of A,B and C with a core haplotype ofⅠ,ⅡandⅢrespectively.This relationship is further supported by the network relationships deduced from TCS analysis,in which the haplotypes ofⅡandⅢgrow out of the base haplotypeⅠ,and the other 12 haplotypes evolved as the branches of typesⅠ,ⅡandⅢ.
     Similarly,the species of N.oligodontis has 13 haplotypes with three predominant types ofⅠ,ⅡandⅢ,which occurred in 39.2%,23.5%and 25.5%,respectively,out of 102 specimen.The types ofⅠandⅡare both diffusively inhabitated in the Yangtze River basin,but the typeⅢlimited in Lake Liangzi and Dongting in mid reaches.From TCS network,we can see that typesⅠandⅡgrow out of the base haplotypeⅢ,and the other 10 rare haplotypes further evolved from these three basic types.By cluster analysis,we get a similar relationship to TCS result.All 13 haplotypes cluster into three groups of A,B and C,with a core haplotype ofⅠ,ⅡandⅢrespectively.As result,genetic diversity of N.oligodontis populations is relatively lower in upper reaches and higher in lower reaches,and the highest population genetic diversity occurred at the joint region of the mid and lower reaches,where Lake Poyang,Liangzi and Pohu existed.
     The consistency of the spatial distribution patterns of these two Neosalanx populations reveals that the joint region between the mid-lower reaches must be the origin area of the freshwater icefishes in the Yangtze River basin,which further implys that current geographical distribution patterns of freshwater ice fishes in this river basin must be evolved from this region accompanied with the disaggregation of ancient Peli Lake in near history.
     Other two genetic marks of 1~(st) intron of S7 ribosome gene and AFLP(Amplified Fragment Length Polymorphism) are also used in our study.Preliminary results support our research purpose.
     Our results suggest that the conservation efforts on icefish diversity or genetic resource must be first focused on the key area of River Huayang,Lake Poyang and Liangzi,where the highest genetic diversity occurred.The lake area of Dongting with unique predominant haplotype must be taken as the so-called Evolutionarily Important Unit and must be also paid special attention to when we design conservation programme.
引文
Avise J C, Arnold J, Ball R M, Bermingham E, Lamb T, Neigel J E, Reeb C A and Saunders N C, 1987.Intraspecific Phylogeography: The Mitochondrial DNA Bridge Between Population Genetics and Systematics. Annual Review of Ecology and Systematics, 18:489-522
    
    Avise J C , 1994. Molecular Markers , Natural History and Evolution. Chapman & Hall, New York
    Avise J C. Phylogeography the history and formation of species. Cambridge, Massachusetts London, England : Harvard University Preess. 2000.
    Barinova A A, Nakajima M and Fujio Y, 1998. Genetic variability and differentiation of both cultured strains and natural populations in the guppy Poecilia reticulata. Fisheries Science (Tokyo), 64 (6):898~902
    Bartlett S E and Davidson W S, 1991. Identification of Thunnus Tuna species by the polymerase chain reaction and direct sequences analysis of their mitochondrial Cytochrome b gene. Can. J. Fish. Aquat. Sci, 48:309-317
    Berendzen P B and Dimmick W W, 2002. Phylogenetic relationships of pleuronectiformes based on molecular evidence. Copeia, 2002:642-652
    Bermingham E and Avise J C, 1986. Molecular zoogeography of fresh water fishes in the Southeastern Unite. Genetics, 113:939-965
    Bowen B W and Avise J C, 1995. Conservation genetics of marine turtles. In: Avise J C , Hamrick J L (eds.), Conservation Genetics: Case Histories From Nature. Columbia University Press , New York , USA. 190-237
    Campbell C S, Donoghue M J, Baldwin B G, and Wojciechowski M F, 1995. Phylogenetic relationships in Maloideae (Rosaceae): evidence from sequences of the internal transcribed spacers of nuclear ribosomal DNA and its congruence with morphology. Amer J Bot, 82 (7): 903-918
