三峡水库硅的分布特征及其收支与循环
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型水利工程(如大坝、水库等)的兴建,往往会对河流水文环境以及生态系统产生重要的影响,使得河流在径流分配和营养盐输送等方面均发生了很大变化。三峡工程是世界上最大的水利枢纽工程,随着其蓄水水位不断升高,水流进一步减缓、水力滞留时间延长、水库泥沙淤积量增大。这一系列水文水力学重大变化将导致长江干流水体中硅的浓度、结构、时空分布、输送通量等发生巨大变化。本论文在2006年4月、9月及2007年4月现场调查的基础上对长江干流及三峡水库各形态硅的时空分布与变化特征进行了研究,同时结合历史资料对水库中硅的收支和循环过程进行了探索,初步估算了“水库效应”对硅的滞留。
     长江干流的溶解态硅酸盐和悬浮颗粒物在涪陵至大坝之间浓度有明显的降低,中下游受“两湖”、汉江等的添加作用,浓度得到一定程度上升。而生物硅则表现为大坝以上江段含量较低,中下游江段浓度较高的特征。
     三峡水库干流平水期的研究中,悬浮颗粒物沿水流方向存在一个明显的降低过程,其中,木桐至万州江段悬浮颗粒物降幅明显,梯度变化较快,万州至大坝江段悬浮颗粒物相对稳定,变化幅度很小。这反映了三峡水库沉积的特征,即上游“过渡段”河流沉积明显,且沉积速率较快,大部分颗粒物在经过“过渡段”后得以沉降。而后,“湖泊段”悬浮颗粒物存在一个相对高值,可能表明此江段存在颗粒自生以及沉降现象。垂向分布上表现为表层浓度相对较低,底层浓度相对较高的特征。
     生物硅浓度在三峡水库中分布较均匀,而溶解态硅酸盐沿水流方向呈下降趋势,垂直分布上表底层均一。且与叶绿素无明显的相关性。表明水库干流浮游植物消耗并不是控制水库溶解硅分布的主要因素。
     相对于三峡水库而言,库区支流生物硅含量较高,尤其是香溪河库湾,生物硅含量明显高于干流以及其他库湾且与叶绿素a表现出一定的相关性,但在其他水域则未发现这种关系。这表明,生物硅的含量不仅与现存生物量有关,而且水体中的硅质生物碎屑及悬浮物的沉降均有关。香溪河库湾高的生物硅以及相对高的Chl a,反映了高的硅藻生物量。库湾有可能是DSi“滞留”和BSi产生的重要场所。
     对三峡水库中硅的收支与循环的估算结果表明,在2007年4月,通过径流输送的DSi和BSi在水库中的“表观滞留量”大约为3%和63%。对因硅藻类浮游植物初级生产所形成的BSi的量的估算表明水库中的生物作用对硅的捕获还是相当可观的。以水库中生物硅的净沉积通量与输入的DSi和BSi总量之比作为水库对硅的滞留效率,三峡水库中硅的滞留并不明显,大约为5.0%。
Construction of irrigation works (dam, reservoir) always impact on hydrological conditions and ecosystems in the region, which can change the current and nutrients exchange in the river. Three Gorges Dam is the biggest irrigation works in the world. Within rising water level, stream is moving more slowly, resorting time of water is longer, and sinking sand is more. The various changes of hydrodynamics in Yangtze River main stream will impact silica seriously in consistence, structure and distribution. This paper is based on investigation at Yangtze River in April 2006, September 2006 and April 2007, researches on distribution and transformation character of silica in Yangtze River and Three Gorges Reservoir. Refer to historical data, this paper also researches on the budget and circle process, estimate on silica retention in Three Gorges Reservoir.
     Dissolved reactive silica (DSi) and suspended particulate matter (SPM) in Yangtze River main stream reduce rapidly between Fuling City and Three Gorges Dam. In middle and lower reaches of Yangtze River, the concentration of DSi and SPM rise because of supply from Dongting Lake, Poyang Lake and Hanjiang River. The distribution of biogenic silica (BSi) is lower in upriver area before Dam and higher in middle and lower reaches of Yangtze River.
     The research in dry season in run of river of TGR, the suspended particulate matter has obvious reduced along Yangtze River main stream. The content of suspended particulate matter falls rapidly between Mutong and Wanzhou, while stabilized between Wanzhou and Three Gorges Dam. This indications aggradation character of Three Gorges Reservoir, most of suspended particulate matter falls rapidly in the transitional zone in the reservoir and the suspended particulate matter in the lacustrine zone comparatively keeping a high level, may indicate the suspended particulate matter spontaneity and aggradations in the reach. Vertical distributing shows that concentration is comparatively low in surface layer and comparatively high in bottom layer.
     The concentration of BSi is uniformly in Three Gorges Reservoir. Dissolved silica concentration is falling along river.The stratification of DSi was not obviously, and no relation with chlorophyll a. This phenomenon indicates: in the Three Gorges Reservoir phytoplankton consume in main steam is not main factor of DSi distributing in Three Gorges Reservoir.
     Compared with Three Gorges Reservoir, the bays in tributary confluent contain more BSi .Xiangxi River is an example in evidence, BSi concentration is higher than main steam and other bays, and the concentration of BSi have relationship with chlorophyll a in a certain extent. But in other bay, we can’t find the same relationship. This phenomenon indicates that the biogenic silica have relationship with not only phytoplankton, but also the content of silica biogenic scraping and the accumulation of suspended particulate matter.
     With the production, deposition, sediment of biogenic silica and flux of dissolved silica at the sediment-water interface were studied, budget and circle in the Three Gorges Reservoir are described.The present retention of dissolved silica in the reservoir isabout 3%. Compared to total silica load, the retention of biogenic silica in the reservoir is only 5.0%.With its present storage capacity, the reservoir does not play an important role in silica sink.
引文
[1] Gomes L., and Miranda L..Hydrologic and climatic regimes limit phytoplankton biomass in reservoirs of the Upper Parana River Basin,Brazil. Hydrobiologia,2001,457: 205~214
    [2] Negro A., and Hoyos C.. Phytoplankton structure and dynamics in Lake Sanabria and Valparaiso reservoir (NW Spain). Vega JCHydrobiologia,2000, 424:25~37
    [3] Hooper R. P., Aulenbach B. T., Kelly V. J..The National Stream Quality Accounting Network: a flux-based approach to monitoring the water quality of large rivers.Hydrological Processes,2001,15:1250~1272
    [4] Humborg C., Ittekkot V., Coclasu A.,et al. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure.Nature,1997, 386:385~388
    [5] Humborg C., Conley D. J., Rahm L., et al. Silicon Retention in River Basins:Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments.A Journal of the Human Environment, 2000,29(1):45~50
    [6] Jickells T. D.. Nutrient biogeochemistry of the coastal zone.Science, 1998, 281:217~222
    [7] Wahby S., and Bishara N.. The effect of the River Nile on Mediterranean water, before and after the construction of the High Dam at Aswan. In : Martin,J-M.,Bruton,J.D.and Eisma,D.(eds)River Inputs to Ocean Systems. 1980,311~318
    [8]李锦绣,廖文根.三峡库区富营养化主要诱发因子分析.环境导报, 2003, 2:49~52
    [9]曹明,蔡庆华,刘瑞秋,等.三峡水库及香溪河库湾理化特征的比较研究.水生生物学报,2006, 30(1):20~25
    [10]傅伯杰,陈利顶.长江流域可持续发展的资源环境评价: 21世纪长江大型水利工程中的生态与环境保护.1998.32~40
    [11]聂芳容.三峡工程与洞庭湖.长沙:湖南人民出版社,2001.91~97
    [12]中国水利部.中国河流泥沙公报.2001
    [13]姜加虎,黄群.洞庭湖近几十年来湖盆变化及冲淤特征.湖泊科学, 2004, 16(3):209~214
    [14]施修端,夏薇,杨彬.洞庭湖冲淤变化分析(1956-1995).湖泊科学, 1999, 11(3):199~205
    [15]唐涛,黎道丰,潘文斌,等.香溪河河流连续统特征研究.应用生态学报, 2004, 15(1):141~144
    [16]王德蕊,钟成华,邓春光,等.长江三峡库区蓄水前氮磷污染现状初步研究.西南农业大学学报(自然科学版), 2005, 27(1):124~127
    [17]王海云.三峡水库蓄水对香溪河水环境的影响及对策研究.长江流域资源与环境, 2005, 14(2):233~237
    [18]韩新芹,叶麟,徐耀阳,等.香溪河库湾春季叶绿素a浓度动态及其影响因子分析.水生生物学报, 2006, 30(1):89~93
    [19]曾辉.长江和三峡库区浮游植物季节变动及其与营养盐和水文条件关系研究:[博士学位论文].武汉:中国科学院水生生物研究所,2006
    [20]苏维词.贵州岩溶山区生态环境脆弱性类型的初步划分.环境科学研究.1994,7(6):35~42
    [21]肖进原.乌江流域自然植被遥感解译分析研究.贵州地质.1996,13(4):357~362
    [22]张立成,佘中盛,章申,等.水环境化学元素研究.北京:中国环境科学出版社,1996:119
    [23]李久林.乌江流域环境经济发展初探.长江流域资源与环境.1996,5(1):10-15