    Cantatore P, Roberti M, Pesole G, Ludovico A, Milella F, Gadaletal M N and Saccone C, 1994. Evolutionary analysis of cytochrome b sequences in some perciformes: Evidence for a slower rate of evolution than in mammals . J. Mol. Evol, 39:589-597
    Chow S and Hazama K, 1998.Universal PCR primers for S7 ribosomal protein gene introns in fish Molecular Ecology, 7:1255-1256
    Clement M, Posada D and Crandall K A, 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10): 1657-1660
    Delarbre C, Spruyt N, Delmarre C, Gallut C, Barriel V, Janvier P, Laudet V and Gachelin G,1998. The complete nucleotide sequence of the mitochondrial DNA of the dogfish , Scyliorhinus canicula. Genetics,150(1):331~344
    Dergam J A, Suzuki H I, Shibatta O A, Duboc L F, Julio H F, Lucia G C and Black W C, 1998. Molecular biogeography of the neotropical fish Hopliad malabaricus ( Erythrinidae: Characiformes) in the Iguacu , Tibagi, and Parana Rivers. Genetics and Molecular Biology, 21 (4):493~496
    Durand J D, Tsigenopoulos C S, Unlu E and Berrebi P, 2002. Phylogeny and biogeography of the family cyprinidae in the middle east inferred from cytochrome b DNA evolutionary significance of this region. Mol Phylogene Evol, 22:91-100
    Elmerot C, Arnason U, Gojobori T and Janke A, 2002. The mitochondrial genome of the pufferfish ,Fugu rubripes ,and ordinal teleostean relationships. Gene ,295 (2):163~172
    Excoffier L, Smouse P E and Quattro J M, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetic, 131: 479-491
    Excoffier L, Laval G and Schneider S, 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1:47-50
    Fang P W, 1934. Study on the fishes referring to Slangidae of China. SINENSIA, 4:231-268
    Felsenstein J, 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution , 39:783-791
    Fitch W M, 1971. Towards defining the course of evolution: Minimum change for a specific tree topology. Systematic Zoology, 20:406-416
    Fu C Z, Luo J, Wu J H, Lopez J. A, Zhong Y, Lei G C and Chen J K, 2005. Phylogenetic relationships of salangid fishes (Osmeridae, Salanginae) with comments on phylogenetic placement of the salangids based on mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 35:76-84
    Gavin T A, Sherman P W, Yensen E and May B, 1999. Population Genetic Structure of the Northern Idaho Ground Squirrel (Spermophilus brunneus brunneus). Journal of Mammalogy, 80(1): 156-168
    Gibbs H L, Wearherhead P J, Boag P I, White B N, Tabak L M and Hovsak D J, 1990. Realized reproductive success of polygynous red - winged blackbirds revealed by DNA markers. Science , 250 :1394-1397
    Guo X G, He S P and Zhang Y G, 2007. Phylogenetic relationships of the Chinese sisorid catfishes: a nuclear intron versus mitochondrial gene approach. Hydrobiologia, 579:55-68
    Haig S M, 1998. Molecular contributions to conservation. Ecology , 79 (2):413-425
    Han K and Ely B, 2002. Use of AFLP Analyses to Assess Genetic Variation in Morone and Thunnus Species Mar. Biotechnol, 4:141-145
    Hanski I and Gilpin M E, 1997. Metapopulation Biology: Ecology, Genetics and Evolution. Academic Press, London, pp.512
    
    Hanski I, Ovaskainen O,2000. The metapopulation capacity of a fragmented landscape. Nature, 404:755-758
    Hara M, Selino M and Uthairat NN, 1998. Genetic differentiation of natural populations of the snake - head fish, Channa st riatus in Thailand. Fisheries Science (Tokyo) ,64 (6):882~885
    Harris D J and Crandall K A, 2000. Intragenomic Variation Within ITS1 and ITS2 of Freshwater Crayfishes (Decapoda: Cambaridae): Implications for Phylogenetic and Microsatellite Studies Mol. Biol. Evol. 17(2):284~291
    Hauser L , Turan C , Carvalho GR ,2001. Haplotype frequency distribution and discriminatory power of two mtDNA fragments in a marine pelagic teleost (Atlantic herring , Clupea harengus) . Heredity 87: 621-630.