    [24]朱浚.水坝拦截对乌江生源要素生物地球化学循环的影响:[博士学位论文].中国科学院研究生院. 2005
    [25]贾金生,袁玉兰,李铁洁. 2003年中国及世界大坝情况.中国水利, 2004 ,13:25~33
    [26]王超俊,张鸣冬.三峡水库调度运行对长江口咸潮入侵的影响分析.人民长江, 1994, 25(4):44~48
    [27] Conley D.J.. Riverine contribution of biogenic silica to the oceanic silica budget.Limnology Oceanography, 1997,42(4):774~777
    [28] Lerman A..Weathering rates and major transport processes:An introduction In:Lerman A. and Meybeck M.,eds,Physical and chemical weathering in geochemical cycle.Kluwer Academic Publishiers,1988.1~10,
    [29] Hurd D.C..Physical and chemical properties of siliceous skeletons.In:Aston S.R.,eds,Silicon geochemistry and biogeochemistry Academic Press.1983.187~244
    [30] Treguer P., Nelson D.M., Bennekom A. J. V., et al. The silica balance in the world ocean:A reestimate.Science, 1995, 268:375~379
    [31] Nelson D.M., Treguer P., Brezinski M.A., et al. Production and dissolution of biogenic silica in the ocean:revised global estimates,comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 1995, 9:359~372
    [32]杨东方,高振会,陈豫,等.硅的生物地球化学过程的研究动态.海洋科学, 2002, 26(3):39~23
    [33] Mortlocka R.A.and Froelicha P. N.. A simple method for the rapid determination of biogenic opal in pelagic marine sediments.Deep Sea Research Part A. Oceanographic Research Papers, 1989, 36:1415~1426
    [34] Eisma D.and Gaast S. J. V. D.. Determination of opal in marine sediments by X-ray diffraction.Netherlands Journal of Sea Research, 1971, 5:382~389
    [35] Pokras E.. Preservation of fossil diatoms in Atlantic sediment cores:control by supply rate.Deep-Sea Research I, 1986,33(7):893~902
    [36] Frohlich F.. Deep-sea biogenic silica:new structural and analytical data from infrared analysis-geological implications.Terra Research,1989, 1:267~273
    [37] Brewster N.A.. The determination of biogenic opal in high latitude deep-sea sediments. In: Iijima A., Hein J. R., Siever,ed. Siliceous deposits in the Pacific region: developments in sediment logy, 1983, 17~331
    [38] Hurd D.C.. Interactions of biogenic opal,sediment and seawater in the central equatorial Pacific.Geochimica et Cosmochimica Acta, 1973.37:2257~2282
    [39] DeMaster D.J.. The supply and accumulation of the silica in the marine environment. Geochemica Cosmochimica Acta, 1981, 45:1715~1732
    [40] Demaster D.J., Measuring biogenic silica in marine sediments and suspended matter. In: Hurd D.C.,Spenser D.W.,eds. Marine Particles:Analysis and Characterization, 1991. 363~368
    [41] Muller P.J. and Scheider R.. An automated leaching method for the determination of opal in sediments and particulate matter.Deep-Sea Research I, 1993, 40(3):425~444
    [42] Kamatani A. and Oku O.. Measuring biogenic silica in marine sediments.Marine Chemistry, 2000, 68:219~229
    [43] Conley D.J.. An interlaboratory comparison for the measurement of biogenic silica in sediments.Marine Chemistry,1998,63:39~48
    [44] Brzezinski M.A. and Nelson D.M..Seasonal changes in the silicon cycle within a Gulf Stream warm-core ring. Deep-Sea Research, 1989,36: 1009~1030
    [ 45 ] Brzezinski M.A. and Nelson D.M.. The annual silica in the Sargasso Sea near Bermuda.Deep-Sea Research I,1995, 42 (7):1215~1237
    [46] Kamatani A. and Takano M.. The behaviour of dissolve silica during the mixing of river and sea waters in Tokyo Bay Estuarine.Coastal and Shelf Science, 1984, 19:505~512
    [47] Ragueneau O. and Treguer P.. Determination of biogenic silica in coastal waters:applicability and limits of the alkaline digestion method.Marine Chemistry, 1994,45:43~51