    Houlden B A, Costello B H, Sharkey D, Flower E V, Melzer A, Ellis W, Carrick F, Baverstock P R and Elphinstone M S, 1999. Phylogeographic differentiation in the mitochondrial control region in the koala, Phascolarctos cinereus ( Goldfuss 1817) . Molecular Ecology , 8:999-1011
    
    Huelsenbeck J P and Ronquist F R, 2001. MrBayes :Bayesian inference of phylogeny.Biometrics, 17:754 -755 lives K L and Taylor E B, 2007. Are Hypomesus chishimaensis and H. nipponensis (Osmeridae) Distinct Species? A Molecular Assessment Using Comparative Sequence Data from Five Genes.Copeia, 1:180-185
    Jukes T H and Cantor C R, 1969. Evolution of protein molecules. In Munro HN, editor, Mammalian Protein Metabolism, Academic Press, New York. pp. 21-132
    Kim J K, Doiuchi R and Nakabo T, 2006. Molecular and morphological differences between two geographic populations of Salanx ariakensis (Salangidae) from Korea and Japan. Ichthyological Research.Ichthyol Res, 53:52-62
    Kim J K, Kai Y, and Nakabo T, 2007. Genetic diversity of Salanx ariakensis (Salangidae) from Korea and Japan inferred from AFLP. Ichthyological Research.Ichthyol Res, 54:416-419
    Kimura M, 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16:111-120
    Kochzius M, Soller R, Khalaf M, Blohm D, 2003. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae ,Pteroinae) based on mitochondrial DNA sequences. Molecular Phyogenetics and Evolution, 28:396-403
    Kotlik P and Berrebi P, 2002. Genetic subdivision and biogeography of the Danubian rheophilic barb Barbus petenyi inferred from phylogenetic analysis of mitochondrial DNA variation. Molecular Phylogenetics and Evolution, 24 (1): 10-18
    Lee W J, Conroy J and Howell W H, 1995. Structure and evolution of teleost mitochondrial control regions. Mol Evol, 41:54-66
    Lin Y S, Poh Y P and Tzeng C S, 2001. A phylogeny of freshwater eels inferred from mitochondrial genes.Mol Phylogenet Evol, 20:252-261
    Litt M, Luty J A, 1989. Hypervariable microsattelite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. American Journal of Human Genet, 44:391-401
    Liu Z W, 2001a. Changes in abundance of the icefish Neosalanx pseudotaihuensis Zhang (Salangidae) and the impact on the zooplankton community of Xujiahe Reservoir, central China. Hydrobiologia, 445:193-198
    Liu Z W, 2001b. Diet of the zooplanktivorous icefish Neosalanx pseudotaihuensis Zhang. Hydrobiologia, 459:51-56
    MacArthur R H and Wilson E O, 1967. The Theory of Island Biogeography. Princeton University Press, NewJersey. pp.203
    Mayer W and Pavlicev M, 2007. The phylogeny of the family Lacertidae (Reptilia) based on nuclear DNA sequences: Convergent adaptations to arid habitats within the subfamily Eremiainae. Molecular Phylogenetics and Evolution, 44:1155-1163
    Meyer A, Kocher T D, Basasibwaki P and Wilson A C, 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature, 347:550-553
    Minamoto T, Shimizu 1, 2002. Phylogenetic relationship among osmerid and salangid fish inferred from mitochondrial cytochrome b gene sequences. Mem Fac Sci Kyoto Univ, 18:12-13
    Miya M, Takeshima H, Endo H, Ishiguro N B, Inoue J G, Mukai T, Satoh T P, Yamaguchi
    M, Kawaguchi A, Mabuchi K, Shirai S M and Nishida M, 2003. Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol, 26:121-138.
    Moore W S, 1995. Inferring phylogenies from mtDNA variation : mitochondrial gene trees versus nuclear gene trees. Evolution, 49 (4):718-726
    Moritz C, 1994. Applications of mitochondrial DNA analysis in conservation: A critical review. Molecular Ecology, 3(4):401~411
    
    Moritz C, 1995.Use of molecular phylogenies for conservation.Phil Trans R Soc Lond B , 349:113-1181
    Nei M, 1987. Molecular Evolutionary Genetics. Columbia Univ. Press, New York.
    Nei M, Kumar S and Takahashi K, 1998. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small. Proceedings of National Academy of Sciences (USA), 95:12390-12397
    
    Nei M and Kumar S, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.
    Nelson J S, 1994. Fishes of the world (3~(rd) edition). John Willey & Sons Inc., New York, 1-600
    Normark B B, Mccune A R and Harrison R G, 1991. Phylogenetic relationships of neopterygian fishes, inferred from mitochondrial DNA sequences. Mol.Biol.Evol, 8(6):819-834
    Oakley T H and Phillips R B, 1999. Phylogeny of Salmonine Fishes Based on Growth Hormone Introns: Atlantic (Salmo) and Pacific (Oncorhynchus) Salmon Are Not Sister Taxa. Molecular Phylogenetics and Evolution, 11 (3):381-393
    Osbeck P, 1757. Dagbok afver en ostindesk Resa aren 1750-1752, med anmarkningar uti Naturkunnighiten, frammende sprak, etc. Stockholm, 6:1-376
    Parker P G, Snow A A, Schug M D, Booton G C and Fuerst P A ,1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology , 79 (2):361-382
    Perdices A, Bermingham E, Montilla A and Doadrio I, 2002. Evolutionary history of the genus Rhamdia (Teleostei :Pimelodidae) in Central America. Mol Phylogenet Evol, 25(1):172~189
    Phillips R B, Matsuoka M P, Konkol N R and McKayd S, 2004. Molecular systematics and evolution of the growth hormone introns in the Salmoninae. Environmental Biology of Fishes, 69:433-440
    Porter B A, Cavender T M and Fuerst P A, 2002. Molecular phylogeny of the snubnose darters ,subgenus Ulocentra (genus Etheostoma, family Percidae). Mol Phylogenet Evol ,22:364 -374
    Porterfield J C, Page L M and Near T J,1999. Phylogenetic relationships among fantail darters ( Percidae : Etheostoma :Catonotus) :total evidence analysis of morphological and molecular data. Copeia ,2999:551-564
    Reed D L, Carpenter K E and Degravelle M J, 2002. Molecular systematics of the Jacks (Perciformes:Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and Bayesian approaches. Mol Phylogenet Evol, 23:513-524
    Rozas J, Sanchez - Delbarrio J C, Messeguer X and Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19:2496-2497
    Russo C A, Takezaki N and Nei M, 1996. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Molecular Biology and Evolution, 13:525-536
    Ryman N, Utter F and Hindar K, 1995. Introgression, Supportive Breeding and Genetic Conservation Population Management for Survival and Recovery. New York : Columbia University Press , 341-365
    Saitou N and Nei M, 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 4:406-425
    Sale P F, Doberty P J, Echert G J, Douglas W A and Ferrell D J, 1984. Large scale spatial and temporal variation in recruitment to fish populations on coral reefs. Oecologia, 64:919-198
    Suzuki K, Olvera J and Wool I G., 1990.The primary structure of rat ribosomal protein S7. FEBS Letters, 271(1—2):51~53
    Swofford D L, Olsen G J, Waddell P J and Hillis D M, 1996. Phylogenetic Inference. In Hiillis D M, Moritz D, and Mable B K, editors, Molecular Systematics, Sinauer Associates, Sunderland, Massachusetts, pp. 407-514.