    [48] Ragueneau O., Savoye N.,Yolanda D.A., et al. A new method for the measurement of biogenic silica in suspended matter of coastal waters:Using Si:Al ratios to correct for the mineral interference.Continental Shelf Research, 2005,25:697~710
    [49]赵立波,黄凌风,潘科,等.内湾沉积物中生物硅的测定方法及其应用初探.厦门大学学报(自然科学版), 2004, 43(Sup):153~158
    [50]王文远,刘嘉麒,彭平安.湖泊沉积物生物硅的测定与应用:以湖光岩玛珥湖为例.地球化学, 2000, 9:327~330
    [51]贾国东,翦知湣,彭平安,等.南海南部17962柱状样生物硅沉积记录及其古海洋意义.地球化学, 2000, 29(3) :293~296
    [52] Colman S. M., Peck J. A., and Karabanov E. B.. Continental climate response to orbital forcing from biogenic silica records in lake Baikal.Nature, 1995, 378:769~771
    [53] Xiao J., Inouchi Y. and Kumai H.. Biogenic Silica Record in Lake Biwa of Central Japan over the Past 145,000 Years.Quaternary Research, 1997,47: 277~283
    [54] Schluter M. and Sauter E.. Biogenic silica cycle in surface sediments of Greenland Sea.Journal of Marine Systems, 2000, 23:333~342
    [55] Cappelien P. V. and Qiu L.. Biogenic silica dissolution in sediments of the Southern Ocean.II. Kinetics.Deep-Sea Research II, 1997,44(5):1129~1149
    [56] Cociasu A., Dorogan L., Humborg C., et al. Longterm ecological changes in Romanian coastal waters of the Black Sea.Marine Pollution Bulletin, 1996,32:32~38
    [57] Dixit S.S., Smol J. P., Kingston J. C., et al. Diatoms: powerful indicators of environmental changes.Environmental Science and Technology, 1992, 26:23~33 [ 58 ] Bennion H., Juggins S., and Anderson N. J.. Predicting epilimnetic phosphorus concentrations using an improved diatombased transfer function and its application to lake eutrophication management.Environmental Science and Technology,1996,30:2004~2007
    [59] Stoermer E. F., Wolin J. A., Schelske C. L., et al. Variations in Melosira islandica valve morphology in Lake OntarioOntario sediments related to eutrophication and silica depletion.Limnology and Oceanography, 1985, 30:414~418
    [60] Soballe D. and Kimmel B. L..A large scale comparison of factors infl uencing phytoplankton abundance in rivers, lakes and impoundments.Ecology, 1987,68:1943-1954.
    [61] Conley D.J., Schelske C.L., and Stoermer E.F.. Modification of the biogeochemical cycle of silica with eutrophication.Marine Ecology Progress Series, 1993, 101:179~192
    [62] Kelly V. J.. Influence of reservoirs on solute transport:a regional-scale approach.Hydrological Processes, 2001,15:1227~1249
    [63]程和琴,李茂田.河流入海溶解硅通量的变化及其影响——以长江为例.长江流域资源与环境, 2001, 10(6):558~563
    [64] Teodoru C., Wehrli B.. Retention of sediments and nutrients in the Iron Gate I reservoir onthe Danube River. Biogeochemistry, 2005,76:539~565
    [65] DeMaster D. J.. The accumulation and cycling of biogenic silica in the Southern Ocean:revisiting the marine silica budget.Deep-sea Research partⅡ, 2002, 49:3155~3167
    [66]叶曦雯.胶州湾中生物硅的研究:[硕士学位论文].青岛:中国海洋大学海洋化学系,2003
    [67] Liu S. M., Zhang J., and Li R. X.. Ecological significance of biogenic silica in the East China Sea.Marine Ecology Progress Series,2005, 290:15~26
    [68] Friedl G., Teodoru C., Wehrli B.. Is the Iron Gate I reservoir on the Danube River a sink for dissolved silica? Biogeochemistry, 2004, 68,21~32
    [69] McGinni D. F., Bocaniov S., Teodoru C., et al. Silica retention in the Iron Gate I Reservoir on the Danube River: The role of side bays as nutrient sinks.River Research and Applications, 2006, 22(4):441~456
    [70] Brookes A.and Shields F.D.. River channel restoration:guiding priniciples for sustainable projects. England:John Wiley and Sons Chichester.2001.