    Tajima F and Nei M, 1984. Estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution, 1:269~285
    Tamura K, Dudley J, Nei M and Kumar S, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24:1596-1599
    Tang J M, Toe L, Back C, and Unnasch T R, 1996. Intra-specific Heterogeneity of the rDNA Internal Transcribed Spacer in the Simulium damnosum (Diptera: Simuliidae) Complex. Mol. Biol. Evol, 13(1):244~252
    Tang K L, 2001. Phylogenetic relationships among damselfishes (Teleostei: Pomacentridae) as determined by mitochondriai DNA data.Copeia,2001:591-601
    Takahashi H,Goto A,2001.Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences.Mol Phylogenet Evol,21:135-155
    Templeton A R,Boerwinkle E and Sing C F,1987.A cladistic analysis of phenotypic associations with haplotypes inferred form restriction endonuclease mapping.I.Basic theory and an analysis of alcoholdehydrogenase activity in Drosophila.Genetics,117:343-351
    Thomas W K and Beckenbach A T,1989.Variation in saimonid mitochondrial DNA:evolutionary constrains and mechanisms of substitution.Mol.Evol,29:233-245
    Tsigenopoulos C S and Berrebi P,2000.Molecular phylogeny of north mediterranean freshwater barbs(genus barbus:cyprinidae) inferred from cytochrome b sequences:biogeographic and systematic implications.Mol Phylogenet Evol,14:165-179
    Tsigenopoulos C S,Rab P,Naran D and Berrebi P,2002.Multiple origins of polyploidy in the phylogeny of southern African barbs(Cyprinidae) as inferred from mtDNA markers.Heredity,88(6):466-473
    Vos P,Hongers R,Bleeker M,Reijans M,Lee van de T,Hornes M,Frijters A,Pot J,Peleman J,Kuiper M and Zabeau M,1995.AFLP:a new technique for DNA fingerprinting.Nucleic Acids Res,23(12):4407-4414
    Waldbieser G C,Bilodeau A L and Nonneman D J,2003.Complete sequence and characterization of the channel catfish mitochondrial genome.DNA Seq,14(4):265-277
    Wang H Y,Tsai M P,Dean J and Lee S C,2001.Molecular phylogeny of gobioid fishes(Perciformes:Gobioidei) based on mitochondriai 12S rRNA sequences.Mol Phyiogenet Evol,20:390-408
    Wang R J,Wang Y F,Lei G C,Xu R M & Painter J,2003.Genetic differentiation within metapopulations of Euphydryas aurinia and Melitaea phoebe in China.Biochemical Genetics,41(3/4):107-118
    Wang Z S,Lu C,Hu H J,Xu C R,Lei G C,2004.Dynamics of icefish(salangidae) stocks in Nanyi Lake,eastern China:degradation and overfishing.Journal of Freshwater Ecology,19(2):271-278
    Wang Z S,Lu C,Hu H J,Zhou Y,Xu C R and Lei G C,2005.Freshwater icefishes(Salangidae) in the Yangtze River basin of China:Spatial distribution patterns and environmental determinants.Environmental Biology of Fishes,73:253-262
    Wang Z S,Shi J Q,Huang D L,Xu C R,Lei G C,2008.Degradation of icefish(Salangidae) in the Yangtze River basin of China:threats and strategies.Environmental Biology of Fishes.(Accepted)
    Waples R S,1991.Definition of a "Species" under the Endangered Species Act:Application to Pacific Salmon.National Oceanic and Atmospheric Administration Technical Memorandum NMFS2F/NWC2194.Northwest Fisheries Science Center,Seattle
    Waters J M,Saruwatari T,Kobayashi T,Oohara I,McDowall R M and Wallis G P,2002.Phylogenetic Placement of Retropinnid Fishes:Data Set Incongruence Can Be Reduced by Using Asymmetric Character State Transformation Costs.Systematic Biology,51(3):432-449
    Weir B S and Cockerham C C,1984.Estimating F-statistics for thr analysis of population structure.Evolution,38(6):1358-1370
    Wootton R J,1998.Ecology of Teleost Fishes.Kluwer Academic Pubilishers.London 386pp.
    Zardoya R and Meyer A,1996.Phylogenetics performande of mitochondrial protein-coding genes in resolving relationship among vertebrates.Mol.Biol.Evol,13(7):933-942
    Zhang J,Li M,Xu M Q,Takita T and Wei F W,2007.Molecular phylogeny of icefish Salangidae based on complete mtDNA cytochrome b sequences,with comments on estuarine fish evolution.Biological Journal of the Linnean Society,91:325-340
    陈国华,张本,1990.鄱阳湖产银鱼的繁殖生物学.湖泊科学,2(1):59-67
    陈宁生,1956.太湖所产银鱼的初步研究.水产生物学集刊,2:324-335
    陈小勇,陆慧萍,沈浪,李媛媛,2002.重要物种优先保护种群的确定.生物多样性,10(3):332-338
    储益新,1998.南漪湖银鱼资源衰退原因及对策.安徽农业,26(1):84-86
    盖玉欣,王玉芬,1998.太湖新银鱼对温度、盐度适应能力试验.中国水产科学,5(4):23-26
    高礼存,庄大栋,迟金钊,1989.大湖短吻间银鱼移植滇池实验研究.湖泊科学,1(1):79-88
    高天翔,陈省平,韩志强,刘进贤,张亚平,2004.大银鱼和小齿日本银鱼线粒体细胞色素b和16S rRNA基因部分序列分析.中国海洋大学学报,34(5):791-794
    戈志强,朱江,朱玉芳,沈其璋,2003.不同光照、温度对大银鱼受精卵孵化率的影响,淡水渔业年,33(5):23-24
    郭新红,刘少军,刘巧,刘筠,2004.鱼类线粒体DNA研究新进展.遗传学报,31(9):983-1000
    龚世园,张训蒲,何绪刚,杨学芬,梁开学,刘英杰,严国璋,王小燕,2004.湖北省水库与湖泊银鱼移植与增殖实验.湖泊科学,16(2):185-191
    何舜平,刘焕章,陈宜瑜,中岛经夫,桑原雅之,钟杨.2004.基于细胞色素b基因序列的鲤科鱼类系统发育研 究(鱼纲:鲤形目).中国科学,34(1):1-9
    胡传林,白宏,陈文祥,刘家寿,2000.银鱼产业化经营的途径探讨.水利渔业,20(4):1-2
    黄百渠,曾庆华,尹东,1996.遗传多样性研究中的分子生物学方法.东北师大学报自然科学版,3:90-92
    黄原,1998.分子系统学—原理、方法及应用.北京:中国农业出版社
    李崇奇,常青,陈建琴,张保卫,朱立峰,周开亚,2005.东北亚地区野猪种群mtDNA遗传结构及系统地理发生.动物学报(Acta Zoologica Sinica).51(4):640-649
    李砥,2003.滇池银鱼资源变动的生态学分析.海洋湖沼通报,2:69-73
    李进村,2005a.安徽霍邱城东湖太湖新银鱼生长的初步研究.渔业现代化,5:35-37
    李进村,孟祥宏,2005b.太湖新银鱼人工繁殖技术探析.内陆水产,10:28-29
    林信伟,熊全,1991.寡齿新银鱼同工酶及其与幼态持续的关系.遗传学报,18(3):214-218
    凌去非,李思发,张海军,蔡晓,2006.丁鱥不同群体ITS1区序列分析.水利渔业,26(6):24-25
    刘必谦,董闻琦,王亚军,朱世华,吴望星,2005.岱衢族大黄鱼种质的AFLP分析.水生生物学报,29(4):413-416
    刘恩生,鲍传和,曹萍,丁淑荃,2006.太湖银鱼和主要鱼类渔获量间的相关分析.安徽农业大学学报,33(1):70-75
    马桂珍,张拥华,李世东,谢丙炎,2007.rRNA基因ITS区序列分析在粘帚霉属生防菌株种级分类上的应用.应用与环境生物学报(Chin J Appl Environ Biol),13(5):704-707