    [71] Brismar A.. Attention to impact pathways in EISs of large dam projects.Environmental Impact Assessment Review,2004:59~87
    [72] Lancelot C., Staneva J., Eeckhout D. V., et al. Modelling the Danube-influenced North-western Continental Shelf of the Black Sea.Ⅱ:Ecosystem response to changes in nutrient delivery by the Danube River after its damming in 1972.Estuarine,Coastal and Shelf Science, 2002, 54:473~499
    [73] Kimmel B. L., Owen T. Lind, and Larry J. Paulson, Reservoir primary production. In: K. W., Kimmel B. L. and Payne F. E.,eds. Reservoir limnology.Ecological perspectives. New York John Wiley & Sons, Inc.,1990: 133~175
    [74]林秋奇,韩博平.水库生态系统特征研究及其在水库水质管理中的应用.生态学报,2001,21 (6) :1034~1040
    [75]张远,郑丙辉,富国,等.河道型水库基于敏感性分区的营养状态标准与评价方法研究.环境科学学报,2006, 26 (6):1016~1021
    [76] Jennerjahna T., Ittekkot V., Klopper S., et al. Biogeochemistry of a tropical river affected by human activities in its catchment:Brantas River estuary and coastal waters of Madura Strait, Java,Indonesia.Estuarine,Coastal and Shelf Science, 2004, 60:503~514
    [77] Almazov V.Stock rastverennykh veschestv kotorye vynoweatsya rekami USSR.Naukovi Zapiski Odes.Biol.St,1961,3:99~107
    [78]Li Maotian, Xu Kaiqin, Masataka Watanabe, et al. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science,2007,71:3~12
    [79]于志刚,米铁柱.二十年来渤海生态环境参数的演化和相互关系.海洋环境科学,2000,19 (1):5-19.
    [80] Turner R.E. and Rabalais N.N..2003.Linking landscape and water quality in the Mixxissippi river basin for 200 year.BioScience 53:563~572
    [81] Humborg C., Pastuszak M., Aigars Juris, et al., Decreased Silica Land–sea Fluxes through Damming in the Baltic Sea Catchment– Significance of Particle Trapping and Hydrological Alterations. Biogeochemistry, 2006,77(2): 265~281.
    [82] Dean W. E. and Gorham. E.. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology,1998,26: 535~538.
    [83] Humborg C.,Blomqvist S.,Avsan E.,Bergensund Y.. Hydrological alterations with river damming in northern Sweden:Implications for weathering and river biogeochemistry. Global Biogeochemical Cycles,2002,16:1039,doi:10.1029/2000GB001369
    [84]沈志良.长江干流营养盐通量的初步研究.海洋与湖沼,1997, 28:522~528
    [85] Ding T, Wan D, Wang C, et al. Silicon isotope compositions of dissolved silicon andsuspended matter in the Yangtze River, China. Geochimica et Cosmochimica Acta,2004,68(2):205–216.
    [86] Liu Sumei, Zhang J,Chen H T, et al .Nutrients in the Changjiang and its tributaries. Biogeochemistry,2002,00:1-18
    [87]徐开钦,林诚二,牧秀明,等.长江干流主要营养盐含量的变化特征——1998~1999年日中合作调查结果分析.地理学报, 2004, 59(1):118~124
    [88]李茂田,程和琴.近50年来长江入海溶解硅通量变化及其影响.中国环境科学, 2001, 21(3):1~5
    [89] Duan Shuiwang,Xu Feng,Wang Lijun.Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries.Biogeochemistry,2007,85:215~234
    [90]长江统计年鉴编委会.长江统计年鉴.武汉:湖北教育出版社. 1992-2004:566
    [91]蒋凤华,王修林,石晓勇,等.Si在胶州湾沉积物一海水界面上的交换速率和通量研究.青岛海洋大学学报,2002,32(6):1012~1018
    [92] Ragueneau O., Savoye N.,Yolanda D.A., et al. A new method for the measurement of biogenic silica in suspended matter of coastal waters:Using Si:Al ratios to correct for the mineral interference.Continental Shelf Research, 2005,25:697~710
    [93] Cardinal D., Savoye N., Trull T. W., et al. Silicon isotopes in spring Southern Ocean diatoms:Large zonal changes despite homogeneity among size fractions.Marine Chemistry, 2006, IN PRESS.