    莫赛军,宋平,罗大极,彭茂宇,张亮,姚海兰,周伟,张竟男,潘云峰,郑曙,2004.鲫鱼生长激素Ⅰ基因内含子2的多态性分析.遗传学报,31(6):582-590
    宁恕龙,周立志,张保卫,赵天飙,邹桂,2007.基于线粒体细胞色素b基因的中国大沙鼠系统地理格局.动物学报(Acta Zoologica Sinica),53(4):630-640
    彭军,赵立军,2004.湖北石首天鹅洲故道湿地旅游资源评价研究.国土资源科技管理,2:26-29
    任旭琴,2002.遗传多样性及其研究方法.淮阴工学学报,11(5):6-8
    宋君,宋昭彬,岳碧松,郑文静,2005.长江合江江段岩原鲤种群遗传多样性的AFLP分析.四川动物,24(4):495-499
    孙帼英,1982.长江口及其临近海域的银鱼.华东师范大学学报(自然科学版),1:111-119
    孙帼英,周忠良,1989.长江口及其临近海域大银鱼生态的初步研究.海洋湖沼通报,4:76-79
    单淇,董仕,吴海防,谷口顺,2006.个群体鳙鱼mtDNA D-loop区段的限制性片段长度多态性分析.中国水产科学,13(2):174-180
    沈浪,陈小勇,李媛媛,2002.生物冰期避难所与冰期后的重新扩散.生态学报,22(11):1983-1990
    唐琼英,杨秀平,刘焕章,2003.刺鲃基于线粒体细胞色素b基因的生物地理学过程.水生生物学报,27(4):352-356
    田兰香,梁冰,张树义,赵盛龙,王日昕,2004.细胞色素b基因序列与7种石首鱼类的系统进化.台湾海峡,23(4):436-443
    王成树,李增智,2002.分子数据的遗传多样性分析方法(综述).安徽农业大学学报,29(1):90-94
    王宁,陈润生,1999.基于内含子和外显子的系统发育分析的比较.科学通报,44(19):2095-2102
    王绪桢,何舜平,陈宜瑜,2002.S7核糖体蛋白基因序列变异及其在低等鲤科鱼类中的系统发育意义.科学通报,47(14):1089-1094
    王绪桢,何舜平,2003.S7核糖体蛋白基因序列变异与(鱼丹)亚科鱼类的单系性研究.水生生物学,27:(2)122-126
    王伟,何舜平,陈宜瑜,2002.线粒体DNA d-loop序列变异与鳅鱼它亚科鱼类系统发育.自然科学进展,12(1):33-36
    王文滨,张世羲,锺碹世,顾良伟,朱成德,李高铭,杨悦,1990.太湖新银鱼周年生长计算的初步分析.水产学报,14(2):137-143
    王志勇,王艺磊,林利民,邱淑贞,本信明,2002.福建官井大黄鱼AFLP指纹多态性的研究.中国水产科学,9(3):198-201
    王中铎,刘楚吾,郭昱嵩,2005.5种笛鲷mtDNA及Cytb基因片段的RFLP比较.水产学报,29(3):327-322
    土忠锁,傅萃长,雷光春,2002.中国银鱼的多样性及其保护对策.生物多样性,10(4):416-424
    王忠锁,吕偲,许崇任,雷光春,2005.江湖阻隔对短吻间银鱼空间发生格局的影响.生物多样性,13(5):407-415
    王忠锁,陈明华,吕偲,许崇任,雷光春,2006.鄱阳湖银鱼多样性及其时空格局.生态学报,26(5):1337-1344
    翁跃进,1996.AFLP——一种DNA分子标记新技术.遗传,18(6):29-31
    夏德全,曹萤,吴婷婷,杨弘,1999.太湖中大银鱼、太湖新银鱼和寡齿新银鱼群体的遗传结构.水产学报,23(3):254-260
    夏德全,曹萤,吴婷婷,杨弘,2000.用PAPD方法分析太湖大银鱼、太湖新银鱼和寡齿新银鱼的亲缘关系.中国水产科学,7(1):12-15
    夏鹏章,2003.长江志-水系.长江志季刊,2:41-45
    项方,邹记兴,邓凤姣,刘思阳,隋阳,2004.用细胞色素b部分序列研究斑马鱼的分子分类与系统发育.动物学杂志,39(5):13-18
    肖武汉,张亚平,2000.鱼类线粒体DNA的遗传与进化.水生生物学报,24(4):384-391
    解玉浩和解涵,1997.银鱼科鱼类的分类分布和种群生态.水产学杂志,10(2):11-19
    谢志雄,杨代淑,熊全,郝广勤,张德春,1998.太湖新银鱼线粒体DNA物理图谱及分析.遗传,20(1):16-19
    谢忠明,1996.我国银鱼移植技术及发展建议.水利渔业,4:3-10
    闫华超,高岚,付崇罗,牟萍,2004.鱼类遗传多样性研究的分子学方法及应用进展.水产科学,23(12):45-49
    杨金权,刘焕章,2003.两种鲿科鱼类在长江和珠江流域Cytb基因序列变异性分析.水生生物学报,27(3):253-257
    杨明生,熊邦喜,2005.动物mtDNA的研究及在鱼类生态学中的应用.孝感学院学报,25(3):23-27
    杨玉慧,李义,2001.分子生态学研究与动物多样性保护.生物多样性(Biodiversity Science),9(3):284-293
    张光贵,1995.洞庭湖演变对生态环境的影响初探.重庆环境科学,17(1):49-52
    张国萍,王蔚,朱世杰,申煜,常弘,2005.鹳形目12种鸟类核c-mos基因和线粒体12S rRNA基因序列分析及其系统发生研究.四川动物,24(4):500-506
    张俊彬,黄良民,陈真然,2005.AFLP技术在笛鲷的仔鱼鉴定及其分类学上的研究.海洋学报,27(2):165-171
    张俊彬,刘昕,2006.基因组AFLP分析及线粒体12S rRNA序列变异在笛鲷科系统发育上的比较.科学通报,51:120-124
    张开翔,庄大栋,张立,1981.洪泽湖所产大银鱼生物学及其增殖的研究.水产学报,5(1):29-41
    张开翔,高礼存,张立,1982.洪泽湖所产太湖短吻银鱼的初步研究.水产学报,6(1):9-16
    张开翔,1992.大银鱼胚胎发育的观察.湖泊科学,4(2):25-37
    张四明,吴清江,张亚平,2000.中华鲟(Acipenser sinensis)及相关种类的mtDNA控制区串联重复序列及其进化意义.中国生物化学与分子生物学报,16(4):458-461.
    张四明,汪登强,邓怀,余来宁,2002.长江中游水系鲢和草鱼群体mtDNA遗传变异的研究.水生生物学报,26(2):142-147
    张亚平,1996.从DNA序列到物种树.动物学研究,17(3):247-252
    张颖,董仕,王茜,孙振荣,2005.大银鱼和太湖新银鱼同工酶遗传组成的研究.大连水产学院学报,2:111-115
    张玉玲,1987.中国新银鱼属Neosalanx的初步整理及其一新种.动物学研究,8(3):277-286
    张玉玲,1991.新银鱼属系统发育的初步研究.系统进化动物学论文集(第一集).北京:中国科学技术出版社
    张玉玲,1993.银鱼科鱼类系统生物地理学初步研究.系统进化动物学论文集(第二集).北京:中国科学技术出版社
    周材权,廖咏梅,何成蓉,2005.分子生态学研究途径及其应用.西华师范大学学报(自然科学版),6:136-139
    朱成德,1982.太湖银鱼产量与水位关系的数理统计分析.淡水渔业,4:40-42
    朱成德,1985.不同温度对太湖短吻银鱼秋季孵化的试验研究.生态学报,4(1):65-72
    朱海虹,张本,1997.鄱阳湖.合肥:中国科学技术大学出版社,pp.349
    朱屹东,2001.线粒体DNA用作分了标记的可靠性和研究前景.遗传,23(6):593-598
    朱雪莲,王志勇,陈明茹,2006.系统地理学的研究及其在鱼类上的应用.浙江海洋学院学报(自然科学版),25(2):184-193
    朱振东,徐兴川,张伯昌,饶泽明,周剑,1997.梁子湖的银鱼种类.内陆水产,11:26-27
    庄玉兰,冯炽华,李简化,1996.云南高原湖泊太湖新银鱼增殖生态研究.水利渔业,83(3):16-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700