    [94] Miao A.-J., Hutchins D. A, Yin K. et al. Macronutrient and iron limitation of phytoplankton growth in Hong Kong coastal waters. Marine Ecology Progress Series, 2006, 318:141~152
    [95] Opfergelt, S., D. Cardinal, C. Henriet, X. Draye, L. Andre, and B. Delvaux, 2006, Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device: Plant Soil, v. 285, p. 333~345
    [96]李宏亮,陈建芳,刘子琳,等.北极楚科奇海和加拿大海盆南部颗粒生物硅的粒级结构.自然科学进展, 2007,01:72~78
    [97]张欣泉,长江干流及河口硅的生物地球化学研究:[硕士学位论文].青岛:中国海洋大学应用化学系,2006
    [98] Ren, J.L., Zhang,J.,et al, Improved fluorimetric determination of dissolved aluminium by micelle-enhanced lumogallion complex in natural waters. Analyst, 2001,126:698-702
    [99]郑守仁,刘宁. 21世纪长江流域治理开发方略探讨.中国水利,2000,9:10~12
    [100]储忠信,三峡水库一期蓄水对长江泥沙的影响:[博士学位论文].青岛:中国海洋大学,2006
    [101] Conley D.J.Terrestrial ecosystems and the global biogeochemical silica cycle.Global Biogeochem.Cycles,2002,16:Art.No.1121
    [102] Ittekkot V.A new story from the ol’man river.Science,2003,301:56~58
    [103] Raymond P.A. and Cole J.J..Increase in the export of alkalinity from North America’s largest river.Science,2003,301:88-91
    [104]方涛,付长营,敖鸿毅,等.三峡水库蓄水前后香溪河氮磷污染状况研究.水生生物学报, 2006,30(1):26~30
    [105]湛敏.三峡库区典型流域富营养化污染与水华暴发的化学机制研究:[硕士学位论文]重庆:重庆大学. 2005.
    [106]钟成华,幸治国,赵文谦,等.三峡水库蓄水后大宁河水体富营养化调查及评价.灌溉排水学报, 2004,23(3):20~23
    [107]韩新芹,叶麟,徐耀阳,等.香溪河库湾春季叶绿素a浓度动态及其影响因子分析.水生生物学报, 2006,30(1):89~94
    [108]罗专溪,朱波,邓丙辉,等.三峡水库支流回水段氮磷负荷与干流的逆向影响.中国环境科学, 2007,27(2): 208~212.
    [109] Wu J. G., Huang J. H., Han X. G., et al. Three-Gorge Dam-experiment in habitat fragmentation? Science, 2003,300: 1239~1240
    [110]张国森,陈洪涛,张经,等.长江口地区大气湿沉降中营养盐的初步研究.应用生态学报.2003,14(7):1107-1111
    [111]黄真理,李玉樑,等.三峡水库水质预测和环境容量计算.北京:中国水利水电出版社.2006:18
    [112] Vollenweider, R.A., and J.Kerekes, 1980, The loading concept as a basis for controlling eutrophication philosophy and preliminary results of the OECD Programme on eutrophication Prog.Water Technol., v. 12, p. 5~18
    [113] Canfield, JR. D.E. and Bachmann R.W.. Prediction of Total Phosphorus Concentrations,Chlorophyll a,and Secchi Depths in Natural and Artificial Lakes.Canadian Journal of Fish Aquatic Science, 1981,38:414~423
    [114] Zhang J., ZHANG Z.F., Liu S.M., et al. Human impacts on the large world rivers:Would the Changjiang (Yangtze River) be an illustration? GLOBAL BIOGEOCHEMICAL CYCLES, 1999, 13, p. 1099~1105
    [115] Chinese Encyclopedia Compilation Committee, 1987.Chinese Encyclopedia Atmosphere,Marine and Hydrology Science. Beijing:Chinese Encyclopedia Publishing House, 345~347(in Chinese)
    [116] Redfield A.C.,Ketchum B.H.,Richards F.A.. The influence of organism on the composition of seawater.In the Sea1963,2:26~77
    [117] Brzezinski M.A.. The Si:C:N ratio of marine diatoms:inter-specific variability and the effect of some environmental variable.Journal of Physiology,1985,21:347~357
    [118] Rahm L.,Conley D.,Sanden P., et al. Time series analysis of nutrient inputs to the Baltic Sea and changing DSi:DIN ratios.Marine Ecoloyg Progress Series,1996,130:221~228

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700